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Abstract

This thesis deal with multivariate analysis, especially robust prewhitening for independent
component analysis (ICA), exploring local PCA structures and extraction of local ICA struc-
tures by the minimum [-divergence method. In the context of minimum [-divergence
method, the f-divergence between the empirical distribution of a sample (data distribu-
tion) and the specific distribution corresponding to the problem under study is minimized
with respect to the parameters to be estimated (Minami and Eguchi, 2002; Mollah, Minami
and Eguchi, 2006). The minimum S-divergence method with 8 = 0 reduces to the min-
imum Kullback-Leibler (K-L) divergence method. The minimum S-divergence method is
robust against outliers. If a data set contains more than one data cluster, then minimum
B-divergence method works on a cluster considering other clusters as outliers. Sequentially,
it works in each cluster changing the initial value of the shifting parameter by the minimizer
of the cumulative weight (Mollah, Minami and Eguchi, 2006; Mollah, Sultana, Minami and
Eguchi, 2005b). In this thesis, we propose three main results obtain by the minimum g-

divergence method.

1. An adaptive robust prewhitening procedure for ICA is proposed by minimizing (-

divergence.

2. An adaptive algorithm to explore local PCA structures for dimensionality reduction is

proposed by minimum [-Divergence method.

3. An extention of minimum f-divergence method (Minami and Eguchi, 2002) is proposed

for exploring local ICA structures.

An adaptive robust prewhitening procedure named F-prewhitening is proposed by mini-
mizing the empirical §-divergence over the space of all the Gaussian distributions. The
performance of this new prewhitening is compared with the classical prewhitening by a per-

formance index (newly proposed) and FastICA (Hyvérinen, 1999) using both synthetic and
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real data sets. Simulation result shows that f-prewhitening efficiently improves the perfor-
mance over the classical prewhitening when outliers exist; it reduce to classical prewhitening

otherwise.

A comparatively new problem in multivariate analysis is to explore local PCA or ICA struc-
tures. An attempt is made to propose a new learning algorithm to explore local PCA
structures in which observed data consists of several data clusters. The proposed method
is based on a sequential application of the minimum B-divergence method to search an or-
thogonal matrix for each cluster sequentially. The proposed method searches local PCA
structures sequentially on the basis of a rule of sequential change of the shifting parameter
and a local kernel vector. If the initial choice of the shifting parameter vector and the local
kernel vector belongs to a data cluster, then all data belonging to that cluster are trans-
formed into a, PCA structure considering the data in other clusters as outliers. The value of
the kernel parameter v plays a key in the performance of the proposed methods mentioned

above. A cross-validation technique is proposed as an adaptive selection procedure for the
tuning parameter v,

This thesis also discusses a learning algorithm to explore local ICA structures in which
observed data consists of several data clusters. The proposed method is based on a sequential
application of the minimum p-divergence method to separate all source classes sequentially.
The proposed method searches the recovering matrix of each class on the basis of a rule of
sequential change of the shifting parameter. If the initial choice of the shifting parameter
vector is close to the mean of a data class, then all of the hidden sources belonging to
that class are recovered properly with independent and non-Gaussian structure considering
the data in other classes as outliers. The value of the tuning parameter § is a key in

the performance of the proposed methods. A cross-validation technique is proposed as an

adaptive selection procedure for the tuning parameter £.




Chapter 1

Introduction

A common problem encountered in such disciplines as statistics, signal processing, and neural
network research, is finding a suitable representation of multivariate data. For computational
and conceptual simplicity, such a representation is often sought as a linear transformation of
the original data. Well-known linear transformation methods include, for example, princi-
pal component analysis, factor analysis, and projection pursuit. A recently developed linear
transformation method is independent component analysis (ICA). Their various applications
include feature extraction, image processing, dimension reduction, blind source separation
(BSS) and so on. Non-linear models for PCA or ICA and the dimension reduction by neu-
ral networks were also developed to deal with non-linear data structures. The non-linear
approaches, however, have not been so successful due to computational and conceptual com-
plexity. Thus local model approaches, which are used in connection with a suitable clustering
algorithm, were considered. Along with the preprocessing with cluster analysis followed by
the estimation of the local linear model of each cluster, iterative local PCA algorithms based
on the minimization of the reconstruction errors (Kambhatla and Leen, 1997). Another
alternative is the probabilistic approach to the local PCA, in which the task of PCA is for-
mulated based on the estimation of probabilistic models (Tipping et al., 1997, 1999) and the
models are enhanced to the PCA mixture models that are optimized by using the maximum
likelihood techniques. This mixture was modified into a mixture of factor analyzers (FA)
(Ghahramani et al., 2000), where variational Bayesian inference was used to infer the opti-

mum number of Analyzers.

One problem with PCA/FA mixture models is that each component is a Gaussian, a strong

assumption which is often violated in many natural clustering problems (Lee et al., 2000a,b).
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Although mixtures of Gaussian (MoG) are capable of modeling most distributions given
enough components, the problem still remains of automatically grouping Gaussians which
together describe some larger-scale feature. A solution is reached by extending the mixtures
of probabilistic PCA/FA model to a ICA Mixture models. Previous work (Lee et al., 2000b;
Penny et al., 2001) is improved by incorporating a very flexible ICA model that can gener-
ate arbitrary densities using MoGs, and by bringing the formalism into the Bayesian arena.
Bayesian inference is used to infer the optimum number of ICAs needed and automatically
determine their ideal dimensionalities. The ICA mixture model has been applied to multi-

class problems by using the EM algorithm (Lee et al., 2000a,b).

Many estimation methods for ICA requires prewhitening of observed signals, because it re-
duces the complexity of the ICA problems (Hyvérinen, Karhunen and Oja, 2001; Cichoki and
Amari, 2002). In the case of fixed-point algorithms (Hyviérinen, Karhunen and Oja, 2001), it
plays a significant role on the performance of the algorithms. In particular, Hyvérinen (1999)
proposed FastICA fixed-point algorithm for robust BSS. However, the performance of this
algorithm is not so good sometimes. A main cause of this weak performance may be from the
classical prewhitening procedure, which is known to be sensitive to outliers. Thus estimate of
independent components under classical prewhitening gives misleading results in presence of
outliers or noisy data. There exist some robust prewhitening procedure like batch algorithm
based on the subspace approach for ICA (Cichoki and Amari, 2002). However, this type of
robust prewhitening may be suffer from the non-robust classical centering, (Hyvérinen et al.,
2001, page 154). On the other hand, the performance of classical prewhitening procedure is
better than the performance of robust prewhitening procedure for noiseless data sets, while
this performance is completely reverse for noisy data sets. It is also difficult task to know in
advance whether a data set is noise free or not. Therefore, existing prewhitening procedures
are not always suitable. In this thesis, a new prewhitening procedure named p-prewhitening

is proposed by minimizing f-divergence from the adaptive robustness point of view.

In both classical PCA or ICA, only one data cluster is considered in the entire data space.
However, in some situations, number data clusters may be more than one. Then, classical
PCA or ICA gives misleading results. To overcome this problem, Lee, Lewicki and Sejnowski

(2000b) proposed ICA mixture models to explore local ICA structures and Tipping et al.
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(1999) proposed mixture of probabilistic PCA algorithm to explore local PCA structures.
However, there exist one problem in their method is that the number ¢ of classes need to
know in advance which is very difficult task in practice. To overcome this inconvenient, this

thesis introduces minimum [-divergence method in both local ICA and PCA contexts.

1.0.1 Organization of Thesis

This thesis is organized within eight chapters. Before going to main research we discussed
some related areas in chapter 2. Both PCA and ICA are the fundamental areas of research
in this thesis. However, ICA is a comparatively new addition in multivariate analysis. As
such, chapter 3 is the largest of the theory chapters and serves as an introduction to ICA.
This chapter explains the concept of independent components and their analysis by ICA.
This is followed by a formulation of the linear ICA model under some assumptions. Then
we discuss some preprocessing for ICA that greatly helps solving the ICA problem. Then we
discuss basic principles of ICA estimation. Then we discuss some existing ICA algorithms

and their problems. At the end of this section we present the main objectives of research.

In chapter 4 we proposed a new adaptive robust preprocessing system by minimizing -
divergence for ICA. Also we investigate the performance of this new proposal by a perfor-
mance index and FastICA in a comparison of the classical preprocessing. In chapter 5, we
proposed a new method for exploring local PCA structures based on minimum f-divergence
method. To demonstrate the validity of this method, we present some simulation results
using synthetic data set in this chapter also. In chapter 6, an attempt is made to propose
a new method for exploring local ICA structures based on minimum f-divergence method.
We present some simulation results using artificial and natural signals to demonstrate the
validity of the last proposal. Chapter 7 presents some incomplete research directions for

future study. Chapter 8 included the concluding remarks.




Chapter 2

Classical Linear Transformations

A central problem in neural network research, as well as in statistics and signal processing,
is finding a suitable representation of the data, by means of a suitable transformation. It is
important for subsequent analysis of the data, whether it be pattern recognition, data com-
pression, de-noising, visualization or anything else, that the data is represented in a manner
that facilitates the analysis. As a trivial example, consider speech recognition by a human
being. The task is clearly simpler if the speech is represented as audible sound, and not as

a sequence of numbers on a paper.

Let us concentrate on the problem of representing continuous-valued multidimensional vari-
ables. Let us denote by & an m-dimensional random variable; the problem is then to find a

function f so that the n-dimensional transform s = (sy, 89, ...,8,)7 defined by

s = /(@) (2.1)

has some desirable properties. In most cases, the representation is sought as a linear trans-

form of the observed variables, i.e.,
S = Wm (2.2)

where W is a matrix to be determined. Using linear transformations makes the problem
computationally and conceptually simpler, and facilitates the interpretation of the results.
Thus we treat only linear transformations here. Most of the methods described here can
be extended for the non-linear case. Such extensions are, however, outside the scope of this
thesis. Several principles and methods have been developed to find a suitable linear trans-

formation. These include principal component analysis, factor analysis, projection pursuit,
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independent component analysis, and many more. Usually, these methods define a principle
that tells which transform is optimal. The optimality may be defined in the sense of optimal
dimension reduction, statistical 'interestingness’ of the resulting components s;, simplicity

of the transformation W, or other criteria, including application-oriented ones.

Recently, a particular method for finding a linear transformation, called independent com-
ponent analysis (ICA), has gained wide-spread attention. As the name implies, the basic
goal is to find a transformation in which the components s; are statistically as independent
from each other as possible. ICA can be applied, for example, for blind source separation,
in which the observed values of & correspond to a realization of an m-dimensional discrete-
time signal x(¢),t = 1,2, ..... Then the components s;(¢) are called source signals, which are
usually original, uncorrupted signals or noise sources. Often such sources are statistically
independent from each other, and thus the signals can be recovered from linear mixtures z;
by finding a transformation in which the transformed signals are as independent as possible,
as in ICA. Another promising application is feature extraction, in which s; is the coefficient
of the i-th feature in the observed data vector &. The use of ICA for feature extraction is
motivated by results in neurosciences that suggest that the similar principle of redundancy
reduction explains some aspects of the early processing of sensory data by the brain. ICA
has also applications in exploratory data analysis in the same way as the closely related

method of projection pursuit.

2.1 Second-Order Methods

The most popular methods for finding a linear transform as in (2.2) are second-order meth-
ods. This means methods that find the representation using only the information contained
in the covariance matrix of the data vector . Of course, the mean is also used in the initial
centering. The use of second-order techniques is to be understood in the context of the clas-
sical assumption of Gaussianity. If the variable @ has a normal, or Gaussian distribution, its
distribution is completely determined by this second-order information. Thus it is useless
to include any other information. Another reason for the popularity of the second-order
methods is that they are computationally simple, often requiring only classical matrix ma-~

nipulations.

e e e e T s
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The two classical second-order methods are principal component analysis and factor analysis
(Harman, 1967; Jolliffe, 2002; Kendall, 1975). One might roughly characterize the second-
order methods by saying that their purpose is to find a faithful representation of the data,
in the sense of reconstruction (mean-square) error. This is in contrast to most higher-order
methods which try to find a meaningful representation. Of course, meaningfulness is a task-
dependent property, but these higher-order methods seem to be able to find meaningful
representations in a wide variety of applications (Comon, 1994; Friedman, 1987; Jutten et
al., 1991).

2.1.1 Principal Component Analysis (PCA)

PCA is widely used in signal processing, statistics, and neural computing (?Kendall, 1975).
In some application areas, this is also called the (discrete) Karhunen-Love transform, or
the Hotelling transform. The basic idea in PCA is to find the components si,82,...,8n
so that they explain the maximum amount of variance possible by 7 linearly transformed
components. PCA can be defined in an intuitive way using a recursive formulation. Define
the direction of the first principal component, say w,, by

w) = argmax B {(wT:c)2} (2.3)

lwj=1

where w, is of the same dimension m as the random data vector &. Thus the first principal
component is the projection on the direction in which the variance of the projection is
maximized. Having determined the first k& — 1 principal components, the k-th principal

component is determined as the principal component of the residual:

wy, = argmax B { [wT (93 - kilwiw?mNQ} ‘ (2.4)

lwi=1 i=1

The principal components are then given by s; = w} . In practice, the computation of the
w; can be simply accomplished using the (sample) covariance matrix E{zxT} = B. The w;

are the eigenvectors of B that correspond to the n largest eigenvalues of B.

The basic goal in PCA is to reduce the dimension of the data. Thus one usually chooses
n << m. Indeed, it can be proven that the representation given by PCA is an optimal linear
dimension reduction technique in the mean-square sense (7). Such a reduction in dimension

has important benefits. First, the computational overhead of the subsequent processing
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stages is reduced. Second, noise may be reduced, as the data not contained in the n first
components may be mostly due to noise. Third, a projection into a subspace of a very low
dimension, for example two, is useful for visualizing the data. Note that often it is not
necessary to use the n principal components themselves, since any other orthonormal basis
of the subspace spanned by the principal components (called the PCA subspace) has the

same data compression or denoising capabilities.

2.1.2 Factor Analysis

A method that is closely related to PCA is factor analysis (Harman, 1967; Kendall, 1975).

In factor analysis, the following generative model for the data is postulated:
x=As+b (2.5)

where @ is the vector of the observed variables, s is the vector of the latent variables (factors)
that cannot be observed, A is a constant m X n matrix, and the vector b is noise, of the
same dimension, m, as ®. All the variables in 8 and b are assumed to be Gaussian. In
addition, it is usually assumed that s has a lower dimension than 2. Thus, factor analysis
is basically a method of reducing the dimension of the data, in a way similar to PCA. There
are two main methods for estimating the factor analytic model (Kendall, 1975). The first
method is the method of principal factors. As the name implies, this is basically a modifi-
cation of PCA. The idea is here to apply PCA on the data  in such a way that the effect
of noise is taken into account. In the simplest form, one assumes that the covariance matrix
of the noise ¥ = E{bb’} is known. Then one finds the factors by performing PCA using
the modified covariance matrix C — X , where C is the covariance matrix of . Thus the
vector s is simply the vector of the principal components of with noise removed. A second
popular method, based on maximum likelihood estimation, can also be reduced to finding
the principal components of a modified covariance matrix. For the general case where the
noise covariance matrix is not known, different methods for estimating it are described in
(Harman, 1967; Kendall, 1975).

Nevertheless, there is an important difference between factor analysis and PCA, though this
difference has little to do with the formal definitions of the methods. Equation (2.5) does not
define the factors uniquely (i.e. they are not identifiable), but only up to a rotation (Har-
man, 1967; Kendall, 1975). This indeterminacy 'should be compared with the possibility of
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choosing an arbitrary basis for the PCA subspace, i.e., the subspace spanned by the first n
principal components. Therefore, in factor analysis, it is conventional to search for a ‘rota-
tion’ of the factors that gives a basis with some interesting properties. The classical criterion
is parsimony of representation, which roughly means that the matrix has few significantly
non-zero entries. This principle has given rise to such techniques as the varimax, quartimax,
and oblimin rotations (Harman, 1967). Such a rotation has the benefit of facilitating the
interpretation of the results, as the relations between the factors and the observed variables

become simpler.

2.2 Higher-Order Methods

Higher-order methods use information on the distribution of  that is not contained in the
covariance matrix. In order for this to be meaningful, the distribution of  must not be
assumed to be Gaussian, because all the information of (zero-mean) Gaussian variables is
contained in the covariance matrix. For more general families of density functions, however,
the representation problem has more degrees of freedom. Thus much more sophisticated
techniques may be constructed for non-Gaussian random variables. Indeed, the transform
defined by second-order methods like PCA is not useful for many purposes where optimal
reduction of dimension in the mean-square sense is not needed. This is because PCA neglects
such aspects of non-Gaussian data as clustering and independence of the components. We
shall here review three conventional methods based on higher-order statistics: projection

pursuit, redundancy reduction, and blind deconvolution.

2.2.1 Projection Pursuit

Projection pursuit (Friedman et al., 2001; Friedman, 1987; Huber, 1985; Jones et al., 1987)
is a technique developed in statistics for finding 'interesting’ projections of multidimensional
data. Such projections can then be used for optimal visualization of the clustering structure
of the data, and for such purposes as density estimation and regression. Reduction of di-
mension is also an important objective here, especially if the aim is visualization of the data.
In basic (1-D) projection pursuit, we try to find directions w such that the projection of the
data in that direction, w?z, has an 'interesting’ distribution, i.e., displays some structure.
It has been argued by Huber (1985) and Jones and Sibson (1987) that the Ganssian distri-

bution is the least interesting one, and that the most interesting directions are those that
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show the least Gaussian distribution.

2.2.2 Redundancy Reduction

According to Barlow (1989a,b) and several other authors (Deco et al, 1995; Atick, 1992; Field,
1994: Schmidhuber et al., 1996), an important characteristic of sensory processing in the
brain is 'redundancy reduction’. One aspect of redundancy reduction is that the input datais
represented using components (features) that are as independent from each other as possible.
Such a representation seems to be very useful for later processing stages. Theoretically, the
values of the components are given by the activities of the neurons, and @ is represented as a
sum of the weight vectors of the neurons, weighted by their activations. This leads to a linear
encoding like the other methods in this Section. One method for performing redundancy
reduction is sparse coding (Field, 1994). Here the idea is to represent the data x using a set of
neurons so that only a small number of neurons is activated at the same time. Equivalently,
this means that a given neuron is activated only rarely. If the data has certain statistical
properties (it is ’sparse’), this kind of coding leads to approximate redundancy reduction
(Field, 1994). A second method for redundancy reduction is predictability minimization
(Schmidhuber,Eldracher and Foltin, 1996). This is based on the observation that if two
random variables are independent, they provide no information that could be used to predict

one variable using the other one.

2.2.3 Blind Deconvolution

Blind deconvolution is different from the other techniques discussed in this Section in the
sense that (in the very simplest case) were are dealing with one-dimensional time signals
(or time series) instead of multidimensional data, though blind deconvolution can also be
extended to the multidimensional case. Blind deconvolution is an important research topic
with a vast literature. We shall here describe only a special case of the problem that is
closely connected to ours. In blind deconvolution, a convolved version z(t) of a scalar signal
s(t) is observed, without knowing the signal s(1) or the convolution kernel (Donoho, 1981;
Haykin, 1994, 1996; Shalvi et al., 1993). The problem is then to find a separating filter A so
that s(t) = h(t) * ().

The equalizer h(t) is assumed to be a FIR filter of sufficient length, so that the truncation
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effects can be ignored. A special case of blind deconvolution that is especially interesting in
our context is the case where it is assumed that the values of the signal s(t) at two different
points of time are statistically independent. Under certain assumptions, this problem can be
solved by simply whitening the signal z(¢). However, to solve the problem in full generality,
one must assume that the signal s(¢) is non-Gaussian, and use higher-order information
(Haykin, 1994; Shalvi et al., 1993). Thus the techniques used for solving this (special case of
the) problem are very similar to the techniques used in other higher-order methods discussed

in this Section.
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Chapter 3

A Short Note on ICA

3.1 History of ICA

Independent Component Analysis was first formulated by Herault and Jutten (1986) in an
attempt to solve the BSS problem in signal processing. Their approach has been further
developed by Jutten et al. (1991), Comon et al. (1991), Karhunen et al. (1994), Cichocki
et al. (1994). ICA was formally defined by Comon (1994), in which he proposed mutual
information as the most natural measure of independence. In the same paper, he derived
an approximation to the mutual information based on Edgeworth expansions in terms of
cumulants. Similar expansions have been proposed by Amari et. al. (1996), while algebraic
methods using cumulants have been explored by Cardoso et al (1996) and Cardoso (1999).
It was also shown by Comon (1994) that the negentropy could be used as a proxy for the
mutual information. Comon showed that maximizing the non-Gaussianity of the source sig-
nals was equivalent to minimizing the mutual information between them. An approximation
to this measure was used in a nonlinear PCA implementation of ICA by Karhunen et al.
(1994), Oja (1997), and by Hyvirinen et al. (1997) in their FastICA algorithm. Girolami
also used negentropy approximations in projection pursuit formulations of ICA Girolami et
al. (1996).

Linsker (1992) showed that linear mappings of Gaussian densities that maximize informa-
tion transmittance - the ‘INFOMAX’ principle Linsker (1989) - perform PCA. It was further
shown by Nadal and Parga (1994), that non-linear-mappings that follow this principle are
capable of producing factored distributions in the source space. In an effort to model infor-

mation transfer in neurons, Bell and Sejnowski (1995) extended the INFOMAX principle to
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non-linear mappings of non-Gaussian densities. The input data was first mapped to interme-
diate variables by a linear transform, then these were mapped by sigmoidal non-linearities to
an output. By maximizing the entropy of the output through adjusting the linear transform
parameters, they showed that the :ntermediate variables were a linear ICA projection of the

input data. Similar algorithms were independently suggested by Cardoso et al (1996).

Other algorithms for performing ICA have been proposed from different viewpoints. Max-
imum Likelihood Estimation (MLE) approaches to ICA were first proposed by Gaeta and
Lacoume (1990) and elaborated by Pham, Garrat and Jutten (1992). Pearlmutter and Parra
(1996), Mackay (1996) and Cardoso (1997) showed that the infomax approach of Bell and Se-
jnowski (1995) and the maximum likelihood estimation approach are equivalent. Everson and
Roberts (1995) extended these methods by incorporating a flexible generalized—exponential
model for the source densities that could learn both super- and sub-Gaussian distributions.
This is equivalent to learning the non-linearity in the INFOMAX case. They also noted
that an unmixing matrix that has independent columns must also be decorrelated. This
information was used to constrain the learning to the manifold of decorrelating matrices,

thereby greatly speeding up the process.

3.1.1 What is Independent Component?

The components of a random vector Yy = (Y1, %2y - - - ym)T are said to be independent of each

other if and only if the density function of ¥ is factorized (Papoulis, 1992) as

p(y) = ﬂpi(yi)’ (3.1)
where

Pi(@/i) = /p(y)dylmdyi—ldyHl--'dyma

is the marginal density of g, (i = 1,2, ...,m). If components of y are independent of eacla
other, then most important property of their independence is
m m
E {n m(y,-.)} _ TR (o (3.2)
i=1 i=1

where, h; (y;) is any measurable function of y;.
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3.1.2 Uncorrelated Components are Only Partly Independent

Let us assume components of ¥y = (y1,v2, - ,ym)T are independent of each other, then they

are pair-wise independent also, that is

oy y) = pily)pi(y;), (#4545 = 1,2,...,m) (3.3)

which implies

E(y;,9;) = E@)E(;), (#4:4i=12..m) (3.4)

Then pair-wise covariances are

COV (ymyy) :E(yi:yj) —E(yz)E(yJ) :0) (2#],'&,}: 1,2,...,77’1) (35)
which implies that pair-wise correlations coeflicients are

Cov (i, Y;)

rij = Varg ) Var(y)) =0, (#547=12..,m) (3.6)

Therefore, multiple correlation coefficient of y; on Y1, Y2, ooy Yi=1, Yist1: s Ym is

det(p) \* ,
Riv. i-i+).m=\1—5—7—=] = U =1,2,....,m 3.
i-12...(i—1)(i+1)..m < det(pu)> 0 (7‘ 1 7m) (‘3 7)

where p = (r;;) is the correlation matrix of order m X m which reduces to identity matrix
by (3.6), and det(pi) is the cofactor of the element in the i-th row and 4-th column of p.
Hence independent components are mutually uncorrelated. However, uncorrelatedness does
not imply independence. For example, let us assume that two components y; and yz are
dependent of each other by ¥, = y?, where y; ~ N(0,1). Then E(y1) =0 = E(y3). Therefore,

the covariance between y; and ¥, is
Cov(ys, y2) = E(wrys) — E(1)E(v2) = E@) — B(y1)E(ye) = 0.

which concludes the uncorrelatedness y; and ya. Thus independent components are always
uncorrelated but the converse is not true. Hence uncorrelatedness is a weaker form of inde-
pendence. It should be noted here that uncorrelated Gaussian components are always inde-
pendent. Since independence implies uncorrelatedness always, many ICA methods constrain
the estimation procedure so that it always gives uncorrelated estimates of the independent

components. This reduces the number of free parameters, and simplifies the problem.
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3.2 Concept of ICA

Independent component analysis (ICA) is a statistical tool for revealing hidden factors that
underlie sets of random variables, measurements, or signals. The ICA defines a generative
model for the observed multivariate data. In the model, the data variables are assumed to be
linear mixtures of some unknown latent variables, and the mixing system is also unknown.
The latent variables are assumed non-Gaussian and mutually independent, and they are
called the independent components of the observed data. These independent components,
also called sources or factors, can be found by ICA. ICA is superficially related to principal
component analysis (PCA) and factor analysis (FA). ICA is a much more powerful technique,
however, capable of finding the underlying factors or sources when these classic methods fail
completely. ICA can be considered an extension of principal component analysis (PCA).
In PCA, the input data is decorrelated to find the components that are maximally corre-
lated according to second order statistics. PCA gives orthogonalized and normalized outputs
according to the second order statistics by minimizing the second order moments. The prin-
cipal components can still be dependent however. In ICA, the aim is to process a number
of measured signal vectors X and extract a set of statistically independent vectors Y which
are estimates of some unknown source signals S which have been linearly mixed together
via a mixing matrix A to form the observed input data. ICA seeks to ensure maximum
independence, typically by minimizing the higher order moments of the outputs. When the

higher order moments are zero (for non-Gaussian input signals), the outputs are independent.

The data analyzed by ICA could originate from many different kinds of application fields,
including digital images, document databases, economic indicators and psychometric mea-
surements. In many cases, the measurements are given as a set of parallel signals or time
series; the term blind source separation (BSS) is used to characterize this problem. Typical
examples are mixtures of simultaneous speech signals that have been picked up by several
microphones, brain waves recorded by multiple sensors, interfering radio signals arriving at
a mobile phone, or parallel time series obtained from some industrial process. Many al-
gorithms have been proposed to perform ICA. These may be divided into block-based or
on-line adaptive techniques. Block-based algorithms take all the data in at once and pro-
duce the output. On-line adaptive algorithms process each data point in a continuous sense.

A disadvantage of many algorithms, especially on-line adaptive algorithms, is the need to
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select tuning parameters such as the learning rate. If the learning rate is chosen to be too
small, then the solution may not be found or it may be found very slowly. If the learning
rate is chosen too large, then the algorithm may 'blow-up’. For many practical problems, it
is useful to be able to have an algorithm that is capable of finding a solution without user

intervention at all.

3.2.1 Definition of ICA

T

Let s(t) = (sl(t), sa(t), .., Sq(t)> be a vector of g source (original) signals whose components
are assumed to be mutually independent and non-Gaussian with zero mean vector. In
practice, we cannot observe vector of original signals s(t) directly, but observe random

vector x(t) = (acl(t),wg(t), s xm(t)>l of m mixed signals by the linear transform
xz(t) = As(t), t=12,..,n (3.8)

where ¢ is the time index and A is an unknown full rank m x ¢ mixing matrix. The ICA of

a random vector () consists of finding a linecar transform
y(t) =Wez(), t=12,..,n (3.9)

so that components of y(t) = (yl(t) L ya(t), ey yq(t))T are as mutually independent as possible,
where W is a ¢xm transformation matrix obtained by ICA algorithm (Comon, 1994; Cardoso
et al, 1996; Hyvirinen, 1999c¢; Lee, 2001; Cichoki et al., 2002). It is also known as recovering
matrix or unmixing matrix or pseudo-inverse of A or generalized inverse of A. There are two
principal approaches to solve the ICA problem. The first approach is to separate all sources
simultaneously and the second approach is to separate all sources sequentially (Cichoki et
al., 2002).
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3.2.2 Identifiability of the ICA Model

The identifiability of the noise-free ICA model has been treated byComon (1994) and Cardoso
et al (1996) . By imposing the following fundamental restrictions, the identifiability of the

model (3.8) can be assured.

T
1. The component of source vector s(t) = (sl(t), sy(t), ..., sq('l;)) are mutually indepen-

dent at each time instant ¢.

9. At most one source signal can be normally distributed and the rest (¢-1) source signals

must be non-Gaussian,

3. The number of sensors or observed linear mixtures m must be greater than or equal

to the number of sources ¢, 1e., m 2 q.
4, The matrix A must be of full column rank.

Usually, it is also assumed that () and s(¢) are centered, which is in practice no restriction.,
as this can always be accomplished by subtracting the mean from the random vector. The
third restriction, is not completely necessary. Even in the case where m < ¢, the mixing

matrix seems to be identifiable (Hyvirinen, 1999c).

3.2.3 Ambiguities of ICA

1. The variances (energies) of the estimated independent components might be different
from the variance of the original independent components. That is, scaling factor of
the mixing matrix as well as the sources cannot be determined. Note that this still
leaves the ambiguity of the sign: one could multiply an independent component by -1
without affecting the model. However, this ambiguity is, fortunately, insignificant in

most applications (Hyvérinen et al., 2001).

2. The order of the independent components cannot be determine.

3.2.4 Why Gaussian Components are Forbidden for ICA

Assume that components of 2-dimensional source vector s = (s1, s3)” are Gaussian. Then

p(s) = %exp (—@) (3'10).

16



Let = = As be a linear transform, where A is an orthogonal matrix, 1e., A1 = AT. Then

2
p(m)=:é%exp _ﬂffgiﬂ_ |detA” | (3.11)

Due to the orthogonality of A, We have “AT:L'H2 = ||z|| and |detA] = 1. Thus we have,

=l

p(z) =5}7—re>cp (— 5 ) (3.12)

Obviously, the original distribution (3.10) and mixed distribution (3.12) are identical. Hence
orthogonal transformation of the Gaussian components remain Gaussian and mutually inde-
pendent. Also Gaussian distribution is rotationally symmetric [Insert FIGURE]. Therefore,
it does not contain any information on the directions of the columns of the orthogonal mixing
matrix A. This is why A cannot be estimated. Thus, in the case of Gaussian variables, we
can only estimate the ICA model up to an orthogonal transformation. In other words, the

matrix A is not identifiable for Gaussian independent components.

What happens if we try to estimate the ICA model and some of the components are Gaussian,
some non-Caussian? In this case, we can estimate all the non-Gaussian components, but
the Gaussian components cannot be separated from each other. In other words, some of the
estimated components will be arbitrary linear combinations of the Gaussian components.
Actually, this means that in the case of just one Gaussian component, we can estimate the
model, because the single Gaussian component does not have any other Gaussian components

that it could be mixed with (Hyvérinen et al., 2001).

3.2.5 Relations to Classical Linear Transformation

ICA is closely related to several of the methods described in chapter 2.

1. By definition, ICA can be considered a method for achieving redundancy reduction.
Indeed, there is experimental evidence that for certain kinds of sensory data, the con-
ventional ICA algorithms do find directions that are compatible with existing neuro-
physiological data, assumed to reflect redundancy reduction (Bell et al., 1997; Hurri,

1997).

9. Tn the noise-free case, the estimation of the ICA model means simply finding certain

"Interesting’ projections, which give estimates of the independent components. Thus
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ICA can be considered a special case of projection pursuit. The conventional criteria
used for finding the 'interesting’ directions in projections pursuit coincide essentially

with the criteria used for estimating the independent components

. Another close affinity can be found between ICA and blind deconvolution (more pre-
cisely, the special case of blind deconvolution where the original signal is i.i.d. over
time). Due to the assumption that the values of the original signal s(t) are independent
for different t, this problem is formally closely related to the problem of independent
component analysis. Indeed, many ideas developed for blind deconvolution can be
directly applied for ICA, and vice versa. Blind deconvolution, and especially the ele-
gant and powerful framework developed in Donoho (1981), can thus be considered an

intellectual ancestor of ICA.

. Comparing ICA model (3.8) after adding a bias term with the definition of factor
analysis in Eq. (2.5), the connection between factor analysis and ICA becomes clear.
Indeed, ICA may be considered a non-Gaussian factor analysis. The main difference is
that usually in ICA, reduction of dimension is considered only as a secondary objective,
but this need not be the case. Indeed, a simple combination of factor analysis and
ICA can be obtained using factor rotations. Above we saw that after finding the
factor subspace, a suitable rotation is usually performed. ICA could also be conceived
as such a rotation, where the criterion depends on the higher-order statistics of the
factors, instead of the structure of the matrix . Such a method is roughly equivalent
to the method advocated in (Hyvérinen et al., 1996; Karhunen et al., 1997) which
consists of first reducing the dimension by PCA, and then performing ICA without

further dimension reduction.

. Using ICA model (3.8), the relation to principal component analysis is also evident.
Both methods formulate a general objective function that define the 'interestingness’ of
a linear representation, and then maximize that function. A second relation between
PCA and ICA is that both are related to factor analysis, though under the contra-
dictory assumptions of Gaussianity and non-Gaussianity, respectively. The affinity
between. PCA and ICA may be, however, less important than the affinity between ICA
and the other methods discussed above. This is because PCA and ICA define their

objective functions in quite different ways. PCA uses only second-order statistics,
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while ICA is impossible using only second-order statistics. PCA emphasizes dimension
reduction, while ICA may reduce the dimension, increase it or leave it unchanged.
However, the relation between ICA and nonlinear versions of the PCA criteria, as
defined in (Karhunen et al., 1994; Oja, 1997), is quite strong.

3.3 Preprocessing for ICA

It is usually very useful to do some preprocessing before applying an ICA algorithm on the
data, In this section, we discuss some preprocessing techniques that make the problem of ICA

estimation simpler and better conditioned. The preprocessing is also known as prewhitening.

3.3.1 Centering

In the general ICA model (3.8), it is assumed that both the source vectors s(f), (t =
1,2,..,n) and the mixed vectors x(t), (¢ = 1,2,...,n) have zero mean vector. To make it
hold in practice, centering is the necessary preprocessing. In the centering procedure, the

original mixed vector @x; is processed by

1 n
z(t)=a, — = > w;, (t=1,2,..,n) (3.13)
n i3
before doing ICA. Thus the independent components are made zero mean as well, since
1 n A n
B(s)= =3 s(t) = 2 > al(t) =0, (3.14)
= " =1

The mixing matrix A remains the same after this preprocessing, so one can always do this

without affecting the estimation of the mixing matrix.

3.3.2 Whitening

After centering, another useful preprocessing strategy in ICA is the whitening of the observed
variables before the application of the ICA algorithm. A zero mean random vector z is said
to be white or sphere if E(zz?) = I, (identity matrix). In the whitening procedure, a zero

mean random vector x(t) is processed by

2(t) = V~=iz(t) (3.15)
where,
V = E(zal) = %i () (t)T (3.16)
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such that

E(z2") = V"Y?E(za’) (v—%)T =Vv-iv (V) =1 (3.17)

The whitening matrix V=2 can be computed by the eigen-value decomposition (EVD) of
the covariance matrix V = EDET, where F is the orthogonal matrix of eigenvectors of V' and
D = diag(dy,da, ..., dy) is the diagonal matrix of its eigenvalues. Then V=12 = ED-'2ET

and the whitening can be done by
2(t) = EDV?ET2(1), (3.18)

Where D~/2 = diag(dl—l/ 2 d;"% ... d=1/2). Obviously, components of a whiten vector are

y eeey Uy

mutually uncorrelated.

3.3.3 Whitening is Only % ICA

Let us assume that the data in the ICA model is whitened by (3.18). Using (3.8) in (3.18),
we have
z(t) = VY2 As(t) = Bs(t), (3.19)
where, B = V~1/24 is the orthogonal matrix, since
E(zzT) = BE(ss")BY = BBT =1 (3.20)

Thus whitening gives the independent components only upto an orthogonal transformation.
Instead of having to estimate the m? parameters that are the elements of the original matrix
A, we only need to estimate an orthogonal mixing matrix B. An orthogonal matrix contains
n(n — 1)/2 degrees of freedom. In larger dimensions, an orthogonal matrix contains only
about half of the number of parameters of an arbitrary matrix. Thus one can say that
whitening solves half of the problems of ICA. The remaining half of the parameters has
to be estimated by some other methods. It reduces the complexity of the ICA problems
(Hyvérinen et al., 2001).

3.4 Principles of ICA Estimation

3.4.1 Non-Gaussian is Independent

The key of estimating ICA model is non-Gaussianity. The estimation is not possible at all

without non-Gaussianity, as mentioned in Section 3.2.4. To see how non-Gaussianity leads to
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the basic principle of ICA estimation, let us consider the linear ICA model for an observable

T . .
vector = (21,29, ..., L)  of dimension m as
T = As (3.21)

. . . . T,
where A € R™*™ ig a non-singular mixing matrix and s = (31, 89, ey sm) is an unobservable
source vector whose components are assumed mutually independent. For simplicity, let us
assume in this section that all the independent components have identical distributions. The

ICA of a random vector & consists of finding a linear transform
y=Wea (3.22)

T
8o that components of y = (yl,yg, e ym) are as mutually independent as possible, where
W is the estimate of A~! obtained by ICA algorithm (Comon, 1994; Cardoso et al, 1996;
Hyvérinen, 1999¢; Lee, 2001; Cichoki et al., 2002). Therefore, to estimate one independent

component from the set {s1, s9,..., S}, we consider

y = wz, where w isarowof W (3.23)

= wAs, since x = As (3.24)

= bs, where b=wA (3.25)

= ibisi (3.26)
i=1

If w is equal to one of the rows of A~!, then only one element of b 1is equal to 1 and
all other elements are 0. Then, y is equal to one of the independent components from
the set {s1, 82, ..., Sm }. In practice, we cannot determine such a w exactly, because mixing
matrix A is unknown, however, we can find an estimator by ICA method that gives a good
approximation. If w is not equal to one of the rows of A™!, then more than one element of
b are non-zero. Then y is obtained by (3.26) using the non-zero elements of b. Therefore,
by statistical central limit theorem, y in (3.26) is more Gaussian than any one independent
component of {51, 8, ..., $m} and becomes least Gaussian when it equals to one component of
{51,892, ..., Sm}. Therefore, minimizing the Gaussianity or equivalently maximizing the non-
Gaussianity of wx with respect to w gives us one of the independent components. Hence

non-Gaussian is independent.
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3.4.2 Maximization of non-Gaussianity

To use non-Gaussianity in ICA estimation, we must have a quantitative measure of non-
Gaussianity of a random variable. One can maximize non-Gaussianity of a random variable
by maximizing (i) absolute value of kurtosis or square of kurtosis (ii) Negentropy, and (iii)

Approximations of negentropy, (Hyvérinen and Oja, 2000).

Kurtosis

The classical measure of non-Gaussianity is kurtosis or the fourth-order cumulant. The

kurtosis of y is classically defined by

kurt(y) = E{y'} — 3(E{3?})?, ifyis centered. (3.27)
= E{y'} -3, if y is normalized or E{y?*} =1 (3.28)
which implies
kurt(y) = 0, if y is Gaussian, (normal curve) (3.29)
> 0, ify is super-Gaussian, (leptokurtic curve) (3.30)
< 0, ify is sub-Gaussian, (platykurtic curve) (3.31)

Typically non-Gaussianity is measured by the absolute value of kurtosis. The square of

kurtosis can also be used. From (3.29 — 3.31), we see that

kurt(y)] = 0, ifyis Caussian (3.32)

0
> 0, if yis non-Gaussian (3.33)

‘Therefore, one can maximize non-Gaussianity of a random variable by maximizing absolute
value of kurtosis or square of kurtosis. Note that there are few non-Gaussian random vari-
ables that have zero kurtosis, but they can be considered to be very rare, (Hyvérinen et al.,

2001). The main problem of ICA estimation by kurtosis is that it is very much sensitive to
outliers.

Negentropy

A second very important measure of non-Gaussianity is given by negentropy. Negentropy is

based on the information-theoretic quantity of (differential) entropy. Entropy is the basic
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concept of information theory. The entropy of a random variable can be interpreted as
the degree of information that the observation of the variable gives. The more “random”,
i.e. unpredictable and unstructured the variable is, the larger its entropy. More rigorously,
entropy is closely related to the coding length of the random variable, in fact, under some
simplifying assumptions, entropy is the coding length of the random variable (Cover et al,

1991; Papoulis, 1992). The Entropy H is defined for a discrete random variable Y as
H(Y)==5 P(Y =a;)log P(Y = a;) (3.34)

where the a; are the possible values of Y. This very well-known definition can be generalized
for continuous-valued random variables and vectors, in which case it is often called differential
entropy. The differential entropy H of a random vector y = (Y1, Y2s - Ym) T with density
f(y) is defined as

H) = - [ fw)log fw)dy = 3 Hlulyr, 0 (3.35)
= i H(y;), if components of y are mutually independent (3.36)
i=1
where
H(yilyi-1, - y1) = /P(ylaymv‘-,yi)logp(yilyi—h~~,y1)d3}1~--dyi (3.37)

is the conditional entropy of 1; given y1,¥s,...,¥i—1. A fundamental result of information
theory is that a Gaussian variable has the largest entropy among all random variables of
equal variance (Cover et al, 1991; Papoulis, 1992). This means that entropy could be nsed
as a measure of non-Gaussianity. To obtain a measure of non-Gaussianity that is zero for a
Gaussian variable and always nonnegative, one often uses a slightly modified version of the

definition of differential entropy, called negentropy. Negentropy J is defined as follows

J(y) = H(ygauss) - fj(y) (338)

Where ¥g,,ss 15 @ Gaussian random variable of the same covariance matrix as y. Due to the
above-mentioned properties, negentropy is always non-negative, and it is zero if and only if
y has a Gaussian distribution. Negentropy has the additional interesting property that it is
invariant for invertible linear transformations (Comon, 1994; Hyvérinen et al., 2001). The
advantage of using negentropy, or, equivalently, differential entropy, as a measure of non-

Gaussianity is that it is well justified by statistical theory. In fact, negentropy is in some sense
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To use non-Gaussianity in ICA estimation, we must have a quantitative measure of non-
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Approximations of negentropy, (Hyvérinen and Oja, 2000).

Kurtosis
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kurtosis of y is classically defined by
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Typically non-Gaussianity is measured by the absolute value of kurtosis. The square of

kurtosis can also be used. From (3.29 — 3.31), we see that
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Therefore, one can maximize non-Gaussianity of a random variable by maximizing absolute
value of kurtosis or square of kurtosis. Note that there are few non-Gaussian random vari-
ables that have zero kurtosis, but they can be considered to be very rare, (Hyvérinen et al.,
2001). The main problem of ICA estimation by kurtosis is that it is very much sensitive to

outliers.
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A second very important measure of non-Gaussianity is given by negentropy. Negentropy is

based on the information-theoretic quantity of (differential) entropy. Entropy is the basic
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concept of information theory. The entropy of a random variable can be interpreted as
the degree of information that the observation of the variable gives. The more “random”,
i.e. unpredictable and unstructured the variable is, the larger its entropy. More rigorously,
entropy is closely related to the coding length of the random variable, in fact, under some
simplifying assumptions, entropy is the coding length of the random variable (Cover et al,

1991; Papoulis, 1992). The Entropy H is defined for a discrete random variable Y as
H(Y)==>_PY =a;)log P(Y = a;) (3.34)

where the a; are the possible values of Y. This very well-known definition can be generalized
for continuous-valued random variables and vectors, in which case it is often called differential
entropy. The differential entropy H of a random vector y = (Y1, Y2, -y Ym) T with density
f(y) is defined as

H) = - [ f)log fwdy =3 Hlulis, o) (3.35)
= f: H(y;), if components of y are mutually independent (3.36)
i=1
where
fﬂydyFJ,uwyl)==/iﬁy14m7uwyﬂlogzﬂydm_lpn,yﬂdyrudm- (3.37)

is the conditional entropy of y; given yi,va, ..., Yi-1. A fundamental result of information
theory is that a Gaussian variable has the largest entropy among all random variables of
equal variance (Cover et al, 1991; Papoulis, 1992). This means that entropy could be used
as a measure of non-Gaussianity. To obtain a measure of non-Gaussianity that is zero for a
Gaussian variable and always nonnegative, one often uses a slightly modified version of the

definition of differential entropy, called negentropy. Negentropy J is defined as follows

J(Y) = H(Ygauss) — H(Y) (3.38)

Where ¥, 15 @ Gaussian random variable of the same covariance matrix as y. Due to the
above-mentioned properties, negentropy is always non-negative, and it is zero if and only if
y has a Gaussian distribution. Negentropy has the additional interesting property that it is
invariant for invertible linear transformations (Comon, 1994; Hyvérinen et al., 2001). The
advantage of using negentropy, or, equivalently, differential entropy, as a measure of non-

Gaussianity is that it is well justified by statistical theory. In fact, negentropy is in some sense
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the optimal estimator of non-Gaussianity, a3 far as statistical properties are concerned, The
problem in using negentropy is, however, that it is computationally very difficult. Therefore,

simpler approximations of negentropy aré Very useful, as will be discussed next.

Approximations of Negentropy

The estimation of negentropy is difficult, as mentioned above, and thercfore this contrast:
fanction remains mainly a theoretical one. In practice, some approximation have to be used.

An approximation of negentropy is expressed in term of higher-order moments as follows

(Jones et al., 1987):
1 312 1 2
J(y) = EE{y P+ @kurt(y) (3.39)

The random variable y is assumed to be of zero mean and unit variance, However, the validity
of such approximations may be rather limited. In particular, these approximations suffer
from the non-robustness encountered with kurtosis. To avoid the problems encountered
with the preceding approximations of negentropy, new approximations are developed in

(Hyvarinen, 1998b). In general we obtain the following approximation:

J(y) ~ ik‘i [E{Giw)} - E{G&(V)}}2 (3.40)

i=1
where k; are some positive constants, and v is a Gaussian variable of zero mean and wnit
variance (i.e., standardized). The variable y is assuined to be of zero mean and unit variance,
and the functions G; are some non-quadratic functions (Hyvérinen, 1998Db). Note that even
in cases where this approximation is not very accurate, (3.40) can be used to construct a
measure of non-Gaussianity that is consistent in the sense that it is always non-negative,
and equal to zero if y has a Gaussian distribution. In the case where we use only one

non-quadratic function G, the approximation becomes
2
Jy) ~ [B{GW)} - B{GW)]] (3.41)

for practically any non-quadratic function G. This is clearly a generalization of the moment-
based approximation in (3.40), if y is symmetric. Indeed, taking G(y) = y*, one then obtains
exactly (3.40), i.e. a kurtosis-based approximation. But the point here is that by choosing
G wisely, one obtains approximations of negentropy that are much better than the one given

by (3.40). In particular, choosing (7 that does n0b grow too fast, one obtains more robust
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estimators. The following choices of G have proved very useful:
1
Gi(u) = " logcoshaju,  Ga(u) = —exp(—u?/2) (3.42)

where 1 < ¢ < 2 is some suitable constant. Thus we obtain approximations of negentropy
that give a very good compromise between the properties of the two classical non-Gaussianity
measures given by kurtosis and negentropy. They are conceptually simple, fast to compute,
yet have appealing statistical properties, especially robustness. Thercfore, we shall use these
contrast functions in our ICA methods. Since kurtosis can be expressed in this same frame-

work, it can still be used by our ICA methods.

3.4.3 Minimization of Mutual Information

Another approach for ICA estimation, inspired by information theory, is minimization of
mutual information. We will explain this approach here, and show that it leads to the same
principle of finding most non-Gaussian directions as was described above. In particular, this

approach gives a rigorous justification for the heuristic principles used above.

Mutual Information

Using the concept of differential entropy, we define the mutual information I between m

(scalar) random variables, y;,7 = 1...m as follows

m

j(yl,y% ey ym) = Z ‘U(yz) - -H(y) (343)

i=1
It is always non-negative, that is I (y1, ya, ..., Ym) = 0, equality holds if and only if the variables
are statistically independent. Mutual information is a natural measure of the dependence
between random variables. It is equivalent to the well-known Kullback-Leibler divergence
between the joint density and the product of its marginal densities, that is

(y)
I(ylﬁy% "'>ym) D (p’ sz) _/p y) log == Ty mlpz(if:)

(3.44)
Thus, mutual information takes into account the whole dependence structure of the variables,
and not only the covariance, like PCA and related methods. An important property of
mutual information (Papoulis, 1992; Cover et al, 1991) is that we have for an invertible
linear transformation y = We:

I(y1,92, - ym) = »_ H(y:) — H(z) — log |det W|. (3.45)

i=1
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Now, let us consider what happens if we constrain the y; to be uncorrelated and of unit

variance. This means, E{yy"} = WE{zax' }W’ =1, which implies,
detT=1 = det (WE{zz' }W ") = (detW) (det E{zz”}) (det W) (3.46)

and this implies that det W must be constant. Moreover, for y; of unit variance, entropy
and negentropy differ only by a constant, and the sign. Thus we obtain,

m

I(y1, Y2y - Um) = ¢ = Y J()- (3.47)

i=1

where ¢ is a constant that does not depend on W. This shows the fundamental relation
between negentropy and mutual information.

It is now obvious from (3.47) that lnding an invertible transformation W that minimizes
the mutual information is rouglly equivalent to finding directions in which the negentropy
is maximized. Rigorously, speaking, (3.47) shows that ICA estimation by minimization of
mutual information is equivalent to maximizing the sum of non-Gussianities of the estimates,

when the estimates are constrained to he uncorrelated.

3.4.4 Maximum Likelihood Estimation
The Likelihood

A very popular approach for estimating the ICA model is maximum likelihood estimation,
which is closely connected to the infomax principle. Here we discuss this approach, and
show that it is essentially equivalent to minimization of mutual information. It is possible
to formulate directly the likelihood in the noise-free ICA model, which was done in (Pham
et al,, 1992), and then estimate the moclel by a maxinmun likelihood method. Denoting by

W= (wy, ..., w,)" the matrix A~), the log-likelihood takes the form (Pham et al., 1992).

nom
L=S"%log fi(w! a(t) + Tlogldet W[ (3.48)

t=1iml

where the f; are the density functions of the s; (here assumed to be known), and the x(t), t =
1,2,...,n are the realizations of . The term log | det W| in the likelihood comes from the
classic rule for (linearly) transforming razidom variables and their densities (Papoulis, 1992):
In general, for any random vector & with density p, and for any matrix W, the density

y=Wa s given by p,(Wz)|det| of is given by .
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The Infomax Principle

Another related contrast function was derived from a neural network viewpoint in (Bell et al.,
1995; Nadal et al., 1994). This was based on maximizing the output entropy (or information
flow) of a neural network with non-linear outputs. Assume that z is the input to the neural
network whose outputs are of the form g;(w7a), where the g; are some non-linear scalar
functions, and the are the weight vectors of the neurons. One then wants to maximize the

entropy of the outputs:
Ly = H(g1(w] @), .., gn(wp ) (3.49)

If the g; are well chosen, this framework also enables the estimation of the ICA model. Indeed,
several authors, e.g., (Cardoso, 1997; Bell et al., 1995; Comon, 1994), proved the surprising
result that the principle of network entropy maximization, or “infomax”, is equivalent to
maximum likelihood estimation. This equivalence requires that the non-linearities g; used
in the neural network are chosen as the cumulative distribution functions corresponding to
the densities f;, i.e., ¢i(.) = fi().

Connection to Mutual Information

To see the connection between likelihood and mutual information, consider the expectation

of the log-likelihood:
1 n
FE{L} = S E {log fi(w]z)} +log | det W] (3.50)
i=1

Actually, if the f; were equal to the actual distributions of w!x, the first term would be
equal to — >, H (wlx). Thus the likelihood would be equal, up to an additive constant, to
the negative of mutual information as given in (3.43). Actually, in practice the connection is
even stronger. This is because in practice we don’t know the distributions of the independent
components. A reasonable approach would be to estimate the density of w]x as part of the
ML estimation method, and use this as an approximation of the density of si. In this case,
likelihood and mutual information are, for all practical purposes, equivalent. Nevertheless,
there is a small difference that may be very important in practice. The problem with
maximum likelihood estimation is that the densities f; must be estimated correctly. They
need not be estimated with any great precision: in fact it is enough to estimate whether they

are sub- or super-Gaussian (Cardoso et al, 1996; Hyvarinen et al, 1998c; Lee et al., 1999).
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In many cases, in fact, we have enough prior knowledge on the independent components,
and we don’t need to estimate their nature from the data. In any case, if the information on
the nature of the independent components is not correct, ML estimation will give completely
wrong results. Some care must be taken with ML estimation, therefore. In contrast, using

reasonable measures of non-Gaussianity, this problem does not usually arise.

3.4.5 ICA and Projection Pursuit

It is interesting to note how our approach to ICA makes explicit the connection between
ICA and projection pursuit. Projection pursuit (Friedman et al., 2001; Friedman, 1987;
Huber, 1985; Jones et al., 1987) is a technique developed in statistics for finding “interest-
ing” projections of multidimensional data. Such projections can then be used for optimal
visualization of the data, and for such purposes as density estimation and regression. In
basic (1-D) projection pursuit, we try to find directions such that the projections of the data.
in those directions have interesting distributions, i.e., display some structure. It has been
argued by Huber (1985) and by Jones et al. (1987) that the Gaussian distribution is the
least interesting one, and that the most interesting directions are those that show the least

Gaussian distribution. This is exactly what we do to estimate the ICA model.

3.5 Some ICA and PCA Algorithms and Their Prob-
lems

Many estimation methods for ICA requires prewhitening of observed signals, because it re-
duces the complexity of the ICA problems (Hyvérinen, Karhunen and Oja, 2001; Cichoki and
Amari, 2002). In the case of fixed-point algorithms (Hyvérinen, Karhunen and Oja, 2001),
it plays a significant role on the performance of the algorithms. In particular, Hyvérinen
(1999) proposed FastICA fixed-point algorithm for robust BSS. However, the performance
of this algorithm is not so good sometimes. A main cause of this weak performance may
be from the classical prewhitening procedure, which is known to be sensitive to outliers.
Thus estimate of independent components under classical prewhitening gives misleading re-
sults in presence of outliers or noisy data. There exist some robust prewhitening procedure
like batch algorithm based on the subspace approach for ICA (Cichoki and Amari, 2002).
However, this type of robust prewhitening may be suffer from the non-robust classical cen-

tering, (Hyvérinen et al., 2001, page 154). On the other hand, the performance of classical
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prewhitening procedure is better than the performance of robust prewhitening procedure for
noiseless data sets, while this performance is completely reverse for noisy data. sets. It is also
difficult task to know in advance whether a data set is noise free or not. Therefore, existing
prewhitening procedures are not always suitable. This thesis discusses a new prewhitening
procedure, named f-prewhitening by minimizing 3-divergence from the adaptive robustness

point of view.

Blind source separation (BSS) by independent component analysis (ICA) has played a signif-
icant role in signal processing problems, including speech enhancement, telecommunications,
medical signal processing and suchlike. ICA aims to recover the original sources with in-
dependent and non-Gaussian structure from the observable mixture data. In the classical
ICA model, ouly one hidden class is considered in the entire data space. We assume that
there are several hidden classes of ICA models in the entire data space. Lee, Lewicki and
Sejnowski (2000b) proposed a method for extracting all hidden classes of original sources
from the entire data space based on the JCA mixture models. However, there exist one
problem in their method is that the number ¢ of classes need to know in advance which is

very difficult task in practice.

In classical PCA model defined by (5.1) and (5.4), all latent vectors belong to only one
source class %, and all input vectors belong to the same class in the entire data space 2.
However, in practice, these source vectors may originate from several source classes, and
the corresponding observed vectors belong to several classes in the entire data space. In
this case, the performance of classical PCA may not be so good. Gaussian Mixture Models
(GMMs) may be used in this case. However, GMMs suffer from a serious drawbacks as the
dimensionality of the problem space increases, the size of each covariance matrix becomes
prohibitively large. This can be dealt with by assuming isotropic Gaussians (ie. ignoring
the covariance structure) but this greatly reduces the flexibility of the model class. This
problem has been solved by Tipping et al. (1999) who replaced each Gaussian with a prob-
abilistic Principal Component Analysis (PCA) model. This allowed the dimensionality of
each covariance to be effectively reduced whilst maintaining the richness of the model class.
However, one problem encountered when applying this method is that the number of classes

c should be known in advance, which is difficult in practice as early discussed also. In this
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thesis, an attempt is made to propose iterative algorithm for local PCA and ICA both based
on the minimum [-divergence method, where the number ¢ of data clusters in the entire

data space need not be known in advance.

3.5.1 Objectives of Our Study

The main objectives of this study are

1. To propose an adaptive robust prewhitening procedure for ICA by minimizing [-

divergence.

2. To propose an adaptive algorithm for exploring local PCA structures by minimizing

(-divergence using a local kernel function.

3. To extend minimum A-divergence method (Minami and Eguchi, 2002) for exploring

local ICA structures.
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Chapter 4

Robust Prewhitening for ICA by the
Minimum S-Divergence Method

4.1 Defination of f-Divergence

The [-divergence between two pdf’s p(x) and g(x) is defined as

1 1
Dgs(p,q) = / {B {pﬁ(a:) — qﬁ(m)}p(m) ~ 31 {pﬁﬂ(m) - qﬁ“(m)}} de, for g >0 (4.1)
which is non-negative, that is Dg(p(), q(zc)) > 0, equality holds iff p(z) = q(z), (cf. Minami
et al. (2002)). We note that S-divergence reduces to Kullback Leibler (KL) divergence when
G — 0, that is

p(x)
q(x)

liz Dy (p,q) = [ pl@)log == d = Dicu(p, ). (42)

4.2 Classical Prewhitening
Let us consider the linear ICA model for an observable vector & of dimension m as
x = As (4.3)

where A € R™ ™ and s is an unobservable source vector whose components are independent
and non-Gaussian. A random vector z is said to be white or sphere if E(z) = 0 and

E(zz") = 1, (identity matrix). In the prewhitening procedure, vector  is processed by
z=V iz — p) (4.4)
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where p1 and V' are the mean vector and covariance matrix of x, respectively. It is also called
sphering or spatial decorrelation. In the classical prewhitening, the mean vector p and the

covariance matrix V' are estimated by

A=ty o and V==Y (@ - i) - ) (45)
ni= n=

in a batch way sampling, respectively. Prewhitening of data is necessary in some adaptive
ICA algorithms (Belouchrani et al., 2000; Hyvérinen et al., 2001; Cichoki et al., 2002; Choi
et al., 2002) for Blind Source Separation (BSS), because it reduces the complexity of the ICA
problems. With this connection, it is considered as the half ICA, see Hyvérinen, Karhunen
and Oja (2001) for detailed discussion. In the case of fixed-point algorithms (Hyvérinen,
1999; Hyvérinen and Oja, 1997), it plays a significant role on the performance of the al-
gorithms. In particular, Hyvérinen (1999) proposed FastICA fixed-point algorithm for ro-
bust BSS. However, the performance of this algorithm is not so good sometimes. A main
cause of this weak performance may be from the classical prewhitening procedure, which is
known to be sensitive to outliers. Thus estimate of independent components under standard
prewhitening gives misleading results in presence of outliers or noisy data. There exist some
robust prewhitening procedures for ICA (Belouchrani et al., 2000; Cichoki et al., 2002; Choi
et al., 2002), however, this type of robust prewhitening might be suffer from the non-robust,
classical centering, (Hyvérinen et al., 2001, page 154). It may be well known that the per-
formance of standard prewhitening procedure would be better than any other prewhitening
procedures if data set is not corrupted by noise or outliers. On the other hand, if data set is
corrupted by noise or outliers, then any robust prewhitening procedure would be better than
standard prewhitening procedure. However, it would be very difficult to know in advance
whether a data set is corrupted or not by outliers. In this condition, a researcher or user may
feel inconvenience to select an appropriate algorithm for prewhitening. Therefore, existing
prewhitening procedures would not always suitable. Based on the situation discussed above,
we will propose a new prewhitening procedure in this chapter, named B-prewhitening by
‘minimizing (3-divergence from the adaptive robustness point of view. Section 4.3 offers a
new prewhitening procedure and its robustness for ICA. We discuss a selection method for
the tuning parameter f in section 4.3.2. In section 4.4, a measure of performance index is
proposed for assessing prewhitening procedures. Section 4.5 presents numerical examples

and section 4.6 contains the conclusions.
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4.3 New Algorithm for Robust Prewhitening by Min-
imizing (-Divergence

Let us consider the space of unnormalized density functions rather than that of probability
ones. Accordingly in this context the space of Gaussian density functions should be extended
to kv (), where « is a positive scalar and v () is the density function N (s, V7). The
minimization of the 8-divergence over the extended space may be lead as follows.

THEOREM 1: Let p(x) be a probability density function of a random vector X and let

(&, 1, V) = argming gy Dg (p(m), EIQO#:’V/(SB)) (4.6)

Then we have that

Box { ()’ }

- , 4.7
" Eso,u,,v {(SDU»V)}@} ( )
_ Bue {(epv)’ X} , (4.8)
Epx {((Pu,v)ﬂ}
and
B _ AN\ T
DN (CTONCSDIC Sl | (o

Epx {(@u,v)’s}

where the notations rx and ¢y, v represent the p.d.f’s p(x) and ¢y v(x), respectively. The
notation “E” means statistical expectation.
Proof: The gradients of Dy are
0 e, mippy) = K81 / { ket — pxly fda
Ok ’ K, K. ’

0 B+1 8 -
@Dﬁ(px,%sou.v) = Hﬁf{wﬁ,vwxwu,v}‘/ Ha — p)da
= ~Bpp {(mopv)?VHX — )}
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and
%Dﬁ (px mppv) = %V“if{(wu.v)"“ — px(ropy)’}
X {(:n — )z — )T - V} Vlde,
since
5% logpuv () =V "z~ p)
and

=gy (@) = 5V {(@ ~ W)@ — w) - VIV,

Equations (4.7) and (4.8) are easily obtained by solving %%3 = 0 and %% = 0, respectively.

We now show (5.15). In fact % = O leads to
KEgp , [P {(X = ) (X = w)T - V}]
= Bpye [0l {(X = w)(X — )" = V}],
which is, by substitution of (4.7),

Bop Py (X = X = )"} By {phuv (X - (X — w)"}

5 v (4.10)
E«pp,,v{‘Pu.,v} Esop,,v {‘P;L,V}
In this way we observe that the left hand side of (4.10) is (8 + 1)~V
A+1
since E_ﬁ%p%_i is just a Gaussian density with mean vector p and variance matrix (4 +
YLy YLy
1)='V. This concludes (5.15).
Reweighted Moment Algorithm:
We will give an unsupervised leaning algorithm based on a random sample {z;, - - -, ¢, } from

a probability density function p(x). In general, for any integrable function A(a), it holds
that

n

> Alzs), (4.11)

i=1

E,{A(X)} ~

Sl
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of which approximation can be probabilistically described by giving an explicit assumption

for the data set. Hence we directly find the empirical form of (4.7), (4.8) and (5.15)

o= 5 S {onvl@) etz )5+ 2, (412
Y CRCIEEMEL (413

and
=S (@)} (@ ~ )@~ w7 -V} =0 (414)

i=1
From the empirical representation (4.12), (4.13) and (4.14), we can give a heuristic algorithm
for solving jointly (4.7), (4.8) and (5.15) as follows:

8
2

fited = %i{@u,»w(mi)}ﬁ{det(%%)} (B+1)%, (4.15)

= i {op, v (@) P,
H e {op, w (@)}’

(4.16)

and

Y {op, v (@) Yo (@ — po) (e — p,)T
S e, v (z)}? '

In the prewhitening procedure (4.4), if we estimate mean vector p and covariance matrix V

Vier = (B+1) (4.17)

by (4.16) and (4.17), respectively, then it is said to be 8-prewhitening.

In equations (4.16) and (4.17), the scaling factor {,,v(z;)}” is considered as the weight of
each data point x;, 4 = 1,2,...,n. For convenience of presentation, let us define a weight

function, ¢, using the scaling factor of this algorithm as

d(ailp, V) = {puv(@)}’,  i=1,2,..,n (4.18)

Obviously, we see that this weight function is a function of Gaussian density for g > 0.

Therefore, it significantly weights main population data points and insignificantly weights
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outlier data points, because of outlier data points are usually far from the center of the main
population. Thus, weight function 4.18 plays the key role for robust prewhitening. We note
that if § — 0, then (4.15), (4.16) and (4.17) leads to the classical non-iteratative estimates

as follows:
(s - o) s — )" (4.19)

Then, f-prewhitening reduces to the standard prewhitening.

4.3.1 Robustness

We will investigate the robustness of our estimators by the influence function (IF). The
influence function for the estimator T at = under the distribution F is defined as

(a7, ) = li T OF +143] = T(F)

, (4.20)
tl0 t

where Ag is the probability measure that puts mass 1 at the point @. If the gross error
sensitivity(GES), that is,

sup | IF(x; T, F) |

x

is finite, then the estimator T is said to be B-robust under the distribution F. In our
context the influence function for the estimator of the mean vector p and variance matrix

V' are obtained as

(our)'=
IF ;T]_,F - —T1 F 421)
(B T0F) = =T() + & S s (
and
B, AT
IF(a; Ty, ') = —T(F) +(ﬁ+1)(‘p“"’) (@ wle - p) (4.22)

Epx { (1))
respectively, where T'\(F') = p and Ty(F) = V satisfy equations (4.8) and (5.15). In both
equations (4.21) and (4.22), (eu,v)? = {pu,v(®)}? is the weight function as described by
equation (4.18) and E,, {(f,ouiv)ﬁ } is constant for each data point. Therefore, the GES
for the influence functions (4.21) and (4.22) are bounded for S > 0, while the GES for
both influence functions are unbounded for # = 0. Thus our estimators are B-robust. An

empirical version of IF can be obtained by Tukey’s (1970) Sensitivity Curve {SC) defined as
SCulz) = n[T(x1,xq, ..., p_1,x) — T(x1, 22, ..., Tn_1)] (4.23)
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T

Let T(F,) = T(x,, s, ..., x,) represent our estimators, where F}, is the empirical distribution
of (1, xy, ..., 2, ), then sensitivity curve reduces to

SC,(z) = [T ((1 - %)F,H 4 %AI)) - T(Fn_l)} E (4.24)

n

which converges to IF(x; T, F') for n — oo Hampel et al. (1986). To investigate the perfor-

Data ~ N (0, 1); Datalnterval = (-1.15, 1.15)
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Figure 4.1: Tukey’s sensitivity curve for classical estimators of mean and variance, and our
proposed estimators of mean and variance based on J-divergence

mance of the proposed estimators by the Tukey’s sensitivity curve, we consider a sample of
data from N(0,1) to estimate mean and variance including outliers or noise, where original
data points lies between -1.5 to +1.5. Figure 4.1 shows the Tukey’s sensitivity curve for
classical estimators of mean (p) and variance (V'), and our proposed estimators of mean
(1s) and variance (V3) based on (-divergence. The marker style **' and ‘x’ represents the

curves for classical estimators of mean and variance, respectively, while the marker style ‘o’
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and ‘V’ represents the curves for our proposed estimators of mean and variance, respectively.

From figure 4.1 clearly we see that GES for classical estimators are unbounded, while the

GES for our proposed estimators are bounded and reduce to almost zero for larger outliers.

Thus our proposed estimators for mean and variance are B-robust.

4.3.2 Selection Procedure for 3

The performance of our new prewhitening procedure depends on the value of the tuning

parameter 3. This performance is good for a wide range of 3. Let us define this wide range

by Rg. To obtain better performance by this method, we will propose an adaptive selection

procedure for the tuning parameter 4. To find an appropriate [, we evaluate the estimates

by various values of §. Minami and Eguchi (2003) used §-divergence with a fixed value

of § as a measure for evaluation of the minimum A-divergence estimator for robust BSS.

Following them, we also would like to use f-divergence with a fixed value of § as a measure

for evaluation of our estimators for robust prewhitening, because data distribution p(z) is

unknown in practice. A fixed value of § for evaluation is denoted by fy € Rg. We define a

measure for evaluation of our estimators for the mean vector p and covariance matrix V as:

Dg, (B)=E {D.Bo (px,ﬁzﬂvﬂﬁ .?H(X)) }

where
(o, B 7o) = argmin  Dy(p(a), mppuy ()
o He Vi zea)
= argmax Lg(x; k1, V).
oV (eg)
Here

1 8
L,B(CU}’%IJ‘,V) = % Z {K‘SO[J,,V(Q:)}
Treg
KB+

(B + 1)m+272 {det(2nV ) }P/*’

and 2 is the data set. Then (5.52) can be simplified as
Dpo (B) = —E{Lgo (X ; &g, g, V) |
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where

L -~ 1 ) Bo
Loo(@; g, g Vo) = o Z{Hﬂwgﬁ,r/ﬂ@)}
UV Tre2
(kﬁ)ﬁo+l

(Bo + 1)m+2/2 {det(2mV5) |

Bo/2

The measurement Dg, (3) is of the gencralization performance of a estimator. The general-
ization performance relates to its prediction capability on independent test data. If we use
the same dataset to evaluate Dg, (3) as to estimate a recovering matrix, it will underestimate
Dg, (7). If we are in a data-rich situation, the best approach is to divide the dataset into a
few parts, and use one set for estimation and another for evaluation. In other situations, a
simple and widely used method by sample re-use is the A'-fold Cross Validation (CV)
method (Hastie et al., 2001). The K-fold CV method uses part of the available data to find
the estimate and a different part to test it. For the current problem, we employ the K-fold
CV method as a generalization scheme. We split the data into K approximately equal-sized
and similarly distributed sections. For the & th section, we find the estimate using the other
K — 1 parts of the data, and calculate the fy-divergence for the & th section of the data.
Then we combine the calculated fy-divergence values to obtain the CV estimate.

Table 1 summarizes the procedure to find the A -fold CV estimate 5,30 (8).

4.3.3 Deciding § Adaptively

We compute

SDg,(B) = the standard error of CV i,

1
[2(K)]
as a measure for the variation of Dpg, (8), where |9(k)| denotes the number of elements
in the k-th part of data &?(k). Plots of Ego (B) for @ with the auxiliary boundary curves
Dg, (B) £ SDg, () will help us to select an optimum §. We denote this optimum 8 by Bops-
We often have to employ the upper auxiliary boundary curve (UABC) with the Dpg, (B) curve
to choose fFopt. If the curve of 5,60 (B) is flat for a wide range of 3, then fope = 0. When
more than one data class or outliers exist in the entire data space, typical shapes of curves
of Eﬁo (8) that enables us to chose an appropriate value 4 are elbow and dipper shapes, So,

if the curve does not have these shapes, we increase the value of fFy. If these shapes do not
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Table 4.1: K-fold Cross Validation procedure

Split the data set 2 into K subsets; 2(1), -+, 2(K).

Let 27% = {z|x ¢ 2(k)}.

Fork=1,--- K

e Estimate «, p and V by minimizing Dﬂ(p(fﬂ),ﬁgﬁ“’v(m)) using Z7%,

(Ra, fig, V5) = argmax Lp(x; 5, 1, V)
o BV (peg-ky

e Compute CV ) using Z(k),
CViy = —Lgy(; Rg, fig, Vp)

End
1 K

Then, Dg, (8) = ~ > CVyy
k=1

-~

8= arg;nin 550 (6)

appear for any G, then B, = 0, (Mollah, Minami and Eguchi, 2005). If the curve of 530 )
has an elbow or dipper shape, we choose the smaller one instead of the smallest A as the
Bopt whose evaluated value Dg,(fopt) is not larger than the value of UABC that corresponds
to the smallest value of Ego (8). However, there is no theoretical justification for this rule,
which is known as the one-standard error rule (Hastie et al., 2001). Note that fixed f, should

be larger than optimum £.

4.4 Performance Index

Let us now discuss a measure of performance index (PI) for assessing prewhitening proce-
dures. The purpose of pre-whitening is to find a prewhitening matrix W = V=2 such that

the global mixing matrix H = W A satisfis
H'H = kI, (4.27)

where k£ > 0 and [ is the m X m identity matrix Hyviirinen et al. (2001). If k = 1, then
H is said to be perfectly orthogonal and W is said to be standard prewhitening matrix.

If data set is corrupted by noise or outliers and W is estimated by standard prewhitening
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procedure, then global mixing matrix H is deviated from orthogonality and does not satisfy
(4.27). These deviations could be a good measure of performance of prewhitening. If H
satisfies (4.27), then absolute value of each eigen value \;, (i = 1,2,...,m) of H is k, that is

|A\i| = k for all i. Therefore, a general performance index (PI) may be defined by

(=) (A
mzﬁl I’\ilz’

Obviously, PI = 1, if |\;| = k for all ¢; otherwise 0 < PI < 1. Therefore, performance of a

PI = (4.28)

prewhitening procedure is ideal if PI = 1.

4.5 Numerical Examples

We investigate the performance of S-prewhitening in a comparison of the standard prewhiten-
ing by a performance index proposed in (4.28) as well as by FastICA using both synthetic

and real data sets.

4.5.1 Simulation With Randomly Generated Synthetic Data

Two-dimensional 1000 random samples were drawn from uniform distribution with zero mean
vector such that components of each source vector are independent of each other. Then we
mixed this source data set by a mixing matrix

(013 o038
“\ o048 072 )

Figure 4.2a shows the scatter plot of mixed signals. Then, we added two-dimensional 50,
100, 200, 500 and 1000 sizes of outliers in the data set that is shown in Figure 4.2a. Figures
4.2b-4.2f represent. scatter plots of mixed data points (.) in presence of 50, 100, 200, 500 and
1000 sizes of outliers (+), respectively. To investigate the performance of S-prewhitening in

1/2 and

a comparison of standard prewhitening, we estimated prewhitening matrix W =V~
global mixing matrix H = WA for each data set described in Figures 4.2a-4.2f by both pro-
cedures. Then we computed performance indexes (PI) by (4.28) for both procedures. Figure
4.2g shows PI for each data set described in Figures 4.2a-4.2f, respectively. The solid line

with marker style (*) represent the performance of standard prewhitening and the dashed
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Figure 4.2: (a-f) Scatter plots of mixed data points (.) in presence of 0. 50, 100. 200. 500
and 1000 outliers (+). respectively. (g) Performance index for prewhitening procedures with
data sets (a-f), respectively. (h-m) Weight of each data point for 3-prewhitening with data
sets (a-f), respectively.

line with marker style (o) represent the performance of f-prewhitening. We see that Pl is
1 by both methods only for noise or outlier free data set that is described in Figure 4.2a.
For other data sets those are described in Figures 4.2b-4.2f. P1 is far from 1 for standard
prewhitening, however, PI is almost close to 1 for 3-prewhitening. Therefore, performance
of both methods are same if data set is not corrupted by noise or outliers, however, if data

set is corrupted by noise or outliers, then performance of f-prewhitening is better than
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Figure 4.3: (a-c) Plots of 1/7\;,0 (B) with 3y = 0.1, 0.2 and 0.3 for different values of 3. (d)
Scatter plot of source signals. (e) Scatter plot of mixed signals. (f) Scatter plot of whitened
signals (g) Scatter plot of recovered signals by FastICA

standard prewhitening. Figures 4.2h-4.2m represent the weight of each data point obtained
by (4.18) for data sets those are described in Figures 4.2a-4.2f, respectively. We see that
weight of each data point for data set (Figure 4.2b) is exactly 1, this means (-prewhitening
reduces to standard prewhitening for this data set. For other data sets, weight of each mixed
data point is significantly larger, while weight of each outlier data point is almost close to
zero. This means that outlier data points have no influence in the estimation by the pro-
posed method. In Figures 4.2k and 4.2m, we see that weights corresponding to some outlier
data points are larger, however, these outlier data points are overlapped or very close to
mixed data points, so estimate is not affected so much by those data points. Note that first

1000 mixed data points for each data set are same and the rest are Gaussian noise or outliers.

In order to investigate the performance of (-prewhitening in a comparison of standard
prewhitening by FastICA, we consider the data set that is already described in Figure 4.2a.
For convenience of presentation, we display this mixed data set again in Figure 6.1e. To
obtain whiten data from this mixed data set by the proposed method, we selected the val-
ues of the tuning parameter § by K-fold CV (K = 10). We computed Dﬂo () for several
values of 3 with a fixed value of /3y using the algorithm given in table 1. We computed
530 (8) for 3 varying from 0 to 0.6 by 0.05 with 3, = 0.1,0.2 and 0.3 using the algorithm
given in table 1. Figures 6.1a-6.1c show the plots of [A),q(, (8). In each plot, asterisks (*) are

550 (#) and the smallest value is indicated by a circle outside the asterisk. Dotted lines are
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Figure 4.4: (a-c) Plots of ﬁgn () with 3, = 0.1, 0.2 and 0.3 for different values of 3. (d)
Scatter plot of mixed signals in presence outliers (+). (e) Scatter plot of whitened signals
under standard prewhitening (f)
prewhitening (e) Scatter plot of whitened signals under (-prewhitening with 3 = 0.2.
Scatter plot of recovered signals by FastICA under 3-prewhitening with 3 = 0.2.

Scatter plot of recovered signals by FastlCA under standard

(f)

1’5“0 (3) £ SDy, (). Plots of ﬁ,u (3) shown in figures 6.1a-6.1c suggest 3 = 0 for each 3y by
‘one standard error’ rule for J-prewhitening, which is equivalent to standard prewhitening.
Thus adaptive selection procedure for 3 suggest standard prewhitening if data set is not
corrupted by noise or outliers. Figure 6.1f shows the scatter plot of whitened signals under
standard prewhitening. Figure 6.1g shows the scatter plot of recovered signals by FastICA
under standard prewhitening. Comparing figures 6. 1d and 6.1g, we see that recovered signals

are independent with each other with non-Gaussian structure.

To investigate the performance of F-prewhitening on robustness, we added 50 outliers (+)
from Gaussian distribution that is already described in 4.2b. For convenience of discus-

sion, we display this mixed data set again in Figure 4.4d. To obtain the whiten data by
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B-prewhitening, we selected the values of the tuning parameter S by K-fold CV (K=10) as
before. We computed 550 (B) for B varying from 0 to 0.6 by 0.05 with y = 0.1,0.2 and 0.3.
Figures 4.4a-4.4c show the plots of Dg, (B). In each plot, asterisks (*) are Dy, (B) and the
smallest value is indicated by a circle outside the asterisk. Dotted lines are D, (8)£SDg,(5).
For B, = 0.2 and 0.3, plots of Ego (B) shown in Figures 4.4b-4.4c have elbow and dipper
shapes, and suggest 3=0.2 by the ‘one standard error’ rule. So, we choose $=0.2 for O-
prewhitening, which is different from the standard prewhitening. To investigate the per-
formance of 3-prewhitening in a comparison of standard prewhitening by FastICA, first we
computed whiten data set by classical method. We recovered original signals by FastICA us-
ing classical prewhitened data set. Figures 4.4e-4.4f show the scatter plots of whitened signals
and recovered signals under standard prewhitening, respectively. Then we computed whiten
data set by #-prewhitening. We recovered original signals by FastICA using (-prewhitened
data set. Figures 4.4g-4.4h show the scatter plots of whitened signals and recovered signals
under S-prewhitening with 3=0.2, respectively. Comparing Figures 6.1f, 4.4e and 4.4g, we
observe that whitened signals in absence of outliers by standard prewhitening are not simi-
lar to the whitened signals in presence of outliers by standard prewhitening, while whitened
signals in absence of outliers by classical prewhitening are almost similar to the whitened
signals in presence of outliers by S-prewhitening with §=0.2 . Similarly, comparing Figures
6.1g, 4.4f and 4.4h, we see that recovered signals in absence of outliers by FastICA under
standard prewhitening are not similar to the recovered signals in presence of outliers by
FastICA under standard prewhitening, while recovered signals in absence of outliers by Fas-
tICA under standard prewhitening are almost similar to the recovered signals in presence of
outliers by FastICA under S-prewhitening with f=0.2. Therefore, [-prewhitening is much

better than standard prewhitening when outliers exist; otherwise, it keeps equal performance.

To demonstrate the validity of the proposed method for high dimensional data analysis, we
generated the following data sets:

Dataset-I: 100 times, 20-dimensional 1000 random vectors were drawn from uniform dis-
tribution with zero mean vector such that components of each vector are independent
of each other. Each time identity matrix (I) was used as the mixing matrix A and 20-

dimensional 100 Gaussian random vectors were included as outliers or noises.
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Figure 4.5: (a) Plots of ANSE,(8) for dataset I without noise. (b) Plots of ANSE ;(8)
for dataset I with noise. (c) Plots of ANSE 4(3) for dataset IT without noise. (d) Plots of
ANSE4(/3) for dataset II with noise. {¢) Plots of ANSE 4(F) for dataset III without noise.
(f) Plots of ANSE ;(3) for dataset III with noise.

Dataset-II: 100 times, 20-dimensional 1000 random vectors were drawn from Laplace dis-
tribution with zero mean vector such that components of each vector are independent
of each other. Each time identity matrix (I) was used as the mixing matrix A and 20-

dimensional 100 Gaussian random vectors were included as outliers or noises as before.

Dataset-III: 100 times, 20-dimensional 500 random vectors were drawn from each of uni-
form distribution and Laplace distribution with zero mean vector such that components
of each vector are independent of each other. Each time identity matrix (I) was used as the
mixing matrix A and 20-dimensional 100 Gaussian random vectors were included as outliers

or noises as before.

In order to investigate the performance of (-prewhitening on FastICA in-depth, we com-
puted the average of norm square error (ANSE) for estimating the mixing matrix A =

[A1, As, ..., Ap] = I, (identity matrix) by a measure defined by

ANSE,(6) = — 334 - Ay(9)]?

i=1j=1

where /Lj(ﬂ) is the estimate of i-th column of A for j-th data set (j = 1,2, ., 7) by Fas-
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tICA under f-prewhitening. Obviously ANSE ;(8) > 0, equality hold iff A; = Aij(ﬂ). We
computed ANSE ;(f) for several values of 3 varying from 0 to 0.3 by 0.05 with m=20 and
r=100. Figures 4.5a, 4.5¢ and 4.5e show the results of ANSE ;(8) for data sets I-III in ab-
sence of outliers, respectively. We see that performance of B-prewhitening with 3 = 0 or
standard prewhitening on FastICA is better than 3-prewhitening with 8 > 0 if data set is
not corrupted by noises or outliers. On the other hand, Figures 4.5b, 4.5d and 4.5f show
the results of ANSE 4(8) for data sets I-III in presence of outliers, respectively. Then we see
that performance of #-prewhitening with 8 > 0 on FastICA is much better than standard

prewhitening if data set is corrupted by noises or outliers.

4.5.2 Simulation With Synthetic Signals

For a practical example of our method, we have taken 4 independent signals (sinusoid, funny
curve, saw-tooth and impulsive noise) from the Hyvérinen’s FastICA project Hyvérinen (A)
shown in figure 4.7(a). Note that sinusoid and saw-tooth signals are sub-Gaussian signals
and funny curve and impulsive noise are super Gaussian signals. In the previous examples,
outliers were considered far from the data center, where 3-prewhitening with 2 > 0 was
batter than classical prewhitening for ICA by FastICA. Now we would like to investigate the
case, where outliers occur close to the data center. For this, we consider independent signals,
where one is sinusoid and the other one is impulsive noise shown in figure 4.6(a). We mixed
them linearly by a non-singular mixing matrix and add 40 outliers (+) at the end of mixed
data points. Figure 4.6(b) represent the mixed signals and their scatter plot (right). To
obtain whiten data by the proposed method, we selected the value of the tuning parameter
g by K-fold CV (K=10) same as above. Using the plots of 550 (8) shown in Figures
4.6(c), we choose # = 0 by the ‘one standard error’ rule, which is equivalent to the classical
prewhitening. First two signal in Figures 4.6(d) are the recovered signals by FastICA under
classical prewhitening, and the right plot represents the scatter plot of recovered signals. We
see that recovered signals are almost similar to the original signals. Also K-fold CV plot

suggests that one can get the similar result for a wide range of 3.

To investigate the performance with the multidimensional data set, we mixed 4 independent
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Figure 4.6: Plots for simulation results with the mixture of two synthetic signals. (a) Original
signals (left & middle) and their scattering plots (right). (b) Mixed signals (left & middle)
and their scattering plots (right). (c) Plots of DHO (3) to select appropriate values of 3 for
3-prewhitening. (d) Recovered signals under /3- prewhitening with j’ = 0 (left & middle) and
their scattering plots (right).

signals (sinusoid, funny curve, saw-tooth and impulsive noise) by a mixing matrix

0.9507  0.1054 0.8403 0.6823
—0.5303 0.2808 0.1429 0.0518
0.7445 0.0552 0.9581 —0.6252
0.0234 —0.9187 0.7388 0.2918

A=

and added outliers (+) from N(10, 1) and N(-10, 1) with probability of occurrence 0.05 at the
end of each mixed signal. Figures 4.7(b) shows the mixed signals and Figure 4.7(c) represent
the scatter plot of mixed signal. For whitening the data set by the proposed method, we
selected the values of the tuning parameter 3 by K-fold CV (K=10) as in the previous
example. we computed 530 () for (3 varying from 0 to 0.3 by 0.05 with B =0.1,0.2 and 0.3
using the algorithm given in table 1. Figure 4.8(a) show the plots of Dy, (8). In each plot,

asterisks (*) are Bgo (3) and the smallest value is indicated by a circle outside the asterisk.
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Figure 4.7: Plots for simulation results with the mixture of 4 synthetic signals. (a) Original
signals (b) Mixed signals (c) Scatter plot of mixed signals including outliers (+).

Dotted lines are 530 (8)£2Dg,(8). For £y=0.1 and 0.2, plots of 530 (8) shown in figure 4.8(a)
look like an elbow shape and suggest 3=0.05 by the ‘one standard error’ rule, while for 30=0.3
plot of D@o (8) shown in figure 4.8(c) suggest 5=0.3 by the same rule. Clearly 3=0.05 is
more stable than 3=0.3 for wide range of ;. From figure 4.8(d), we see that estimated mean
and variance for 3 = 0.05 to 0.25 are almost consistent, but for other values of 3 estimates
are drastically changed. Therefore we decided $#=0.05 for S-prewhitening. Figure 4.8(b)
show the recovered signals under classical prewhitening or S-prewhitening with (3=0, while
figure 4.8(c) shows the recovered signals under [-prewhitening with [#=0.05. Comparing

figures 4.7(a), 4.8(b) and 4.8(c), we see that recovered signals by FastICA under classical
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(c) Recovered signals by FastICA under 3-prewhitening
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Figure 4.8: Plots for simulation results with the mixture of synthetic data set. (a) Noisy
mixed signals (b) Plots of Dg, () to select appropriate values of 3 for 3-prewhitening. (c)
Recovered signals by FastICA under classical prewhitening. (d) Recovered signals under

3-prewhitening with =0.05. (e) Plots of the estimated mean (fig) and variance (V3) for the
mixed signals by the proposed method.

prewhitening are not good, while the recovered signals under (3-prewhitening with 3=0.05

are good and almost similar to the original signals.

4.5.3 Simulation With Real Audio Signals

We have taken 3 independent audio signals shown in figure 4.9(i) as original signals for a

practical example with real data. In figure 4.9(i), first two are speech signals and last one is
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music signal. We mixed this source signals by a mixing matrix

0.3293 -0.2605 0.9485

0.8678  0.4315 —0.9657
A=
—0.4880 0.9830  0.4517

Figure 4.9(il) shows the mixed signals (data set 7). For whitening the mixture of audio
signals without noise by our method, we selected the values of the tuning parameter 0
by K-fold CV (K=25) as in the previous example. We computed Ega (B) for B varying
from 0 to 0.3 by 0.05 with gy = 0.1,0.2 and 0.3. Figures 4.9(iii(a-c)) show the plots of
D, (8). In each plot, asterisks (*) are Dg, (8) and the smallest value is indicated by a
circle outside the asterisk. Dotted lines are Dp, (8) £ SDg,(8). For 8,=0.1 and 0.2, plot
of 5@0 () shown in figures 4.9(iii(a-b)) suggest G=0 by the ‘one standard error’ rule, while
for By=0.3, plot of Dg, (8) shown in figure 4.9(iii(c)) suggest §=0.15 by the same rule.
Obviously =0 is more stable than (#=0.15 for wide range of . Therefore we choose
B=0 for B-prewhitening. Figures 4.9(iv) shows the recovered signals under g-prewhitening
with 8=0. Comparing figures 4.9(i) and 4.9(iv), we see that recovered audio signals by
FastICA under g-prewhitening with =0 are almost similar to the original audio signals.
To investigate the performance on robustness with the mixture of audio signals, we added
Gaussian noise from N(1.3, 0.2) and N(-1.3, 0.2) with probability of occurrence 0.05 at the
end of each mixed signal. Figures 4.10(a-b) represents the mixed signals (data set 7*) and
their pairwise scatter plot respectively. For f-prewhitening, we selected the values of the
tuning parameter 8 by K-fold CV (K=25) as in the previous example. we computed Dg, (3)
for B varying from 0 to 0.3 by 0.05 with £y = 0.1,0.2 and 0.3 using the algorithm given in
table 1. Figure 4.10(c) shows the plots of E[jo (8) for fo =0.1,0.2 and 0.3, respectively. In
each plot, asterisks (*) are Dg, (4) and the smallest value is indicated by a circle outside
the asterisk. Dotted lines are D, (8) & SDg,(8). For £=0.1 0.2 and 0.3, plot of Dy, (B)
look like an elbow shape and suggest 3=0.05 by the ‘one standard error’ rule. Therefore
we choose 8=0.05 for B-prewhitening. Figure 4.11(a-b) shows the recovered signals under
classical prewhitening or S-prewhitening with $=0 and their scattering plot, respectively.
Figure 4.11(c-d) shows the recovered signals under §-prewhitening with 4=0.05 and their
scattering plot, respectively. Comparing figures 4.11(a-b) and 4.11(c-d) with 4.9(i), Evidently
we see that recovered signals by FastICA under classical prewhitening are not good, while
the recovered signals under f-prewhitening with 5=0.05 are good and almost similar to the

original signals.
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Figure 4.9: Plots for simulation results with the mixture of real audio signals. (1) Orig-
inal signals (ii) mixed signals (iii) Plots of Dy, (3) to select appropriate values of 3 for
3-prewhitening. (iv) Recovered signals under 3-prewhitening with 3 = 0.

4.6 Conclusions

In this chapter, we proposed 3-prewhitening as an adaptive robust pre-whitening procedure

for ICA instead of existing prewhitening procedure. The performance of this new prewhiten-



Mixed signals with outliers
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Figure 4.10: Plots for simulation results with the mixture of real audio signals. (a) Mixed
signals with outliers. (b) Scatter plot of mixed signals with outliers (*)- (c) Plots of Dg, (3)
with 4y = 0.1. 0.2 and 0.3 to select appropriate /3 for (3-prewhitening.

ing procedure is equivalent to the standard prewhitening if data set is not corrupted by noise
or outliers. If data set is corrupted by noise or outliers. then F-prewhitening is much better

than standard prewhitening.

The tuning parameter 3 plays the key role on the performance of -prewhitening. There-
fore, we proposed an adaptive selection procedure for the tuning parameter (3 based on cross
validation. This adaptive selection procedure suggests J-prewhitening with 5=0 if data set

is not corrupted by noise or outliers. If data set is corrupted by noise or outliers, then adap-
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Recovered signals under classical prewhitening
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Figure 4.11: Plots for simulation results with the mixture of real audio signals. (a) Rec overed
signals by FastICA under classical prewhitening. (b) Scatter plot of recovered signals under
classical prewhitening (c) Recovered signals by FastICA under 3-prewhitening with 5=0.05.

(d) Scatter plot of recovered signals under [3-prew hitening
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tive selection procedure suggest J-prewhitening with 3 > 0. Note that S-prewhitening with

8 = 0 is equivalent to the standard prewhitening.

It is well known that standard prewhitening procedure is better than any other prewhitening
procedures if data set is not corrupted by noise or outliers. On the other hand, if data set
is corrupted by noise or outliers, then any robust prewhitening procedure is better than
standard prewhitening procedure. However, it is very difficult to know in advance whether
a data set is corrupted or not by outliers. Therefore, a researcher or user may feel inconve-
nience to select an appropriate algorithm for prewhitening. In this situation, g-prewhitening

is suitable than any other prewhitening procedures.

At last, we proposed a measure of performance index for prewhitening procedures based
on the eigenvalues of the global mixing matrix. In the simulation study, we investigated
the performance of S-prewhitening procedure in a comparison of the standard prewhitening

procedure using the proposed measure of performance index.
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Chapter 5

Exploring Local PCA Structures by
the Minimum (-Divergence Method

5.1 The Problem of PCA Mixture Models for Explor-
ing Local Structures

Principal component analysis (PCA) is one of the most popular techniques for processing,
compressing and visualizing multivariate data. It is widely used for dimensionality reduction
of multivariate data (Jolliffe, 2002). In general, PCA aims to extract the most informative
g-dimensional output vector y(t) from an input vector x(t) = (.’L‘l(t),l'g(t), ...,mm(t))T of
dimension m > ¢ whose components are assumed to be Gaussian and linearly correlated
of each other. This is achieved by learning the m x ¢ orthogonal matrix I' or I''T = I,

(g-identity matrix) which connects z(t) to y(¢) by
y() =T"(2(t) - n), (t=1,2,...,n) (5.1)

such that components of y, = (yl(t),yg(t), ..‘,yq(t))T are mutually uncorrelated satisfying
Var(Y;) > Var(Yz) > ... > Var(Y,) > 0, where u is the mean vector of the input data.
In neural networks, I' is interpreted as the matrix of coefficients connecting m neurons to
g neurons, where a learning process works by renewing I' according to a batch of inputs
in an off-line manner or sequential input vectors in an on-line manner (Oja, 1982, 1989;

Haykin, 1999). The input vector z(t) is represented by the m-dimensional latent vector
T
s(t) = (s1(t), s2(t), ., (1)) as
xz(t) = As(t)+b, (¢=1,2,...,n) (5.2)

where A is m x m non-singular coefficient matrix and b is bias vactor. The components

of the latent vector s(t) are assumed to be mutually independent and Gaussian with unit

56




variance, that is, s(t) ~ N(0,I). The latent variable model (5.2) is considered as the data
generating model. It offers more economical explanation of the linear dependencies among

the input observations (Tipping and Bishop, 1997, 1999).

In classical PCA model defined by (5.1) and (5.2), all latent vectors belong to only one
source class ., and all input vectors belong to the same class in the entire data space 2.
However, in practice, these source vectors may originate from several source classes, and the
corresponding observed vectors belong to several classes in the entire data space. In this
case, the performance of classical PCA may not be so good. Therefore, Tipping et al. (1999)
proposed a PCA mixture models by modeling the observed data as a mixture of several
mutually exclusive classes, each of which is described by linear combinations of independent
and Gaussian densities. However, one problem encountered when applying this method is

that the number of classes, ¢, should be known in advance, which is difficult in practice.

We assume that source vectors come from ¢ source classes {1, S, ..., %} and that the
corresponding observed vectors belong to c different data classes (91, Dy, ..., D} in the entire
data space @, where the number ¢ is unknown. In addition, we assume that data class D
oceurs in the entire data space 9@ due to the source class %%, (k=1,2, ..., ¢). In practice,
the occurrence order of an observed vector in the entire data space % from a source class
is unknown. However, we can assume that an observed vector zx(j) € Ze = {24(J); J =
L,2,...,m}, (k=1,2,...,¢; Sf—ym = n) whose occurrence order is unobserved, follows a

PCA data generating model as
z(j) = Axsi(J) + b, (5.3)

where Ay is an m x m non-singular coefficient matrix, by is the bias vector and sk(j) €
S = {sx(4); 7 =1,2,...,nk}, (k =1,2,...,c) is the j-th random vector in the source
class k with zero mean vector, the components of which are assumed to be independent and
Gaussian. In a practical situation, an observable vector @, € 2 = {z(t); t =1,2,... ,n} is
obtained as one vector of US_; @ = {2x(5); 5=1,2,...,m, k=1,2,...,0 oy = n}
such that 2 = US_, Z¢. If the permutation of {2:10(1),21(2), .., z&(4), - - - » Ze[ne) } Into
{x(1),2(2),...,2(n)} is purely random, then (5.3) reduces to the probabilistic PCA mix-
ture models. In the probabilistic PCA mixture models; the observed data in each class are

considered to be a linear combination of independent and Gaussian sources. (See Tipping
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and Bishop (1997, 1999) for a detailed discussion). When the data in each class are modeled
as multivariate non-Gaussian, it is known as a ICA mixture model (Mollah, Minami and
Eguchi, 2006).

Based on the situation discussed above. our proposed method is sequential application of the
minimum G-divergence method with explicitly including a local kernel function to extract all
local structures sequentially for PCA based on a rule of step-by-step change of the shifting
parameter. Later, we will propose a stopping rule for repeated application of the minimum §-
divergence method based on the cumulative weight. In order to explore k-th local structure,
we estimate an m X ¢ orthogonal matrix [y and a shifting parameter p,, based on the
minimum [-divergence method with explicitly including a local kernel parameter vector
@ € 9, initializing both & and p; by the same vector @y € %, that transforms the input

vector x(t) € @ into an output vector y(t) by
y(t) =TE (=) — m), (E=1,2,...,n) (5.4)
such that

y(t) € Z={y()i=12...,m}, if me

€ 9, otherwise,
where components of ¥, = (Y1, Yok, ---, Ygek ) are mutually uncorrelated satisfying
Var(Yl;E) > Var(Y%) > > Var(quk) > 0. (55)

Here 2§ is the estimated orthogonal class for data class % and Z* is the set of output
vectors corresponding to the other data classes. The values of the tuning parameter g and
kernel parameter v plays a key rule on the performance of the proposed method. Therefore,

an adaptive selection procedure is proposed for both § and v.

Section (5.2) reviews the existing methods for PCA, section (5.3) discusses the local PCA
based on Gaussian mixture distribution, sections (5.4 - 5.4.3) describe the proposed minimum
B-divergence method for local PCA. Finally, section (5.5) presents numerical examples, and

Section (5.6) presents the conclusions of this study.
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5.2 A Review on Existing PCA Methods

Let us present a concise review of the classical PCA for detecting the principal g-subspace.
Let

(a(t),mT) = 3 {Ia) -l = T (a(t) - )|} (5

be half the square of the residual distance of (& — p) from the subspace spanned by the
columns of . We note that z(z, pt, ) = sminyepe |2(t) — p — TA|f?, see Hotelling (1933)

for the original derivation. Classical PCA is simply characterized by minimizing

: zn:z(m(t),u,I‘) (5.7)

n t=1

with respect to g and I', which reduces to solving g dominant eigenvectors of the sample

covariance matrix
5= 23" (at) - 1) (0~ )", 58)

where the centralized vector o = 11, «(t)/n. Then, we obtain a solution I' by stacking the
t=1

g dominant eigenvectors of S, which we write in the form
I' = eigen(S) (5.9)

Higuchi and Eguchi (2004) proposed a variant of this classical procedure for robust PCA by

minimizing the objective function

n

L(p,T) = %}: \Il(z(cc(t),u,f‘)) (5.10)

t=1
where U(z) is assumed to be a monotonically increasing function of z > 0. Various ¥s yield
various procedures for PCA. As typical examples, the identity function Uy(z) = z reduces

to the classical PCA and

1
=1
T Fexp{—Az -1}

U (2) (5.11)

defines Xu and Yuille’s self-organizing rule, where A and 7 are tuning parameters, referred
to as the inverse temperature and saturation value, respectively (Xu and Yuille, 1995). In
general, ¥ is interpreted as the generic function which gives the total function L. The

minimization of L in equation 5.10 is referred as the “ minimum psi principle generated by

59




U”. Based on an argument similar to that of the classical PCA, Higuchi and Eguchi (2004)

found that the minimizer (fz, T') of Lz, T) satisfies the stationary equations

znj Db, (5.12)
and i
T' = eigen (S(@,T) (5.13)
where
S
and
S(u.1) = 20 (. T) (00 ) (2(8) ~ 1) (5.15)

with 9(z) = (8/82)¥(z). The equilibrium point (j, ') is expressed by the weighted mean
and the covariance matrix, where the weight function p; depends upon i and I, except for

the case of 9(z) = 1, which yields the classical PCA.

In the statistical literature (Croux et al., 2000; Campbell, 1980; Caussinus, 1990), another
type of PCA method has been proposed in which

1 n
LS 0(d(oto 1))
is minimized with respect to (i, V'), where d is the Mahalanobis squared distance, that is

a(=(t), 1, V) = %(w(t} S CORD)

5.3 Local PCA Based on Gaussian Mixture (GM) Dis-
tribution

The Gaussian mixture distribution for a random vector z; is given by
,
p(z: | ©) = > p(Cr)p(z: | Ok, Cr), (5.16)
k=1
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where C}, denotes the k-th Gaussian class and 0 = {4, ¢} are the unknown parameters

for the density

-1 1 -
Pl | 86, C1) = | det(2nZ) [ F exp {~=(@ — )57 (@ - ) |

(5.17)

corresponding to the k-th Gaussian class. Let @;, s, ..., &, be a random sample drawn from

(5.17), then the log-likelihood of the data for the unknown parameter © = {6y, 65, ...6.} is

given by

L= logp(a: | ©).

t=1

The gradients of the parameters for class k is given by

oL n 1o,
59: - t}::lpthS 5!% p(z: | ©)
2 2(C (:ctlek,q

Using the Bayes relation, the class probability for a given data vector x; is

p(Ck)¢(: | Ok, Ck)

Cr | 24,0) = ;
p(Ci | %1, 0) i P(Cr)e(@ | Ok, Cr)

Substituting (A.21) in (A.20) leads to

aL _ - p(Ck | &y, ) a
86k - ; p wt | ek’ok) 50 (Ck) (mt l gk; Gk)
= > p(Ck| 2,0 10%90(% | 8%, C)
t=1

Now,

0 -
E log p(a: | Ok, Ci) = X" (1 — py)

and

1
%k

Therefore, -2 R M = ( implies

o * Z?—:I p(Ck I mt)@)mt
g Z?:l p(Ok | mtae)

; 2L ( implies
and o 0 implies

Sy p(Cr | 1, ©)@e — ) (22 — )"
PR 1P(Ck l x;, ©)
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15} _ _
log ¢(a; | Ok, Ci) = *Ekl{(wt — g ) (e — Mk)T - Zk}zkl

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.24)

(5.25)



Note that prior probability p(Cy) can be updated by
p(Ch)* = zp(ck | 2,,0) (5.26)

The notations p,*, £* and p(Cy)" are the update of py, £y and p(Cy) respectively, where
Y1 should be initialized by identity matrix and other parameters can be initialized randomly.

Then, the orthogonal matrix for extracting k-th local PCA structure is obtained as
[’y = eigen (f]k) (5.27)

If e=1, then local PCA based on GM distribution reduces to the standard PCA as discussed
around equations 5.8 and 5.9. For local PCA, we transform the input data vector x; into

output vector y, by
y =Ty (2 — ). t=1,2,0m k=12,..c (5.28)
where
Ty € {T1, Do, T} and iy € {fy, By, o B}, k=1,2,..,¢

Then, (k)-th local PCA structure is defined by those output vectors y, whose input vectors

ax; belong to the data class

Dy = {m € 2 p(Ciy | 2:,0) > 05}, (5.29)

5.4 New Estimator for PCA by Minimizing -Divergence

The B-divergence between two pdf’s p(x) and g(z) is defined as

Do) = [ |3 (#@) - @}t - 51

{ Atl(g) — ﬁ“(m)}} dx, for 8 > 0(5.30)
which is non-negative, that is Dg(p(x ) > 0, equality holds iff p(z) = q(=z), (cf. Minami
et al. (2002)). We note that ﬁ—dlvergence reduces to Kullback Leibler (KL) divergence when
[ — 0, that is

lim Ds(p, q) = /p(w) log zgg da = Dgr(p, q). (5.31)
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Let p(a) is the empirical distribution (data distribution) of  and ¢y, v(x) is the Gaussian

density N (g, V). Then the minimum g-divergence estimators for p and V' are obtained by

argmin Dy (p(:c), ga“,v(az)) = argmin Lg(p, V), (5.32)
TR VYV
where,
AT 21 8
Lol 5T 1/ ﬁ/{p(m)gop,v(m)}dm, for A>0 (5.33)
— [ p(z)log pp,v (z)dz, for B=
or
11 4
e {0y (@)}, for B>0
=y (5.34)
—— logpuv(z(t), for B=0
ni=
or
¢ — —;L% Eexp {—g(m(t) - ;,L)TV_ (m(f) - u)}, for A>0
Lp (V) = 1 = 1 ) (5.35)
cs—l-ﬁg{i(fc(t)—u) V‘(m(t)—u)}, for =0

By the neural network property for PCA, there is an orthogonal matrix I" satisfying

- N A PR O
(w5 0)

where I, is the identity matrix of order ¢ X ¢ and O’s are the zero matrices of appropriate
order. Here c1, ¢o and c3 are constant by the above relation. Then (5.35) reduces to

1——2 o {2 (o) - ul? - |2t - )|, for B>0

Lﬂ (IJ” )= (5'36)

2
S (L CR T o CO R ) B
Minimization of (5.36) with respect to p and I is equivalent to the minimization of
[l——Zexp{ ﬁz(m(t,u, )}} for >0

iz(m(t),u,l‘), for =0

t=1

Lo(wD)=1 | (5.37)
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with respect to g and I'. For convenience of presentation of our new proposal based on
equation 5.37, let us denote the generic function ¥ in equation 5.10 as

1
W) = 7 {1 - exp(-pB2)}, for >0 (5.38)
z, for =0

Note that minimization of Lg (g, T') for 8 = 0 with respect to p and T offers classical PCA.
In equation (5.38), ¥s(z) is the monotonic increasing function of z > 0. Therefore, based
on an argument similar to that of the robust PCA ( Higuchi and Eguchi, 2004), we obtain
the minimizer of Lg(u,T") for § > 0 by

s (@), 1, T2 (1)

C= 5.30
S W CTI Ny (5:39)
I = eigen(V*) (5.40)

where

T
ye _ Sz vo(2(0),n.0) (@) - u) (=) ) e
S s (®(0), . T)
and

Ya(2(t), 1 T) = exp { —§- (Hw(t) — ul? = |1 () - N)HZ)} (5.42)

with 1s(z) = (0/02)¥g(z). The notations p*, V* and I'* represent the update of 2, V and
I, respectively. Here 14 (2(t); w,I") is considered to be a weight function. It provides a
weight to each data point for robust PCA. For § — 0, (5.39), (5.40) and (5.41) reduce to

the classical non-iterative estimates as discussed around equations 5.8 and 5.9. E

5.4.1 Exploring Local PCA Structures by the Minimum $-Divergence
Method Using Gaussian Kernel Function

For local PCA, we modify the objective function (equation 5.37) for # > 0 without loss of
generality in the minimization of the objective function. We post-multiply the exponential

part by a local kernel function
v
exp { -5 llo(t) - I’
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to impose more weight to the data points that belong to the local cluster, where x is the
center of the kernel and v is the inverse of the bandwidth. Then the objective function
{equation 5.37) is extended as

-;— [1 - %éexp (»ﬂ {z(w(t),u, I“) + 12/- lz(t) — ml]z})} , for >0
1

Loy () = n
2 2 {2 (= 0mT) + F o) - =17, fr f=0

(5.43)

Note that minimization of Lg, (p,I') for (8, ») = (0,0) with respect to g and T offers
classical PCA. We can employ the reweighting learning algorithm to obtain the minimizer
of Ly, (u,T") for B> 0 by
o ZE e (2(1), 1, T, 2 )2(t) (5.04)
MR CIONTRNES
™ = eigen (V) (5.45)

where
_ PIHERTT (m(t), [T :13) (:c(t) - p) (m(t) - #)T

V*
S (:z:(t), u,F,m)

) (5.46)

Yoo (2(t); p T\ @) = exp {-—523- (I=(t) = > = |17 @(®) = W] + v ltt) - m||2)} (5.47)

with v5,(z) = (8/02)Ws,(z). The notations p*, V* and I'* represent the update of u, V
and I, respectively. Here ¢, ((t); p,[, ) is a weight function, which significantly weights
each data point that belongs to the local cluster and insignificantly weights data points oth-
erwise. For (8,v) — (0,0), equations 5.44, 5.45 and 5.46 reduce to the classical non-iterative

estimates as discussed around equations 5.8 and 5.9.

5.4.2 A Sequential Procedure to Explore Local PCA Structures

Tipping and Bishop (1999) proposed mixtures of PPCA algorithm for extracting all lo-
cal PCA structures simultancously by maximizing the likelihood function using EM algo-
rithm. In this section, we are proposing a new iterative algorithm based on the minimum
B-divergence method using a local kernel function for extracting all local PCA structures

sequentially. The proposed method explores an orthogonal matrix to extract a local PCA
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structure based on the initial condition of the shifting parameter pu and the local kernel vec-
tor x. If the initial values of pu and & both belong to the data class %y, then the estimates of
orthogonal matrix I'y and shifting parameter p, can suggest for k-th local PCA structure by
considering the data in other classes as outliers. Thus, we can learn {(I, py); £ =1,2,...,c}
by the repeated application of the minimum 3-divergence method to extract all local PCA
structures sequentially based on a rule for the step-by-step change of the initial values for
p and x both by the same vector. Note that initial kernel vector @ will be fixed for each
iteration in a step. Our proposed learning algorithm for sequential estimation of I'y and p,

(k=1, 2, ..., ¢) is given below:

Step 1. Randomly fix (1) € & and let & = z(;). Find the minimizer (f(l), ﬁ(l)) of the loss
function Lg, (T, pt) applying the reweighted algorithm defined by equations 5.44 and 5.45.
The initial setting in the algorithm is that u = @) and V is the identity matrix.

Let us suppose that (k — 1) pairs of estimates

{(f(l)»ﬁ(1)> ] (f@)» ﬁ(2)) e (f‘(k-l)wﬁ*(k—l))} :

are obtained sequentially in steps 1 to (k — 1).

Step k: Learn u, I' and V using equations 5.44, 5.45 and 5.46, iteratively, changing initial
value for p and the local kernel vector & both by =)y € 2, which is obtained such that

Pr—1 (m(k)) is the nearest value of a-th percentile of cumulative weights

k-1
ra(2(t)) = > s (=(8); By Ty ) (5.48)

fort =1,2,..,n. Then, let gt = iy V= IA/(;C) and ' = f‘(k).

If g and x are initialized by an outlier data point, then the proposed method might provide
misleading results. Therefore, a fixed integer o with (2 < & < 5) should be used to obtain
reasonable result. Latter we will discuss an adaptive selection for 3 and v for each step

k=1,2,..,c. Accordingly, our desired estimates are

{(f\(l)’ 'a(l)) ) (f(z),ﬂ,(?)) EREEY (f\(c); ﬂ'(c)) } .

For local PCA, we transform the input data vector x(t) into outpnt vector y(t) by
y(t) = Ty (e®) — By), (t=1,2,..,m k=1,2,...,¢) (5.49)
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Then, k-th local PCA structure is defined by those output vectors y(t) whose input vectors
z(t) belong to the data class

Dry = {fﬂ(t) €9: Ysy (a:(L); f‘(k):ﬁ(k)am(k)) > 6k}> (5.50)

where we chose the value of ¢ by

e =(1-mn) 3318)12@ Yo ((B(t); L k), ﬂ(k), 93(1;)) + n%%}é?,bﬁ,y (m(t); Liy,s ﬁ(k),il:(k)),
with heuristically 0.01 < n < 0.05. Components of each output vector that corresponds
to the k-th local PCA structure are mutually uncorrelated satisfying (equation 5.5). Note
that weight of each input vector that does not correspond to the k-th local PCA structure

is almost close to zero.

The cumulative weighting plot represents the weight of each data point whether it corre-
sponds to any one local PCA structure or not. Thus, sequential estimation can be continued
until the remaining data points correspond to a local PCA structure by monitoring the cu-
mulative weighting plot and the value of the termination index, TI = Li—l < 1, after each

step, where |J| is the number of elements in the set

J = {L > g ((8); Ty, By 2w) 2 t}
k=1

where € = % ¢ €k-

If 1 and « are initialized at step 1 by the outlier data vector, then the proposed method
might provide misleading results and TT might be very small. Therefore, if TI < 0.1, we
should restart the procedure by changing the initial value using other data vector at step
1. If initialization occurs from the overlapping section of two or more data clusters at step
1, then the proposed method might be given misleading results also and TI might be very
large. Therefore, if TT > 0.8, we should restart the proposed procedure by changing the
initial value using other data vector at step 1. If there is only one data cluster in the entire
data space, then TI might be greater than 0.90 for any initialization. The value TI=a <1
suggests around 100a% input data vectors are transformed to the output data vectors corre-
sponding to several local PCA structures and the rest of the data points, 100(1-a)%, remain
untransformed as outlier or overlapping data points. The transformation procedure is termi-

nated when the value of the termination index TI exceeds a certain value. In our simulation

67




study, we terminated the procedure when TI exceeds 0.90. It should be noted here that
the performance of the proposed method depends on the value of the tuning parameters (
and v, where 3 controls weight for robust PCA and v controls weight for localization based
on local kernel vector &. In the following section, we will introduce an adaptive selection

procedure for # and v.

5.4.3 Adaptive Selection for Tuning Parameters § and v

Let us discuss a selection procedure for tuning parameters based on a given data set. We
observe that the performance of the proposed method depends on the value of the tuning
parameter J and v, where v plays the key role for local PCA. To obtain better performance
by this method, we will propose an adaptive selection procedure for v by fixing 3 as
everywhere. To find an appropriate v, we evaluate the estimates by various values of v.
Minami and Eguchi (2003) used f-divergence with a fixed value of § as a measure for
evaluation of the minimum f-divergence estimator for robust ICA. Following them, we are
proposing a modified loss function defined by equation 5.43 with a fixed value of v denoted by
vy. We define a measure for evaluating our estimators for the mean vector p and orthogonal

matrix I' as

Dgon (v) = B { Lo (g Taow) } (5.52)

where

(ﬁﬁo,uﬂ fﬂoﬂ/) = a’];.%n}in LB(),V(["HF) (553)

El

The measurement Dpg,,, (v) is of the generalization performance of a estimator. The gen-
eralization performance relates to its prediction capability on independent test data. If we
use the same dataset to evaluate Dg,,, (V) as to estimate a recovering matrix, it will un-
derestimate Dg, ., (¥). If we are in a data-rich situation, the best approach is to divide
the dataset into a few parts, and use one set for estimation and another for evaluation. In
other situations, a simple and widely used method by sample re-use is the K-fold Cross
Validation (CV) method (Hastie et al., 2001). The K-fold CV method uses part of the

available data to find the estimate and a different part to test it. For the current problem,
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we employ the K-fold CV method as a generalization scheme. We split the data into K
approximately equal-sized and similarly distributed sections. For the k th section, we find
the estimate using the other K — 1 parts of the data, and calculate the fy-divergence for the
k th section of the data. Then we combine the calculated fy-divergence values to obtain the

CV estimate.

Table 5.1: K-Fold Cross Validation Procedure

Split the data set 2 into K subsets; (1), -+, P(K).
Let 2% = {z(t)|z(t) ¢ P(k)}.
Fork=1, K
e Estimate p, V and I' by minimizing Dy (p(m(t)), ﬁgpu,v(a)(t))) using 7k, that is
(g0 Tan) = argmin > U (a:(t);,u,f‘,m).
KT nes-+

e Compute CV ) using F(k),

Cv(k) = Z \Ijﬁovl/o (.’.U(L), ﬁﬁo,w f‘/_’)’g,w m)

(e (k)
End
. 1 X
Then, Dyuo (v) = = > CV
k=1

Table 1 summarizes the procedure to find the K-fold CV estimate Do (V).

5.4.4 How to Decide v

As a measure for the variation of Dg, ., (), we compute

1
= the stt : r of ———CV
SD gy (v) = the standard error o 08 (®),

where |2(k)| denotes the number of elements in the k-th part of data (k). Plots of

Dgoo (V) for v with the auxiliary boundary curves Digywp (V) £ SDgguo(v) will help us to

judge an optimum v. We denote this optimum v by Vopt- Often we have to employ the
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upper auxiliary boundary curve (UABC) with the curve of 5,90‘,,0 (v) in order to choose Vgp.
If the curve of 5;30,,,0 (v) is flat for a wide range of v, then Gy, = 0. When more than one
data class or outliers exist in the entire data space, typical shapes of curves of Ego‘w) (v) that
enables us to chose an appropriate value v are elbow and dipper shapes. So, if the curve
does not have these shapes, we increase the value of vy, If these shapes do not appear for
any fo, then Fope = 0, (Minami and Eguchi, 2003). If the curve of Eﬂoi,,o (v) looks ethow
and dipper shapes, we choose the smaller one instead of the smallest v as the [, whose
evaluated value Dy, ,,(Vept) is not larger than the value of UABC that corresponds to the
smallest value of ﬁgo,yo (v). However, there is no theoretical justification for this rule, which
is known as the one-standard error rule (Hastie et al., 2001). Note that fixed 14 should be

larger than optimum v.

5.5 Simulation and Discussion

The performance of the proposed method depends on the value of the tuning parameter §
and v, where the last one is fixed as vy by inverse of the half of diameter of data heuristically.
The fixed value vy is used for fast localization to a data cluster by the shifting parameter u
and local kernel vector . The optimum value of the tuning parameter 3 plays the key role
to provide significant weight to the local data points and insignificant weight to the other
data points. The data point corresponding to the insignificant weight has no influence on the
estimation. To demonstrate the performance of the proposed algorithm, we generated the

following data sets by formula (5.3} using different coefficient matrices Ay and bias vectors by.

Dataset 1 : Two-dimensional, two-class mixtures (Figure 5.1(a)) generated with Gaussian
random numbers. 500 samples were drawn from each class to make 1000 samples in

total.

Dataset 2 : Five-dimensional, two-class mixture generated with Gaussian random num-
bers. Plots of two observed signals are shown in Figure 5.4 using the combination rule.

500 samples were generated from each class to make 1050 samples in total.

Dataset 3 : Two-dimensional, five-class mixture generated with Gaussian random numbers.
100 samples were generated from each class. Twenty (20) outliers (*) were added to

make 520 samples in total.
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5.5.1 Simulation With Randomly Generated Synthetic Data

Datasets 1, 2 and 3 are randomly generated synthetic datasets. Figures (5.1 - 5.11) represent
the simulation results for these datasets. Datasets 1 and 2 consists of 2 data clusters, where
one cluster is represented by the symbol “” and the other one by the symbol “o”. Dataset
4 consist of 5 clusters that will be explained later. Let us start the simulation with the
data set 1 which consist of two clusters (Figure 5.1(a)), where each cluster represent the
linear relationship between two variables. To estimate principal components (PCs), first we
apply classical method. Figure 5.1(b) shows the scatter plot between two PCs. We see that
transformed data set also consist of two clusters, where each cluster shows that estimated
components are highly correlated of each other, which contradicts with the uncorrelatedness
properties of PCA. Therefore, classical method is not so good to estimate local PCs from
data set 1. Then, we compute local PCs shown in figures 5.1{c-d) by the maximum likelihood
estimator (MLE) of Gaussian mixture (GM) distribution. We see that output components
shown in figure 5.1(c) consist of two clusters, where one cluster ‘o’ represent that estimated
components are highly correlated of each other, while the the cluster ‘. satisfies the un-
correlatedness properties of PCA. The last one also satisfy the another important property
that first PCs has the largest variance. Similarly, output components shown in figure 5.1(d)
also consist of two clusters, where one cluster ‘.’ represent that estimated components are
highly correlated of each other, while the other one ‘o’ satisfies the uncorrelatedness and
variance properties of PCA. Therefore, local PCA based on GM distribution is good for
data set 1. Figures 5.3(a-b) shows the class probability p(Cy | &, ©), k=1,2 for each data
point. Then we apply minimum (-divergence method using a local kernel function for the
same purpose. For this, to select an optimum kernel parameter v, we computed Eﬂwo (v)
with (6p = 0.2, = 0.4) for v varying from 0 to 0.5 by 0.05 using 10-fold CV algorithm
given in table 1. In the plots of Dy, (V), asterisks (*) are Do (v) and the smallest value
is indicated by a circle outside the asterisk. Dotted lines are Digowo (¥) £ SDg, s (v) . By the
‘one-standard error rule’, we chose v = 0.15 using Figure 5.1(g) for step 1. Figure 5.1(e)
shows the scatter plot between two PCs at step 1. We see that transformed data set also

¢

consist of two clusters, where one cluster ‘.’ satisfies both uncorrelatedness and variance
properties of PCA like local PCA based GM distribution. After step 1, the value of ter-
mination index TI is 0.48, so computation by the minimum [-divergence method not yet

finished. At step 2, we used f = 0.2, = 0.4 again for selection of optimum v. By the
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Figure 5.1: For dataset 1, (a) Observed components. (b) Local principal component (PC)
hased classical Method. (c-d) Local PC based on Gaussian mixture (GM) distribution. (e-f)
Local PC based on f-divergence at step 1 and 2, respectively. (g-h) Plots of IA)A,D,,,(, (v) with
By = 0.2,y = 0.4 by K-fold CV at step 1 and 2, respectively.

‘one-standard error rule’, we chose v = 0.2 using Figure 5.1(h). Then we apply the minimum
A-divergence method again changing the initial value of the shifting parameter vector p and
the local kernel vector & both by (5.48). Figure 5.1(f) shows the scatter plot between two
PCs at step 2. We see that transformed data set consist of two clusters as previous, where
one cluster ‘o” satisfies both uncorrelatedness and variance properties of PCA like the cluster

" at step 1. After step 2, TI=0.95. So sequential estimation by the minimum 3-divergence
method is terminated. Figures 5.3(c-d) show the weight of each data point corresponding
to the estimates at step 1 and 2, respectively. One can see that at each step. one class of
data were used and the other class of data totally were ignored by the weight function (5.47)

for estimating I' and p. The arrows in Figures 5.1(c-f) represent the center of local PCs.
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Local PC in Presence of Outliers

( a) Observed components with outliers * ( b) Local PC by classical method
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Figure 5.2: For dataset 1 with outliers (*). (a) Observed components with outliers. (b) Local
principal component (PC) based classical Method. (c-d) Local PC based on Gaussian mix-
ture (GM) distribution. (e-f) Local PC based on -divergence at step 1 and 2, respectively.
(g-h) Plots of D\go_uo (v) with By = 0.2, = 0.4 by A'-fold CV at step 1 and 2, respectively.

respectively. Comparing figures 5.1(e-f) with 5.1(c-d), we see that performance of minimum
[-divergence method for local PCA is almost equivalent to local PCA based on GM distri-

bution for data set 1.

Two investigate robustness of the proposed method, we added 50 outliers (*) from the ex-
ponential distribution to make 1050 samples points in data set 1 shown in figure 5.2(a). To

estimate principal components (PCs), first we apply classical method. Figure 5.2(b) shows
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Figure 5.3: For dataset 1, (a-b) Class probability p(Cy | ;,0), k=1,2 for each data point.
(c-d) Weight for each data point at step 1 and 2, respectively. (e-f) Class probability p(Cy. |
x;,0), k=12 for each data point in presence of outliers. (g-h) Weight for each data point
in presence of outliers at step 1 and 2, respectively.

the scatter plot between two PCs. We see that result is not so good under the previous dis-
cussion for data set 1 with outliers. Then, we compute local PCs shown in figures 5.2(c-d)
by the maximum likelihood estimator (MLE) of Gaussian mixture (GM) distribution. We
see that local PCs belonging to the cluster *." in figure 5.2(c¢) are good as previous, however,
local PCs represented by figure 5.2(d) are not so good by the previous discussion. Therefore.
local PCA based on GM distribution is not so good for data set 1 in presence of outliers.
Figures 5.3(e-f) shows the class probability p(Cy | @;, ©), k=1.2 for each data point. Then we
apply minimum A-divergence method using a local kernel function for the same purpose. To
select an optimum kernel parameter v, we computed 5,1”‘,,“ (v) with (B = 0.2, = 0.4) for v
varying from 0 to 1 by 0.1 using 10-fold C'V algorithm given in table 1. By the ‘one-standard

error rule’. we chose v = 0.15 and 0.25 using Figure 5.2(g-h) for step 1 and 2, respectively.
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Figure 5.2(e-f) shows the scatter plot between two PCs at step 1 and 2, respectively . We
see that local PCA in both step is good by the uncorrelatedness and variance properties
of PCA. After step 2, TI=0.92. So sequential estimation by the minimum A-divergence
method is terminated. Figures 5.3(g-h) show the weight of each data point corresponding
to the estimates at step 1 and 2, respectively. One can see that at each step, one class of
data were used and the other class of data totally were ignored by the weight function (5.47)
for estimating I" and p. The arrows in Figures 5.2(c-f) represent the center of local PCs,
respectively. Comparing figures 5.2(e-f) with 5.2(c-d), we see that performance of minimum
B-divergence method for local PCA is batter than local PCA based on GM distribution for

data set 1 with outliers.

To investigate the performance of the proposed procedure for high-dimensional data, we
considered five-dimensional two-class mixture data as dataset 2, which contains 1000 sample
points in total. With projection of observed data onto two-dimensional coordinates, two
classes are overlapped as shown in figure 5.4(a). To generate data set 2 by (5.3), we used
coefficient matrices A; = diag(2.5,2.4,0.90,0.70,0.40) and Ay = diag(1.0,0.9,0.8,0.4,0.3).
Therefore, to estimate principal components, the true orthogonal matrix (I') will be identity
matrix (I) for both clusters, that is ' = (y1,7,...,7,) = L. An estimate T'=1,7,..,9,) will

be good for I' if the inner product between ; and ; satisfy

Wi = 1, for i=j (5.54)
= 0, for i#j (5.55)

Also we estimate the estimating error of each 4; by

equality hold iff y; = 4;. To apply minimum [-divergence method in dataset 2, we used
Bo = 0.2,15 = 0.3 for selection of optimum » for steps 1 and 2 both as previous. By the
‘one-standard error rule’, we chose optimum v = 0.1 and 0.15 for steps 1 and 2, respectively
using figures 5.5(a-b). The sequential estimating procedure was terminated after step 2 with
termination index T = 0.97. Figures 5.5(c-d) show the inner products (IP) between true
vector +; and its estimates 4;, (i = 1,2,..,5) at step 1 and 2, respectively. Note that in each

plot, dash-dot line without marker style means that estimation based on classical method,
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Figure 5.4: For dataset 2. (a) Scatter plot of observed components. (b) Scatter plot of
observed components with outliers (*).

solid line with marker style (o) indicates estimation based on GM distribution and dashed

line means the simulation based on the minimum 3-divergence method. Clearly, we see that

classical estimator does not satisfy v/4; = 1 for ¢ = 1,2, while the estimators obtained by

"

other two methods satisfy it for all i = 1,2,...,5. Also from Figures 5.5 e-f). we see that
» (=]
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Figure 5.5: For dataset 2, (a-b) Plots of 550 () with Gy = 0.2, 49 = 0.3 for v by 10-fold CV
at step 1 and 2, respectively. (d-e) Inner product (IP) between true column vector and the
estimated column vector of I at step 1 and 2 . (f-g) Estimating error (EE) for 4;, (i=1,2,...,5).
(c-d) Percentage of total variation (PTV) for i-th PC (i=1,2,..5) at step 1 and 2, respectively.
(e-f) Cumulative percentage of total variation (CPTV) for i-th PC (i=1,2,..5) at step 1 and
2, respectively.

estimating error (EE) with classical method is high for i = 1,2, while EE with other two
methods are almost close to zero for all ¢ = 1,2,...,5. Therefore, local PCA based on GM

distribution and minimum A-divergence method both are better than classical method. It




is also seen that local PCA based on GM distribution is slightly better than minimum g-
divergence method for dataset 2. Figures 5.5(g-h) represent the percentage of total variation
(PTV) for each PC at step 1 and 2, respectively. At steps 1, solid line with marker style
(*) represent the classical estimates using only data class 1, while at steps 2, solid line with
marker style (*) represent the classical estimates using only data class 2 and other lines are
described as previous. In both steps, we see that PTV for each PC obtained by the classical
method using only one data class and proposed two methods including all data class are
almost similar, while PTV obtained by the classical method including all data class are
not similar for first and second principal components. Therefore, proposed two local PCA
algorithms are better than classical one in our current context. Figures 5.5(i-j) represent
the cumulative percentage of total variation (CPTV) by the principal components obtained
by the methods discussed above. Figures 5.7(a-b) shows the class probability p(Cy | @, ©),
k=1,2 for each data point based on GM distribution approach. Figures 5.7(c-d) represent
the weight of each data point with the minimum S-divergence estimator at step 1 and 2,
respectively. One can see that at each step of estimation of T and u, one class of data were
used and the other class of data totally were ignored by the weight function (5.47) .

Two investigate robustness of the proposed two methods, we added 50 outliers (*) from
the exponential distribution to make 1050 samples points in data set 2 shown in figure
5.4(b). To apply minimum S-divergence method in dataset 2 in presence of outliers, we used
Bo = 0.2,1 = 0.3 for selection of optimum v for steps 1 and 2 both as previous. By the
‘one-standard error rule’, we chose optimum v = 0.15 and 0.1 for steps 1 and 2, respectively
using figures 5.7(a-b). The sequential estimating procedure was terminated after step 2 with
termination index 77 = 0.94. TFigures 5.7(¢c-d) show the inner products (IP) between true
vector ; and its estimates 4;, (1 =1,2,..,5) at step 1 and 2, respectively. Note that in each
plot, dash-dot line without marker style means that estimation based on classical method,
solid line with marker style (o) indicates estimation based on GM distribution and dashed
line means the simulation based on the minimum [-divergence method. Clearly, we see
that estimators based on classical method or GM distribution do not satisfy the condition
v¥4; = 1 for i = 1,2, while the estimators obtained by minimum A-divergence method
satisfy this condition for all ¢ = 1,2,...,5. Also from figures 5.7(e-f), we see that estimating
error (EE) with classical method and GM distribution both, is large for i = 1,2, while EE

with minimum J-divergence methods is almost close to zero for all i = 1,2, ..., 5. Therefore,
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Figure 5.6: For dataset 2 with outliers. (a-b) Plots of 550 (B) with By = 0.2, 119 = 0.3 for v
by 10-fold CV at step 1 and 2, respectively. (d-e) Inner product (IP) between true column
vector and the estimated column vector of T' at step 1 and 2 . (f-g) Estimating error (EE)
for 4;, (i=1,2,...,5). (c-d) Percentage of total variation (PTV) for i-th PC (i=1,2,..5) at step
1 and 2, respectively. (e-f) Cumulative percentage of total variation (CPTV) for i-th PC
(i=1,2,..5) at step 1 and 2, respectively.

local PCA based on minimum J-divergence approach is better than both classical and GM
distribution approaches for dataset 2 in presence of outliers. F igures 5.7(g-h) represent the
percentage of total variation (PTV) for each PC at step 1 and 2, respectively. At steps 1,

solid line with marker style (*) represent the classical estimates using only data class 1, while
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Figure 5.7: For dataset 2, (a-b) Weight for each data point at step 1 and 2, respectively.
(c-d) Percentage of total variation (PTV) for i-th PC (i=1,2...5) at step 1 and 2, respectively.
(e-f) Cumulative percentage of total variation (CPTV) for i-th PC (i=1.2,..5) at step 1 and
2, respectively.

at steps 2, solid line with marker style (*) represent the classical estimates using only data
class 2 and other lines are described as previous. In both steps, we see that PTV for each
PC obtained by the classical method using only one data class and minimum J-divergence
method using all data classes including outliers are almost similar, while PTV obtained by
the classical approach or GM distribution approach using all data classes including outliers
are not similar for first and second principal components. Therefore, minimum J-divergence
method for local PCA is better than the other two method in our current context for dataset 2
in presence of outliers. Figures 5.7(i-j) represent the cumulative percentage of total variation
(CPTV) by the principal components obtained by the methods discussed above. Figures
5.7(e-f) shows the class probability p(Ck | @;,©), k=1,2 for each data point based on GM

distribution approach. Figures 5.7(g-h) represent the weight of each data point with the
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minimum J-divergence estimator at step 1 and 2, respectively. Same as previous, one can
see that at each step of estimation of T' and . one class of data were used and the other

class of data totally were ignored by the weight function (5.47) .

Local PC by Minimum 3-Divergence Method
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Figure 5.8: For dataset 3, (a) Scatter plot of observed data. (b-f) Local PC estimated by
(p,(k),l“(k)), k=1,2,..5, respectively.

To demonstrate the validity of the proposed methods for mixtures of several classes, we con-
sidered two-dimensional, five class mixture of synthetic data shown in Figure 5.8(a), where
each class represent the linear relationship between two variables. To estimate principal

components (PCs) by the proposed method, we chose optimum v = 0.2,0.25, 0.15, 0.25&0.2
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with By = 0.5, 19 = 0.5 at step 1 to 5, respectively, by the K-fold CV plots (K=10) shown in
Figures 5.9(g-k), respectively. Figures 5.8(b-f) show the scatter plot between first PC (V})
and second PC (Y3) estimated by (p,T'x)) at step k = 1,2, ...5, respectively. We see that
transformed data set also consist of five classes in each plot, where one class in each plot
represent that estimated components are uncorrelated of each other and the first principal
component has the largest variance, while the components of other classes do not satisfy the
properties of PCA. After step 5, termination index TI=0.96. So sequential estimation by
the proposed method is terminated. The arrows in Figure 5.8(a) represent the orthogonal
direction obtained by the proposed method, while the arrows in Figures 5.8(h-f) represent
the center of the local PCs. Figures 5.9(a-e) show the weight of each data point correspond-
Ing to the estimates at step 1 to 5, respectively. One can see that at each step of estimation
of I' and u, one class of data were used and the other classes of data totally were ignored by
the weight function (5.47). Figures 5.9(f-j) show the cumulative weight after each step from
1 to 5, respectively.

Then we use MLE of Gaussian mixture (GM) distribution for the same purpose with exact
number of data clusters ¢ = 5. Figures 5.10(b-f) represent the scatter plot of principal com-
ponents obtained by MLE of the Gaussian mixture distribution. Figures 5.10(g-k) represent
the class probabilities p(Cy | @, ©) for each data point. From figures 5.10(b-f), we see that
local PC by MLE from the Gaussian mixture distribution is good like minimum A-divergence
method if number of data cluster (c) is known in advance. The arrows in figures 5.10(b-f)
indicates the center of local PCs. Then we use MLE of Gaussian mixture (GM) distribution
for the same purpose assuming number of data clusters ¢ = 3. Figures 5.11(b-d) represent
the scatter plot of principal components obtained by MLE of the Gaussian mixture distri-
bution same as previous. Figures 5.10(g-k) represent the class probabilities p(Cy | ;, ©)
for each data point. From figure 5.11(b), we see that local PC by MLE from the Gaussian
mixture distribution is good like minimum S-divergence method if number of data cluster
(¢) is unknown in advance, however, other figures 5.11(c-d) show the misleading results.
The arrows in figures 5.11(b-d) indicates the center of local PCs. Thus we may conclude
that local PCA based on Gaussian mixture distribution is good only when number of data

clusters (c) is known in advance.

82




D, () by K-fold CV with f, = 0.5

and vy = 0.5
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Figure 5.9: For dataset 3, (g-k) Plots of ]310 (3) with 8y = 0.3 by K-fold CV at step 1 to 5,
respectively. (a-e) Weight for each data point at step 1 to 5, respectively. (f-j) Cumulative
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5.6 Conclusions

We proposed a method for exploring local structure of PCA mixture model for dimension-
ality reduction based on the minimum 3-divergence method using a local kernel function.
The proposed procedure searches the orthogonal matrix of each local class for PCA based on
the initial conditions of the shifting parameter and a local kernel vector. If the initial value
of the shifting parameter vector p and the local kernel vector @, belongs to a data class,

then the minimum 3-divergence estimator finds the estimates of the orthogonal matrix and
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Local PC Based on GM Distribution when ¢ is known
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Figure 5.10: For dataset 3, (a) Observed components. (b-f) Local PC estimated by (), I'ix)),
k=1,2,...5, respectively.

shifting parameter for this class. In order to obtain estimates of the recovering matrix and
the shifting parameter for other data classes. the initial value of the shifting parameter is
changed according to the observed vector having the a-percentile cumulative weight. Using
the proposed method, all local structures can be explored sequentially from the entire data
space. We suggested a termination index for the proposed method based on the cumulative

weight. On the basis of our simulation results, the value of the termination index (TI) should

be greater than 0.90 to terminate the classification procedure.
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Local PC Based on GM Distribution when ¢ is unknown
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Figure 5.11: For dataset 3, (a) Scatter plot of observed data.
(Bw) Try) k=1,2,3, respectively.

(b-f) Local PC estimated by

The performance of the proposed method depends on the value of the tuning parameter 3
and v, where v plays the key rule for local PCA. We used an adaptive selection procedure
for v keeping fixed 3 as 3, everywhere in the simulation study by the cross validation. The
modified loss function defined by (5.52) with fixed value Sy, v is used as a measure for eval-
uation of the proposed estimators by different values of v. Dpg, ., (v) for different values of v

were estimated by K-fold cross-validation summarized in Table 1.

The main purpose of the proposed method is similar to the conventional PCA mixture models

proposed by Tipping and Bishop (1999)). The procedure proposed by Tipping and Bishop
(1999)

finds all local PCA structures sequentially.

finds all local PCA structures simultaneously, whereas the method proposed herein




If number of data clusters, ¢, in the entire data space 2 is unknown, then the conventional
method proposed by Tipping and Bishop (1999) may gives misleading results. However, our
proposed method does not require the number, ¢, in advance. Finally, our method is able
to estimate ¢. Another advantages of the proposed method is that it robust against outliers
(e.g.5.2).

When classes are not overlapped so much, the sequential classification methods and the
Bayes rule will give similar results. If some classes are overlapped lightly, then the proposed
method is able to find the orthogonal directions. However, the case in which classes are
heavily overlapped is still difficult for the proposed method as well as the model-based local
PCA by Tipping and Bishop (1999).

Finally, we compare the performance of the minimum A-divergence method for local PCA
with the local PCA based on the Gaussian mixture distribution by simulation study. We
found that local PCA based on the Gaussian mixture distribution is slightly better local PCA
by the minimum B-divergence method if number of data clusters (c) is known in advance,
on the other hand, if number of data clusters (¢) is unknown, then local PCA based on
the Gaussian mixture distribution is not so good. However, in this case, local PCA by
the minimum g-divergence method is good. Also local PCA based on the Gaussian mixture
distribution shows misleading results in presence of outliers, while in this situation, minimum

[-divergence method shows promising results (e.g.5.2).
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Chapter 6

Exploring Local ICA Structures by
the Minimum S-Divergence Method

6.1 The Problem of ICA Mixture Models for Exploring
Local Structures

Blind source separation (BSS) by independent component analysis (ICA) has been applied
in solving various signal processing problems, including speech enhancement, telecommuni-
cations, medical signal processing and so forth. Independent component analysis attempts
to recover the original sources that have independent and non-Gaussian structure from ob-
servable linearly mixed data. In the classical ICA model, all source signal vectors belong to
only one source class ., and all mixed signal vectors belong to the same class in the entire
data space 2. However, in practice, these source vectors may originate from several source
classes, and the corresponding mixed signal vectors belong to several classes in the entire
data space. In this case, the performance of classical ICA may not be so good. Therefore,
Lee et al. (2000) proposed an ICA mixture models by modeling the observed data as a mix-
ture of several mutually exclusive classes, each of which is described by linear combinations
of independent, non-Gaussian densities. However, one problem encountered when applying
this method is that the number of classes ¢ should be known in advance, which is difficult

in practice.

We assume that source vectors come from c source classes {1, 52, vy e} and that the
corresponding mixed signal vectors belong to ¢ different data classes {21, D, ..., D} in the
entire data space 92, where the number ¢ is unknown. In addition, we assume that the

data class 9 occurs in the entire data space 2 due to the source vectors that originate
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from the source class %%, (k =1, 2, ..., ¢). In other words, source class % is hidden
as the data class % in the entire data space 2. In practice, the occurrence order of a
mixed signal vector in the entire data space 2 from a source class is unknown. However, we
can assume that an unobservable mixed signal vector 2z € 2, = {2zj; 7 = 1,2,...,nx},

(k=12,....¢; S5_,ny = n) follows an ICA model as
Zjp = A/,,Sjk + by, (6.1)

where A4y is an m X m non-singular mixing matrix, by is the bias vector and S;k € S =
{sjs J = 1.2,...,m}, (k = 1,2,...,¢) is the j-th random vector in the source class k
with zero mean vector, the components of which are assumed to be independent and non-

Gaussian. However, in a practical situation, an observable mixed signal vector x; € 2 =

{zy; t = 1,2, ...,n} is obtained as one vector of Uie1 e = {2505 7 = 1,2,...,m, k =
1,2,...,¢; Y=, = n} such that 2 = Uk=1 Z. If the permutation of {21, 219, . . . yZjks - ey Zng
into {@1,2,,...,x,} is purely random, then (6.1) reduces to the ICA mixture models. In

the ICA mixture models, the observed data in each class are considered to be a linear combi-
nation of independent and non-Gaussian sources. (See Lee and Lewicki (2000): Lee, Lewicki
and Sejnowski (2000); Lee(2001) for a detailed discussion.) When the data in each class are

modeled as multivariate Gaussian, The model is known as a Gaussian mixture model.

One problem with existing method is that it cannot recover hidden classes properly when
¢ is unknown or mis-specified. However, in this difficult situation, our proposed method is
sequential application of the minimum f-divergence method (cf. Minami and Eguchi, 2002)
to extract all hidden classes sequentially based on a rule of step-by-step change of the shifting
parameter. Later, we will propose a stopping rule for repeated application of the minimum
f-divergence method based on the cumulative weight. In order to recover k-th hidden class,
we estimate a recovering matrix Wy, for A;t and a shifting parameter p,, for Aytby, based
on the minimum A-divergence method, initializing u, by a vector xy € P, that transforms

the mixed signal vector ;, € 2 into a new signal vector y,, (t=1,2,... ,n) by
Yo = Wiz, — (6.2)

where,

y, € .57k={§jk;j=1,2,...,nk}, if e 9,

€ 2%  otherwise,
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where 8j; is the estimate of the source vector sjt = Ayt (25 — bg). Here, %, is the k-th
recovered class whose component vectors are classified from the data class 2, and 2* is
the set corresponding to the unclassified data points. If W} is properly obtained, then 8j) is
equal to 8;x, except for an arbitrary scaling of each signal component and the permutation
of the indices. An appropriate value of the tuning parameter 3 is a key to the proposed

method. Therefore, an adaptive selection procedure is proposed for the tuning parameter 3.

Section 6.2 reviews the minimum p-divergence method, section 6.3 describes the proposed
method for exploring the hidden class. In section 6.3.1, we discuss a selection method for
the tuning parameter 5. Finally, section 6.4 presents numerical examples, and section 6.5

presents the conclusions of this chapter.

6.2 Minimum [-Divergence Method

Several estimators for ICA can be considered as being derived through the framework of
the maximum likelihood estimation, with various choices for density functions. In other
words, the estimators are the minimizers of the Kullback-Libler (K-L) divergence between
the empirical distribution and a certain form of density function. As for example, Jutten
and Herault (1991) heuristic approach, entropy maximization (Bell and Sejnowski, 1995),
minimization of cross-cumulants (Cardoso and Souloumiac, 1993), approximation of mutual
information by Gram-Charlier expansion, the natural gradient approach (Amari, Chichocki
and Yang, 1996) and so forth. Amari and Cardoso (1997) showed that the estimation func-
tions of this type of estimator are unbiased provided that the means of the original signals are
zeros. However, this type of estimator is not robust to outliers. Minami and Eguchi (2002)
proposed a robust blind source separation method by minimizing 8-divergence (Eguchi and
Kano, 2001). This method is referred to as the minimum B-divergence method, and the
corresponding estimator, is referred to as the minimum p-divergence estimator. Next, we
will review the basic formulation of the minimum G-divergence method.

Suppose that an observed signal vector x is a linear transformation of vector s whose com-
ponents are independent of each other. There exists a matrix W and a shifting parameter
vector p such that the components of y = Wz — p are independent of each other. Thus, the

Joint density of y can be expressed as the product of marginal density functions ¢1,qq, ..., gm
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by
m
= H qi(y:)
i=1
and the joint density function of « can be expressed as:
T‘(Zl’?, W, ,LL) = [det(W)l Hqi(wi:c — ﬂi); (6.5
i=1

where w; is the i-th row vector of W, and p; is the i-th component of L. The G-divergencs
between the density of a recovered signal vector and the product of marginal densities (if
they are known) would attain the minimum value of zero if and only if the recovered siguale
are independent of each other. The minimum p-divergence method is an estimating proe-
dure that is based on the empirical 3-divergence ﬁg (f, ro(., W, ;_L)) between the empirical
distribution 7 of & and ro(x, W, i), rather than the unknown density expressed by (6.3).

where

ro(z, W) = |det(W)| 1 pi(wiz — ). (6.4

i=1
Here, p; is a specific density form, rather than an unknown density ¢;, for example, p;(2) =
crexp(—cy2?) for sub-Gaussian signals and pi(z) = cy/ cosh(z) for super-Gaussian sig-
nals. Moreover, the switching scheme of the extended infomax ICA (Lee, Girolami and
Sejnowski 1999) between sub-Gaussian and super-Gaussian densities can be adopted if the
non-Gaussianities of the source signals are unknown. The minimum F-divergence method
finds the minimizer of the empirical B-divergence ﬁﬁ (f,To(.1 W, p,)) This minimization is

equivalent to maximizing the following quasi 3- likelihood function:

1 n
La(W, ) = ~ > lg(zyy W, ) (6.5]
t=1
where,
log (ro(x, W, 1)), for g=
lg(a; W, = — (6.6}
ol W l7‘5(33, W, 1) —bg(W) — 1—[3', for 0<fB<1
g B
and
_ 1 B+1 Idet(W)]ﬁ B+1
b;@(W) - +1/T0 (ﬂ},W,M)d ,6+1 /H Zz
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The estimating functions (derivatives of Iz(x; W, 1)) are given by

Fi(ze,W,p) = r8(z, W, p (1 ~h(Wz — p) (VVa:)T) WT — B by(WYW-T, (6.7)
Fy(m,W,p) = rf(z,W,p) h(Wa — p) (6.8)

and the estimating equations are as follows:

n

Sorh(@, W) (In — h(Wa, — p) (W) YW - Bhyw)w" =0, (6.9)

=1

SIH

1 k2
Ezr{f(mt,w,m h(Wa; — 1) = 0 (6.10)
t=1
where

h(y) = (hl(yl)a-~-»hm(ym))T and
dlog pi(1:) Pi(ys)

hi(ys) = ———olR o B
() dy; i(yi)

In the estimating function, the multiplicative term

™

ro (, W, ) o< [ pf (wiz — ;) (6.11)

i=1
can be considered to be a weight function that provides a weight for each data point. The
weight of each possible outlier is reduced to approximately zero by this weight function. This
weight function is a key to robust blind source separation by the minimum A-divergence
method. Since g-divergence with § = 0 is equivalent to the K-L divergence, the minimum
B-divergence estimator with 8 = 0 is equivalent to the estimator derived from the K-L
divergence with explicitly included shift parameters. The minimum 3-divergence estimator
is locally consistent, as a method derived from the K-L divergence (Minami and Eguchi,
2002).

6.3 New Proposal for Exploring Local ICA Structures
by the Minimum S-Divergence Method

Lee, Lewicki and Sejnowski (2000) proposed a method for extracting all hidden classes si-
multaneously from the mixture of ICA models using the maximum-likelihood method. In

this section, we propose an iterative algorithm for the same purpose based on sequential
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application of the minimum 3-divergence method. The proposed method explores the re-
covering matrix of each class on the basis of the initial condition of the shifting parameter
#. If the initial value of the shifting parameter is close to the mean of the k-th class, then
the estimates for the recovering matrix W, and the shifting parameter My can be obtained
for this class by considering the data in other classes as outliers. Thus, we can estimate
{Wee); k=1,2,.., c} by the repeated application of the minimum B-divergence method
to recover all hidden classes that are sequentially based on a rule for the step-by-step change
of the shifting parameter p. In order to create a rule for the sequential change of the shifting
barameter pu, let us consider the weight function ¢ as

B(@. W, 1) = [ o (wie — ) (612

i=1

Next, we will discuss a sequential estimating procedure for {(Wy, p,.): k = 1,2,...,c} based
on a rule of the step-by-step change of the shifting parameter p.

Step 1: Set the initial value Wo for the recovering matrix W to the identity matrix, and
set the initial value i, for p to any one vector &, € 9. Find the estimates for W and u by
the minimum A-divergence method using these initial values. Let the obtained estimates be
denoted as W(]) and fi(), respectively.

Let us suppose that (k — 1) pairs of estimates

{(W(l)»ﬂ(1)> ) (W&): ﬁ(Z)) R (W(k—l): ﬁ(k—l))} .

are obtained sequentially in steps 1 to (k — 1).
Step k: Set the initial value WO to the identity matrix for the recovering matrix W. As the
initial value for the shifting parameter M, we use the minimizer of the cumulative weight:
k-1 .
by = argwalinj:1 ) (a:t; Wiy, ﬁ(j)). (6.13)
Find the estimates for W and p by the minimum A-divergence method using these initial
values. Let the obtained estimates be denoted as I/T’(k) and iy, respectively.

Accordingly, the desired estimates are

{(W(l), /1(1)) ) (W(Z)a /1(2)) R (W(C)’ﬁ(c)>}'

In order to recover the hidden classes from the observed data, we transform the ohserved
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component vector x; into a new component vector Y, by
Y= Wo —figy, t=12..n (k=12 c) (6.14)

If VT/(,C) and ﬁ(k) are the estimates for /1(16)"1 and A(k)*lb(k), respectively, then a class of data,

points

Dy ={ze € 2: ¢ (2 Way, i) > o) (6.15)

are classified into source class (k). Note that weight of each unclassified data points almost

close to zero. In ordered to separate the recovered signals, we chose the value of oy by
o = (1 —1) iy ¢ (mt; Wi, ﬁ(k)) +ymaxé (wt; Wiy, ﬁ(k))u (6.16)

with heuristically 0.01 < v < 0.05. Also one can chose o based on percentile of the densi-
ties.

The cumulative weighting plot represents the weights of both the classified and unclassified
data points. Thus, the classification procedure can be continued until the remaining un-
classified data points are transferred to classified data, points by monitoring the cumulative
weighting plot and the value of the termination index (TT) =|'ni| < 1 after each step, where

|/] is the number of elements in the set

J = {t Y ¢ (mt; W(k),ﬁ(,c)) > Oz} (6.17)

k=1
where o = Y[ _| o
The value TI = a < 1 suggests 100a% observed data points are classified into distinct source
classes and the rest 100(1-a)% data points remain unclassified as outliers, The classification
procedure is terminated when the value of the termination index TI exceeds . certain value,
In our simulation study, we terminated the procedure when TI exceeds 0.90. In the following

section, we introduce an adaptive selection procedure for the tuning parameter 3.

6.3.1 Selection Procedure for the Tuning Parameter 3

‘The tuning parameter § is a a key to the performance of the proposed method. Minami
and Eguchi (2003) proposed an adaptive selection procedure for 4, and their procedure is
basically followed herein. In order to find an appropriate [, we evaluate the estimates using

various values of 5. There are four aspects involved in evaluating the estimates:
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1. Measure for evaluation
2. Generalization scheme
3. Scaling of estimates for the recovering matrix

4. How to decide (3

Measure for Evaluation

We would like to recover a hidden class from the entire data space using the minimum -
divergence method based on the initial condition of the shifting parameter p considering
other classes as outliers. Therefore, the measure used for evaluation should give a good
evaluation when a hidden class is recovered, but should not have an excessive penalty for the
existence of outliers. The K-L divergence between the distribution of & and the pseudo model
(6.4), or equivalently, the pseudo log-likelihood does not satisfy this condition. We would
like to use (B-divergence with a fixed value fy of J as a measure for evaluating estimators
for hidden class separation and so define the measure used for evaluation of the minimum

(-divergence estimators as Wg and fig as:

Dy, (8) = B[ Dy (7,70( Koso W, fr5,8,)) ] (6.18)
where Aﬁ,ﬂo and fig,, are explained later herein, 7 is the empirical distribution of T, g
is defined in (6.4), the notation, E, denote the expectation with respect to the underlying
distribution of the data.

- ~ ~ 1 —~ —
Dﬁo (7"1 TO(WAﬁ,ﬂoM/ﬁi I""ﬁ,ﬂo)) = Const. — ;Z 550(113, Aﬁﬂowﬁ’ “ﬁﬂo);
rcP

Here, g (2, Mg, Ws, Fg.g,) is defined as (6.6) with 3 = fo, W = (Ra,Ws), and p = fig g,

Generalization Scheme

The measure Dg, (8) is a measure of the generalization performance of an estimator, which
is related to the prediction capability for independent test data. If we use the same dataset
to evaluate Dpg, (8) as that used to estimate a recovering matrix, then Dg, (8) will be under-
estimated. In a data-rich situation, the best approach is to divide the dataset into a small
number of subsets, and use one of these subsets for estimation and another for evaluation.
In other situations, a simple and widely used method of sample reuse is the K-fold cross-

validation (CV) method (Hastie et al., 2001). The K-fold CV method uses part of the
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available data to find the estimate and a different part of the data to test the estimate. For
the current problem, we employ the K -fold CV method as a generalization scheme.

We split the data into K approximately equal-sized and similarly distributed sections. For
the k th section, we find the estimate using the other K —1 parts of the data, and calculate the
Bo-divergence for the k th section of the data. We then combine the calculated Bo-divergence

values to obtain the CV estimate.

Scaling of Estimates for the Recovering Matrix

For the blind source separation problem, the scaling and shifting of the recovered signals as
well as the scaling of a recovering matrix, are arbitrary because scaling and shifting do not
affect independence. However, 8-divergences differ with the scaling. That is, for any u, and
Ho

Do (7, mo (-, W, 1)) # Do (Fymo(-, AW, pay))

in general, where A = diag(\;, -+, ),,) unless A = 7,,,.

The scaling and shifting condition for the minimum B-divergence method differs with the
value of 3. In order to properly evaluate the minimum B-divergence estimates, we need
to rescale and shift the estimates under a common condition. For this purpose, we use
the scaling and shifting condition for the minimum B-divergence estimator with § = .
That is, we rescale the minimum A-divergence estimate Wﬂ with 8 by the diagonal matrix
f\gﬁo and use the shift parameter ftg 5, for evaluation, where AB,/aﬂ and fig 5 minimize
Eﬁo (F, (-, AWg, p,)) among diagonal matrix A and vector p.

Table 1 summarizes the procedure used to find the K-fold CV estimate D, (8).

6.3.2 How to Decide

As a measure for the variation of Ps, (8), we compute

1
— the o — OV,
SDg,(0) = the standard error of l«@(k)lc k),

where | #(k)| denotes the number of elements in the k-th part of data, P(k). Plots of Dy, (8)
for 8 with the auxiliary boundary curves b\go (3)£SDg, (/) will help to judge an optimum 4.
We denote this optimum £ by Byp;. Often we have to employ the upper auxiliary boundary
curve (UABC) with the curve of Dy, (8) in order to choose the Bopt. We choose the smallest
G as the fB,,: whose evaluated value Eﬁo (Bopt) is not larger than the value of UABC that
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Table 6.1: K-fold cross-validation procedure
Split the data set & into K parts; 2(1), -+, P(K).
Let 2% = {z|x ¢ 2(k)}.
Fork=1,--- K
¢ Estimate W and p by maximizing Ls(W, ) using 2+,

(Ws, i) = argmax Y. Is(a; W, ).
LT

e Estimate Ag g, and pug 4, by maximizing Lo (AW, 1) using 2F,

(Ag gy, B g,) = argmax ) lgo(a:;AWa,u).

A e~k
e Compute CV ;) using Z(k),
Cv(k) = - Z lﬁo(mv RH,EDI/V ) ﬁ[i,/}n)
@€ P(k)

End

— 1 K
Then, Dﬁo (,B) = ;E Z CV(/C).
k=1

corresponds to the smallest value of Bgo (8). However, there is no theoretical justification for
this rule, which is known as the one-standard error rule (Hastie et al., 2001). If the curve of
Eﬂo( /3) is flat for a wide range of 4, then there might be only one class with no outlier and
Bopt=0. When there are more than one data class or outliers exist in the entire data space,
typical shapes of curves of 550 (B) that enables us to chose an appropriate value 3 are elbow
and dipper shapes. So, if the curve does not have these shapes, we increase the value of f.
If these shapes do not appear for any f, then there might be only one class with no outlier
and Bopy=0, (Minami and Eguchi, 2003).

6.4 Numerical Examples

We investigated the performance of the proposed procedure for recovering the hidden classes
of mixture ICA models using both synthetic and real data sets. For simulation, we gencrated
the following data sets by formula (6.1) using different mixing matrices Ay and bias vectors

by.
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Dataset 1 : Two-dimensional, two-class mixtures (figure 6.1(a)) generated with uniform
(sub-Gaussian) independent sources. 200 samples were drawn from each class to make

400 samples in total.

Dataset 2 : Two-dimensional, two-class mixtures (figure 6.2(a)) generated with Laplace
(super-Gaussian) independent sources. 200 samples were drawn from each class to

make 400 samples in total.

Dataset 3 : Five-dimensional, two-class mixture generated with uniform independent sources.
Plots of two observed signals are shown in figure 6.3(top) using the combination rule.

200 samples were generated from each class to make 400 samples in total.

Dataset 4 : Two-dimensional, six-class mixtures generated with uniform independent sources.
200 samples were drawn from each class. Also we added two-dimensional 20 random
vectors (*) from a Gaussian class and arrange them from 1001 to 1020 sample points

to make 1220 sample points in total. Figure 6.5(a) represent the observed values.

Dataset 5 : Two-dimensional, two-class mixtures shown in figures 6.7(d-e). One class is
the mixture of sinusoid signal (figure 6.7(a)) and Gaussian noise (figure 6.7(c), the first
half), and the other class is the mixture of saw-tooh signal (figure 6.7(b)) and Gaussian
noise (figure 6.7(c), the last half).

Dataset 6 : Two-dimensional, two-class mixtures of voices and music noises (figures 6.8(c-
d)). The sample size is 100000 in total, the first and third quarter of samples are the
mixture of voice of person 1 and background music noise, and the second and last

quarter are the mixture of voice of person 2 and background music noise.

In the following simulation study, we used p;(z) = exp(—2*/4) for sub-Gaussian signals and
pi(z) = 1/cosh(z) for super-Gaussian signals for estimation. For convenience of presentation,
samples in dataset 1 to 5 were ordered by class. However, we did not use any information
on sample order in estimation so that the estimation results must be the same even when
samples were randomly ordered. We used a quasi-Newton method with BEGS update for

the minimum [-divergence method and other optimization problems.
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6.4.1 Simulation With Randomly Generated Synthetic Data

Datasets 1, 2 and 3 are randomly generated synthetic datasets. There are two hidden classes
in each of these datasets. Figures 1, 2, 3 and 4 depict observed signals and estimation re-
sults for these datasets. In the plots of observed signals and recovered signals both, one
class is represented by the symbol “.” and the other one by the symbol “o”. For selection
of 3, we computed 5[)’0 (8) for @ varying from 0 to 1 by 0.1 with 8, = 0.3,0.6 and 0.9
using the ten-fold CV algorithm given in table 1. In the plots of Ego (), asterisks (*) are
550 () and the smallest value is indicated by a circle outside the asterisk. Dotted lines are

Dg, (8) & SDg, (8).

For dataset 1(uniform independent source), we used 3 = 0.3 for selection of 3 at step 1
because the plot of D\go (B) with fo = 0.3 (figure 6.1(d)) shows an elbow shape. By the
‘one-standard error rule’, we chose 3 = 0.3. 550 (8) with fy = 0.6 and 0.9 (figures 6.1(e-f)),
had the same property with fy = 0.3 and these also suggested 8 = 0.3. At step 2, plot
of ﬁgo (B) with By = 0.3 (figure 6.1(g)) is flat for small 3 and have a sudden increase at
certain points indicating it cannot be used for selection of 3. Therefore, we used G, = 0.6
(figure 6.1(h)), for selection of B with the same reason as step 1 and chose 3 = 0.6. Bﬁo (8)
with fp = 0.9 (figure 6.1(i)) had the same shape as that with 3y = 0.6 and it also suggested
B = 0.6. Figures 6.1(b-c) show recovered signals by the estimate (W(l), ﬁ(1)> obtained at
step 1 and (W(g), ﬁ(g)) obtained at step 2. respectively. We observe that one hidden class
is properly recovered by (W(l), ﬂ(l)) and the other one is recovered by (W(g), /1(2)). Figures
6.1(j-k) show the weight of each data point corresponding to the estimates (W(l), ﬁ(1)> and
(W(g), ﬁ(z)), respectively. One can see that at each step of estimation of W and pu, one class
of data were used and the other class of data totally were ignored by the weight function
(6.12). The value of the lermination index (TI) was 0.99 when the sequential recovering
procedure was terminated. The arrows in figure 6.1(a) are the estimated mixing matrices Ay
and the bias vectors by found by the algorithm and these parameters matched the parameters
which were used to generate the data for each class. The arrows in figures 6.1(b-c) represent

the center of the recovered classes.

For dataset 2(Laplace independent source), we used By = 0.6 for selection of 3 at step 1 be-

cause the plot of D, (8) with fy = 0.6 (figure 6.2(e)) shows an elbow shape, while that with
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Figure 6.1: For dataset 1, (a) Observed values. (b-c) Recovered values by (W(l) y B(yy) and

(W(l) , B()), respectively. (d-f, g-i) b\{jo(/j) with Gy = 0.3,0.6 and 0.9 at step 1 and 2,
respectively. (j-k) Weight for each sample point at step 1 and 2, respectively.

Bo = 0.3 (figure 6.2(d)) is flat for small 3 and have a sudden increase around 0.4 indicating
it cannot be used for selection of 4. By the ‘one-standard error rule’, we chose 3 = 0.5 from
5[30 (3) with gy = 0.6. 530 (8) with Gy = 0.9 had the same shape as that with 3, = 0.5 and
it also suggested 3 = 0.5. At step 2. we again used 3, = 0.6 (or 3 = 0.9) for selection of 3
with the same reason (figures 6.2(g-i)), and chose # = 0.6. Figures 6.2(b-c) show recovered
signals by the estimate (W(l), ﬁ(l)) obtained at step 1 and (W(z), ﬁ(2)) obtained at step 2.
respectively. We see that one hidden class is recovered properly by the estimate (W(l ) ﬁ(l))
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Observed and Recovered Values
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| Figure 6.2: For dataset 2, (a) Observed values. (b-c) Recovered values by (W, m) and
(W(l)- Ry)). respectively. (d-f. g-i) 530(/3) with 3, = 0.3,0.6 and 0.9 at step 1 and 2,
respectively. (j-k) Weight for each sample point at step 1 and 2, respectively.

and the other is recovered by the estimate (W(g), ﬁ'ﬂ)) . Figures 6.2(j-k) displays the weight
of each data point corresponding to the estimates (W(l)» “(1)) and (W(g). ﬂ(z))~ respectively.
Again, at each step for estimation of W and p, one class of data were used and the other
class of data were totally ignored by the weight function (6.12). The value of TI was (.92

when the sequential recovering procedure was terminated.

To investigate the performance of the proposed procedure for high-dimensional data, we
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Figure 6.3: For dataset 3, (Top) Observed values. (a-c, d-f) Dgo([j) with £y = 0.3,0.6 and
0.9 at step 1 and 2, respectively.

analyzed the five-dimensional sub-Gaussian(uniform) data. Dataset 3 consist of two classes.
With projection of observed data onto two-dimensional coordinates, two classes are over-
lapped as shown in figure 3(top). For estimation of recovering matrix at step 1, we chose
3 = 0.2, because all of Bﬂo (3) with 3y = 0.3,0.6 and 0.9 (figure 6.3(a-c)) have an elbow
shape and 3 = 0.2 is suggested by all of them. At step 2, we chose 3 = 0.2 as in the previous
step using figures 6.3(d-f). Figure 6.4(Top) and 6.4(Middle) show recovered values by the
estimate (ﬁ’(l), /3,(1)) obtained at step 1 and (W'(g), [1,(2)) obtained at step 2, respectively. It
is observed that one hidden class is recovered properly by the estimates ( I/T/(l), ﬁ(l)) and the
other is recovered by the estimates (W(z),ﬁ(;,)) . Figures 6.4(a-b) show the weight for each
data point at step 1 and step 2, respectively. Same as the previous examples, at each step
one class of data were used for estimation and the other class of data were totally ignored

by the weight function. The value of TI was 0.99 when the sequential recovering procedure
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Figure 6.4: For dataset 3, (Top) Recovered values by (ITV'(, )- B(1y). (Middle) Recovered values
by (W(Q’. (). (Bottom) (a-b) Weight for each sample point at step 1 and 2, respectively.

was terminated.

To demonstrate the validity of the proposed methods for mixtures of several classes, we
considered two-dimensional, seven class mixture of synthetic data shown in figure 6.5(a).
Original independent sources are uniform random numbers in six classes and the rest one
class consist of two-dimensional 20 Gaussian random numbers (*). For this data. we used
3y = 1.2 for selection of the values of the tuning parameter 3. Figures 6.5(j-p) depicts the

values of 530 (3) with 3y = 1.2 for steps 1 to 7, respectively. We chose 3 = 0.8 for steps 1 to 6
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Figure 6.5: For dataset 4, (a) Observed values. (b-h) Recovered values by (W(,-). R;) for

i=1,---,7, respectively. (i) Independent direction. (j-p) D\,I,O(/S’) with Gy = 1.2 at step 1 to
7, respectively.

and [ = 0.9 for step 7 based on the ‘one-standard error rule’. Figures 6.5(b-h) show the plots
of recovered classes by the estimated recovering matrices and shifting vectors at step 1 to 7,

respectively. Figures 6.5(b-e, g-h) show that each estimated recovering matrix at step 1, 2,

3,4, 6 and 7 recovers independent sources for one of sub-Gaussian classes, while figure 6.5(F)




shows that estimated recovering matrix at step 4 does not recover independent sources for any
one class, since the shifting vector was initialized to the Gaussian class (figure 6.6(e)) at this
step and ICA cannot separate Gaussian signals. Figure 6.5(i) shows the estimated structures

of dataset 4. The origins of arrows are located at fi;, and the directions are the columns

c T17—1 r o a . .77 y
of W'. The structure of the ICA mixture data was properly estimated. Figures 6.6(a-g)
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(h-n) Cumulative weight at step 1 to 7, respectively.
show the weight for each data point corresponding to the estimates (H (i) u(,,) = l..ccs5. 0

104




and figures 6.6(h-n) show the cumulative weight after each step from 1 to 7, respectively.
Figure 6.6(n) shows that cumulative weights corresponding to Gaussian data points are
negligible in a comparison of the cumulative weights corresponding to non-Gaussian data
points. Therefore, data belongs to the Gaussian class were considered as outliers in each step
by the proposed algorithm. Same as the previous examples, at each step one class of data
were used for estimation and the other classes of data were totally ignored by the weight

function. The value of TI was 0.97 when the sequential recovering procedure was terminated.

6.4.2 Simulation With Artificial and Natural Signals

Dataset 5 and 6 were generated with artificial and natural signals, respectively. Both datasets
were used to investigate the performance of the proposed procedure for automatic context
switching in blind source separation problem, which was first introduced by Lee, Lewicki
and Sejnowski (2000). There are two hidden classes in dataet 5. One class is a mixture of
sinusoid signals (figure 6.7(a)) and Gaussian noises (figure 6.7(c), the first half) and the other
class is a mixture of saw-tooth signals (figure 6.7(b)) and Gaussian noises (fgure 6.7(c)),
the last half). Although there are three different source signals, at any given moment only
2 source signals were linearly mixed and two mixed signals were observed (figures 6.7(g-h)).
We chose 3=0.45 and 0.5 with the same procedure as in the previous example by K-fold
CV for steps 1 and 2, respectively. Figures 6.7(f-g) and 6.7(h-1) show recovered signals by
the estimated recovering matrices at step 1 and step 2, respectively. Sinusoid signals were
recovered by the estimated recovering matrix at step 1 and saw-tooth signals were recovered
by the estimated recovering matrix at step 2. The value of TI was 0.92 when the sequential
recovering procedure was terminated. For dataset 6, let us imagine a situation that two
students were talking to each other while they are listening to music in the background.
Two microphones were placed somewhere in the room to record the conversation. The
conversation alternates so that person number 1 talks while person number 2 listens, then
person number 1 listens to person number 2 and so on. In this case, the voice of person
number 1 overlaps with the background music signal by a mixing matrix A, and bias vector
by, whereas voice of person number 2 overlaps with the background music signal by a mixing
matrix A, and bias vector by. Although there are three different source signals, at any given
moment there are only two source signals mixed in the observed data. The original signals

and observed mixed signals are shown in figures 6.8(a-b) and 6.8(c-d), respectively. The
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Figure 6.7: For dataset 5, (a-c) Original signals, where (a) sinusoid signals, (b) saw-tooth
signals and (c) Gaussian noises. (d-e) Mixed signals. (f-g) Recovered signals by (Wy. ().

o~

(h-i) Recovered signals by (W(a), fi(y)). (j-k) Weight for each sample point at step 1 and 2,
respectively.

scatter plot of mixed signals are shown in figure 6.8(e). In the scatter plot. we see that some
data points are overlapped between two clusters. Figures 6.8(f-g) represent the recovered
voice conversion and background music noise, respectively, by the proposed method, in which

we change the scale of the recovered signals to compare with the original voice conversation
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Figure 6.8: For dataset 6, (a) Original signals from a voice conversation. where the rectangu-
lar boxes represent the voice of person 1 and the rest are the voice of person 2. (b) Original
music signal. (c-d) Mixed signals obtained by the mixture of original voice signals and music
signals. (e) Scatter plot of mixed signals. (f-g) Unmixed recovered signals by the proposed
method.

and music noise explicitly. Comparing recovered conversion with the original one, we can say
that performance of the proposed method is good in our current context. We obtained the
above results with two steps. At step 1, we used 3 = 0.45, and at step 2, 3 = 0.45 with the
same procedure as in the previous example by K-fold CV. Figure 6.9(a-b) show recovered

signals by the estimate obtained at step 1 and figure 6.9(c-d) show those by the estimate
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Figure 6.9: For dataset 6, (a-b) Recovered signals by (lT'(I,. f(1)- (c-d) Recovered signal
by (iT'[_,,. i(5)). (e-f) Scatter plot of recovered signals at step 1 and 2, respectively. (g-h)
Weight for each sample at step 1 and 2, respectively.

obtained at step 2. Figures 6.9(e-f) represent the scatter plot of recovered signals at step 1
and 2, respectively. Figures 6.9(g-h) show the weights of sample points for estimation at step
1 and 2, respectively. The voice of person | was recovered by the estimate obtained at step
1. The weights for mixed signals of the voice of person 2 were almost zero for the estimation
at step 1. By the estimate obtained at step 2, the voice of person 2 was recovered and the
weights for mixed signals of the voice of person 1 were almost zero for the estimation. The

value of TI was 0.91 when the sequential recovering procedure was terminated.
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6.5 Conclusions

The present chapter proposed a one-by-one hidden class separation algorithm based on the
minimum f-divergence method for ICA mixture models. The proposed procedure searches
the recovering matrix of each class on the basis of the initial conditions of the shifting pa-
rameter. If the initial value of the shifting parameter vector p belongs to a data class,
then the minimum J-divergence estimator finds the estimates of the recovering matrix and
shifting parameter for this class. In order to obtain estimates of the recovering matrix and
the shifting parameter for other data classes, the initial value of the shifting parameter is
changed according to the observed vector having the minimum cumulative weight. Using the
proposed method, all hidden classes can be explored sequentially from the entire data space.
We suggested a termination index for the proposed method based on the cumulative weight.
On the basis of our simulation results, the value of the termination index (TI) should be

greater than 0.90 to terminate the classification procedure.

The value of the tuning parameter [ is a key to the performance of the proposed method.
We used an adaptive selection procedure for 3 proposed by Minami and Eguchi(2003). The
B-divergence Dg,(+) with fixed Gy was used as a measure for the evaluation of the tuning pa-
rameter value 3. Dg,(3) for different values of J were estimated by K-fold cross-validation.

This procedure is summarized in Table 1.

In our simulation, we used fixed density functions for estimation by the minimum S- di-
vergence method. However, it can be modified by the same switching scheme employed by
extended infomax algorithm (Lee et al., 1999) between sub- and super-Gaussian distribu-

tions.

The main purpose of the proposed method is similar to the conventional ICA mixture models
proposed by Lee et al. (2000). The procedure proposed by Lee et al. finds the estimates for
all mixing matrices and shifting parameters simultaneously, whereas the method proposed
herein finds the estimate for each recovering matrix and shifting parameter sequentially.
The proposed algorithm always converges after 20 to 60 iterations for the estimation of a
recovering matrix, whereas the mixture ICA algorithm of Lee et al. converges within 80 iter-

ations for the simultaneous estimation of all recovering matrices. However, for the recovery
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of all hidden classes, the computational cost may he similar for both methods because the

proposed method requires cross-validation.

The procedure proposed by Lee et al. may be simpler than the method proposed herein
when the number of hidden classes, c, is known. However, if the number of hidden classes is
unknown or mis-specified, their method fails to find good estimates. When their procedure
was applied to data set 4, described in Section 4, with ¢ = 3, 7(exact) and 12, their procedure
successfully estimated the mixing matrices when ¢ = 7, but failed to find good estimates

when ¢ =3 or 12.

Unsupervised classification might be one of the most important applications of mixture ICA
model. In section 3, we proposed a sequential classification procedure carried out at the samne
time as the sequential extraction of hidden classes. However, once all estimates of hidden
class structures are obtained, one may use the Bayes rule for simultaneous classification of
observations. scaling of sources to compute class probability can be obtained by the method

described in section 3.3 as Ag, and Fig,, that is, scaling when Gy = 0.

When classes are not overlapped so much, the sequential classification methods and the
Bayes rule will give similar results. If some classes are overlapped lightly, then the proposed
method is able to find the independent directions (e.g. Fig. 6.8(e)). However, the case in
which classes are heavily overlapped is still difficult for the proposed method as well as the
model-based classification by Lee et al. (2000).
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Chapter 7

Pending/Future Research Plan

7.0.1 A Short Review on FastICA

Let us shortly review the conventional FastICA (Hyvérinen et al., 2001) focusing on the
contrast function. A prewhitened data set is necessary for FistICA algorithm. Let z be a
prewhitened vector of . The maximization of non-Gaussianity after whitening the data set
is the major routine for FastICA. We focus on the rcbustness issues in the class of FastICA
(Hyvérinen, 1999) procedures. The aim of FastICA algorithm is to find an orthogonal
direction w for independent components by maximizing the objective function E{£=G(y)},

that 1s

w = argmax E{+G(y)} (7.1)

where y = w?z and w is a unit vector in A" and G(y) is the contrast function. A well

known contrast function for robust FastICA is
G(y) = —exp(—y*/2) (7.2)
Fixed-point iteration based on Gradient method for (7.1) is

w «— E{zg(y)} (7.3)

under the constraint ||w|®> = 1. The basic fixed-point iteration in FastICA based on approx-

imative Newton iteration for (7.1) is

w «— BE{zg(y)} — E{q'(y)}w (7.4)

under the constraint ||w|* = 1, where g(y) = G'(y) = yexp(—y?/2) and ¢'(y) = G"(y) =
(1 — y?) exp(—y?/2). The complete FastICA algorithm is given in appendix (A.1.1).
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Plots of Objective Functions With Respect to w for Sub-Gaussian Signals

(a) z is generated from Uniform Distribution (b) z is generated from Uniform Distribution
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Figure 7.1: (a-d) Plots of objective functions with respect to recovering vector w for sub-
Gaussian signals. (e-j) Plots of objective functions with respect to recovering vector w for
supper-Gaussian signals.

7.0.2 Dual FastICA

Let us consider an alternative idea to FastICA by orthogonal decomposition of the prewhitened

random vector z as

z =yw+ (2 — yw), (7.5)
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Figure 7.2: (a) Original sub-Gaussian Signals (left) and impulsive noise (right) . (b) Globally
mixed signals or Whitened Signals. (c) Recovered signals by Dual FastICA

. . . 2 2 2 2 2 1/2 . ~ . .
which implies || z||” = y? 472, where r = (||z|| -y ) . The aim of Dual FastICA algorithm
is to find an orthogonal direction w for independent components by maximizing the objective

function E{£+G(r)}, that is
w = argmax E{+G(r)} (7.6)
w

where w is a unit vector in R™ and G(r) is the contrast function. Our proposed contrast

function for robust ICA is
G(r) = —exp(—1?/2) (7.7)

Figure 7.0.2 represent the value of the objective functions E{—G(y)} and E{—G(r)} with
respect to w = w(f) = (cosf sinf)! with 0 < § < 27 based on the contrast functions
proposed in (7.2) and (7.7), respectively. The solid line with marker style (+) and the
dotted line with marker style (*) represent the value of the objective functions E{-G(y)}
and E{—G/(r)}. respectively. Figures 7.0.2a-7.0.2b and 7.0.2¢-7.0.2d represent the value of
the objective functions E{—G(y)} and E{—G(r)} for prewhitened sub-Gaussian signals gen-

erated from uniform distribution and beta distribution respectively. Figures 7.0.2e-7.0.2f,
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Figure 7.3: (a) Original supper-Gaussian Signals (left) and impulsive noise (right) . (b)
Globally mixed signals or Whitened Signals. (c) Recovered signals by Dual FastICA.

7.0.2g-7.0.2h and 7.0.2i-7.0.2j represent the value of the objective functions E{—G(y)} and
E{—G(r)} for prewhitened supper-Gaussian signals generated from Laplace, Exponential
and Gamma distribution, respectively. From all Figures discussed above, we see that be-
havior of both objective function are almost similar in some cases and symmetric in other
cases. Therefore, performance of both objective function for robust ICA should be similar or
symmetric. From the situation discussed above, we consider Dual FastICA. The fixed-point

iteration based on Gradient method for (7.6) is

w — E{%g(r')z} (7.8)

under the constraint ||w||2 — 1. The basic fixed-point iteration in Dual FastICA based on

approximative Newton iteration for (7.1) is

w — E{%g(v')z} =B {l (1 + 11;) gir) = Z—jg'(")} w (7.9)

r r

under the constraint ||w||z — 1, where g(r) = G'(r) = rexp(—r?/2) and ¢'(r) = G"(r) =

(1 — %) exp(—12/2).




Dual FastICA algorithm finds the orthogonal matrix W = (wq,ws, ..., w,,) to obtain the
independent components (ICs) vector y from the whitened vector z by the orthogonal trans-
formation y = WTz. Also orthogonal column vectors w;, i=1, 2, ..., m can be estimated
sequentially or simultaneously by Dual FastICA under deflationary and symmetric orthog-
onalization, respectively. We give a detailed version of the Dual FastICA algorithm under
p-prewhitening that uses both deflationary and symmetric orthogonalization in tables (7.1)

and 7.2), respectively.

Whiten the data by S-prewhitening to give z.

Choose m, the number of ICs to estimate. Set counter p «— 1.
Choose an initial value of unit norm for w,, (e.g., randomly).
Let w, — E {y;g(r)z} -E {% (1 + %;) g(r) — %g’(?’)} w,

p—1

Do the orthogonalization: wy, «+— w, — 37/

(w]w;)w,.
w
If w, has not converged, go back to step 4.

Hae B o o

Set p +— p+ 1. If p < m, go back to step 3.

Table 7.1: Dual FastICA Algorithm under f-prewhitening for estimating several ICs with
deflationary orthogonalization. The expectations are estimated in practice as sample aver-
ages.

We note that fixed-point iteration based on equation (7.9) recovers only sub-Gaussian signals.
In order to recover super-Gaussian signals, we modified fixed point iteration (equation 7.9)

heuristically as
Y 1 y2 y? '

This modification works well to recover supper-Gaussian signals. We are trying to find the

theoretical justification for this modification.

To demonstrate the validity of Dual FastICA algorithm, we consider a sub-Gaussian signals
and impulsive noise as source signals that is shown in Figure 7.2a. Then we linearly mixed
source signals by an orthogonal matrix. Figure 7.2b shows the globally mixed signals or

prewhitened signals. In order to recover original signals from the prewhitened data set, we
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1. Whiten the data by g-prewhitening to give z.
2. Choose m, the number of independents components (ICs) to estimate.

3. Choose initial values for the w;, (i=1,2,..., m) each of unit norm.
Orthogonalize the matrix W as in step 5 below.

4. For every i = 1,2, ..., m, let w; «— E {i—{g(r)z} - E {f (1 + ;’—z) g(r) — %g'(T')} w;
5. Do a symmetric orthogonalization of the matrix W = (wy, ..., wy,) by

We— (WWT)-2 .
6. If not converged, go back to step 4.

Table 7.2: Dual FastICA Algorithm under A-prewhitening for estimating several I1Cs with
symmetric orthogonalization. The expectations are estimated in practice as sample averages.

applied Dual FastICA algorithm given in table (7.1). Figure 7.2c shows the recovered signals
by Dual FastICA. We see that recovered signals are almost similar to the original signals.
Again we consider a supper-Gaussian signals and impulsive noise as source signals that is
shown in Figure 7.3a. Then we linearly mixed source signals by an orthogonal matrix. Figure
7.3b shows the globally mixed signals or prewhitened signals. In order to recover original
signals from the prewhitened data set, we applied Dual FastICA algorithm given in table
(7.1) changing the fixed-point iterative formula (equation 7.9) by (equation 7.10). Figure
7.3c shows the recovered signals by Dual FastICA. We see that recovered signals are almost
similar to the original signals. Also we investigated the performance for high-dimensional

data set and found the same results.

7.0.3 Robustness and Consistency

Let us discuss robustness of FastICA and Dual FastICA simultaneously to find out our main
objectives. For convenience of presentation, let us define G(y) and G(7) by o(y?) and o(r?),
respectively. Then estimating equations for FastICA and Dual FastICA with respect to

recovering vector w are

2E{p(y*)y(z — yw)} = O (7.11)
—2E{p(r*)y(z — yw)} = O (7.12)
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If w = e, (i-th basic vector), then

E{¢(2))zi(z — ze))} = O (7.13)
E{p (llz-all”) z(z = ze)} = O (7.14)

Thus estimators obtained by (7.11) and (7.12) are consistent. Then

oI = 402} (1=l — v} = 4h%(y) (,Yi , 1) <00, ify#0and h(y) <oo

-1
1
oI = o Pl =37 = 4920) (15 = 1) < oo, 671 and h) <00
where, h(y) = p(y*)y* and h(r) = o(r?)r? are assumed to be hounded, and v = 'Llll’;“Z = cosf.

Note that v = 0 = 6 = 90°,270°,...,= directions of w and z are perpendicular of
each other, that is, outlier z is orthogonal to w. On the other hand, v = £1 = § =
0°,180°, ..., == directions of w and z are same or opposite. From the above discussion,
clearly, we see that influence function for the recovering vector w obtained by FastICA
becomes unbounded when outlying vectors are almost orthogonal to w. On the other hand,
influence function for the recovering vector w obtained by Dual fastICA becomes unbounded

when directions of outlying vectors are almost same or opposite.

7.1 Robust FastICA in Presence of All-Rounding Out-
liers

From the discussion in subsection 7.0.3, we see that both FastICA and Dual FastICA are
not robust for outliers of all directions. An attempt would be made to propose a new robust
FastICA algorithm in presence of outliers in all directions by combining FastICA and Dual
FastICA. A possible way is to find a recovering orthogonal vector wy such that

T
" by FasICA if y = WkZeut
wp={ y AT = e 7 (7.15)
wj, by Dual FasICA otherwise,

where, i#j =1,2,..m; k=1,2,...m.
Another possible way is to find a recovering orthogonal vector w by maximizing E{G*(w)},

where G*(w) is the convolution of two contrast functions G (y) and G(r) and is defined by
1
G*(w) = exp {—5{(1 ~ a)y? -I-a'l“z}} (7.16)
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7.2 Robust FastICA by Maximizing §-Negentropy

FastICA fixed-point algorithm extracts all independent components sequentially or simulta-
neously by maximizing the approximation of negentropy (Hyvérinen et al., 2001). However,
in FastICA algorithm, some contrast functions are suggested by a little bit heuristic way for
robust ICA. So one cannot easily define contrast function for robust ICA. In this section we
would like to discuss a new robust FasICA algorithm by maximizing the approximation of
B-negentropy. To define F-negentropy, let us start with the classical entropy. The differential

entropy H of a random vector z with density pz is defined as

H=- / pz logpzdz = —E(logpz). (7.17)

An important property of entropy is that the the Gaussian variable has the largest entropy
among all random variables of unit variance. This means that entropy could be used as
a measure of non-Gaussianity. Let us extend classical entropy (H) as S-entropy (Hjs) and
defined by

Hy=—1 (1 - / pﬁz“dz) (7.18)

BB +1)

Note that limgjo Hg = H.
Property: Under a moment maching condition, Gaussian variable has the largest entropy.

Proof: Let wz ~ N(p, V) and pz is the data distribution. Then

Hp(pz) — Halpz) = /E(q;gle_l) (PZ-H - Sﬁgﬂ) dz

1
Dylpz.02) + [ 5% (pz ~ pz) dz
= Dp(pz.pz) >0

Hence
Hg(pz) > Hs(pz) (7.19)
Note that
L
/Egcz (pz —pz)dz=0 (7.20)

Therefore, F-entropy can be used as a measure of non-Gaussianity. We can define a measure

that is zero for the Gaussian variable and positive for other variables can be simply obtained
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from (-entropy, and is considered to be [J-negentropy. Hence, 3-negentropy can be defined

by
Ja(z) = Hp(pz) — Hs(pz) (7.21)

We note that limgyo Jg(2) = J(2) = H(pz) — H(pz), classical negentropy.
Therefore, we can extract independent components by maximizing §-negentropy. An impor-

tant property of f-negentropy is that it is invariant under orthogonal transformation.

7.3 Cluster Analysis Based on Minimum g-Divergence
Estimators

Cluster analysis is a technique for grouping data and finding structures in data. The most
common application of clustering methods is to partition a data set into clusters or classes,
where similar data are assigned to the same cluster while dissimilar data should belong to
different clusters. The resulting data partition improves data understanding and reveals
its internal structure. There are some popular clustering methods, for example, K-mean
clustering and Fuzzy clustering. However, one problem in those method is that the number
of clusters should be known in advance, which is difficult in practice. Therefore, we would like
to propose new algorithm based on Minimum -Divergence Estimators for data clustering.
If observed data vector follows multivariate Gaussian distribution, then using 5.50 and 5.51
we can partition the data set into appropriate number of clusters. If observed data vector
follows multivariate non-Gaussian distribution, then using 6.15 and 6.17, one can partition

the data set into appropriate number of clusters as before.
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Chapter 8

Conclusion Remarks

In this thesis, we proposed some new algorithms for multivariate analysis, especially ro-
bust prewhitening for ICA, exploring local structures for both PCA and ICA by minimum
f-divergence method. In the context of minimum S-divergence method, the 3-divergence be-
tween the empirical distribution of a sample (data distribution) and the specific distribution
corresponding to the problem under study is minimized with respect to the parameters to
be estimated (Minami and Eguchi, 2002; Mollah, Minami and Eguchi, 2006). The minimum
B-divergence method with 3 = 0 reduces to the minimum Kullback-Leibler (K-L) divergence
method.

A prewhitening data set is necessary in most of the ICA algorithms. It reduces the com-
plexity of the ICA problems. However, existing prewhitening procedures are not suitable
always that we discussed in detail in chapter 4. A new adaptive robust prewhitening named
p-prewhitening procedure is proposed by minimizing the empirical [-divergence over the
space of all the Gaussian distributions. Also we proposed a new measure of performance in-
dex to assess the performance of prewhitening procedures. The performance of the proposed
prewhitening is compared with the classical prewhitening by newly proposed performance
index and FastICA (Hyvérinen, 1999) using both synthetic and real data sets. Simula-
tion result shows that g-prewhitening efficiently improves the performance over the classical

prewhitening when outliers exist; it reduce to classical prewhitening otherwise.

A comparatively new problem in PCA is to explore local PCA structures for dimensionality
reduction. However, existing methods for exploring local PCA structures gives misleading

results if data set is corrupted by outliers or number of data cluster is unknown. To overcome

120




this problem, we propose a new learning algorithm to explore local PCA structures. The
proposed method is based on a sequential application of the minimum F-divergence method
to search local PCA structures sequentially. The proposed method searches the local PCA
structure on the basis of a rule of sequential change of the shifting parameter and a local
kernel vector. If the initial choice of the shifting parameter vector and the local kernel vector
belongs to a data cluster, then all data belonging to that cluster arc transformed into a local

PCA structure considering the data in other clusters as outliers.

Same as previous, a comparatively new problem in ICA is to explore local ICA structures.
However, existing methods for exploring local ICA structures gives misleading results if data
set is corrupted by outliers or number of data cluster is unknown. To overcome this problem,
we propose a new learning algorithm to explore local ICA structures. The proposed method
is based on a sequential application of the minimum #-divergence method to search local ICA
structures sequentially. The proposed method searches the local ICA structure on the basis
of a rule of sequential change of the shifting parameter. If the initial choice of the shifting
vector belongs to a data cluster, then all data belonging to that cluster are transformed into

a local ICA structure considering the data in other clusters as outliers.
The value of the tuning parameter is a key in the performance of the proposed methods
mentioned above. A cross-validation technique is proposed as an adaptive selection proce-

dure for the tuning parameter (.

Also we presented some incomplete research work in this thesis. We would like to finish this

incomplete research work in near future.
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Appendix A

Existing Methods for Multivariate
Analysis Related to our Research

Robust FastICA algorithm (Hyvérinen, 1999), Infomax ICA algorithm (Bell et al., 1995),
ICA mixture models (Lee et al., 2000b) and Mixture of probabilistic PCA algorithms (Tip-
ping et al., 1999) are directly related to our main research. Therefore, we discuss the sum-

mary of algorithms early mentioned in this section.

A.1 ICA Algorithms Related to Our Research

The following ICA algorithms are related with our main research described in this thesis.

A.1.1 FastICA Algorithm

FastICA algorithm finds the orthogonal matrix W = (wy, ws, ..., w,,) to obtain the indepen-
dent components (ICs) vector  from the whitened vector z by the orthogonal transformation
y = W7z, Also orthogonal column vectors w;, i=1, 2, ..., m can be estimated sequentially
or simultaniously by FastICA under deflationary and symmetric orthogonalization, respec-
tively. We give a detailed version of the FastICA algorithm under P-prewhitening that uses

both deflationary and symmetric orthogonalization in tables (2.2) and 2.3), respectively.
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Ea I S e

Whiten the data by §-prewhitening to give z.

Choose m, the number of ICs to estimate. Set counter p «— 1.
Choose an initial value of unit norm for wy, (e.g., randomly).
Let w, — E{zg(wlz)} - B{g ‘(wlz)},

Do the orthogonalization: w, «— w, —

Wy
1wyl
If w, has not converged, go back to step 4.

p—1

j=1 (wgwy‘)wi'

Let w, «—

Set p «— p+ 1. If p < m, go back to step 3.

Table A.1: FastICA Algorithm under 3-prewhitening for estimating several ICs with defla-
tionary orthogonalization. The expections are estimated in practice as sample averages.

L.
2.
3.

Whiten the data by §-prewhitening to give z.
Choose m, the number of independents components (ICs) to estimate.

Choose initial values for the w;, (i=1,2,..., m) each of unit norm.
Orthogonalize the matrix W as in step 5 below.

- Forevery i =1,2 ..., m, let w; +— E{zg(w!'2)} ~ E{g '(wTz)},

- Do a symmetric orthogonalization of the matrix W = (wy, ..., W) by

W oe— (WWT)=3W.

. If not converged, go back to step 4.

Table A.2: FastICA Algorithm under S-prewhitening for estimating several ICs with sym-
metric orthogonalization. The expections are estimated in practice as sample averages.

A.1.2 Infomax ICA Algorithm

Bell and Sejnowski (1995) proposed Infomax (Information Maximization) ICA algorithm by

maximizing joint entropy. The derivation is based on a simple neural network architechture

that can realize the mapping from = to y = g(u). They show that maximizing the joint

entropy H(y) of the output of a neural processor can approximately minimize the mutual in-

formation among the output components y; = g;(u;), where gi(u;) is an invertible monotonic

nonlinearity and w = Wx. The joint entropy at the outputs of a neural network is

H(y1, v, 0 Ym) = H(y1) + oo + H(ym) — 11,52, ooy Ym), (A1)
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where, H(y;) are the marginal entropies of the outputs and 7(y1, ¥2,-., ¥m) is their mutual
information. Maximizing H(y1, 4. ..., Ym) consists of maximizing the marginal entropies and

minimizing the mutual information. Equation A.1 can be expressed in vector notation as
H(y)=H@y) + ...+ H(ym) — I{y), (A.2)
Each marginal entropy can be written as

H(y:) = —E{logp(y:)}. (A.3)

The nonlinear mapping between the output density p(y;) and source estimate density p(u;)

can be described by the absolute value of the derivative with respect to u;, that is

p(yi) = E; ) (A.4)
|52

which can be substituted in equation A.6 giving

) = ~E (oS, (A5)
|8u1
Rewriting equation A.2 gives
-3 Bllog Ty ) - 1), (A.6)
Bu‘

Then learning infomax rule (Bell and Sejnowski, 1995) is

OHW) _ i, (f_ay“_) o, (AT

p(u)

A much more efficient way to maximize the joint entropy is to follow the natural gradient.
The natural gradient rescales the entropy gradient by post-multiplying the entropy gradient
by WTW giving

op(U)
AW Bgfé/ Dy - {H ( (u)) ui’} W, (A.8)

as proposed by Amari et. al. (1996), or equivalently the relative gradient by Cardoso et al
(1996).

An alternative way to derive the general infomax learning is given by the maximum likelihood
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estimator (MLE). The probability density function of the observations 2 can be expressed
as (Amari, Chen and Cichocki, 1997)

p(z) = | det(W)|p(u), (A.9)

where, p(u) = [I7Z; pi(u;) is the hypothesized distribution of p(u). The log-likelihood of
equation A.9 is
L{u, W) = log | det(W)| + > log p;(u;), (A.10)
i=1
Maximizing the log-likelihood with respect to W gives a learning algorithm for W, (Bell and
Sejnowski, 1995)

AW o [(WT)—1 + w(u)mT] , (A.11)
where,
op(U) 675('”1) Bg(um) T
u) — — _ou — | — U1 R Urn A_]_2

An efficient way to maximize the log-likelihood is to follow the natural gradient. The natural

gradient rescales the gradient by post-multiplying the gradient of the log-likelihood by WTW

giving (Amari, 1998)

IL(u, W)
ow

as proposed by Amari et. al. (1996), or equivalently the relative gradient hy Cardoso et al

AW o WIW = [I — p(u)ul]W, (A.13)

(1996). It should be noted here that Inforiax ICA Algorithm is a limiting case of minimum
B-diveregence algorithm for ICA.

A.1.3 Extended Infomax ICA Algorithm

The conventional infomax ICA algorithins can separate sub- or super-Gaussian signals based
on the contrast function. However, in some situation, it is difficult to know in advance about
the type of source signals those are hidden in the mixed signals. To overcome this problem,
Lee, Girolami and Sejnowski (1999) extended the infomax ICA algorithm. This method can
blindly separate the sub- or super-Gaussian signals. The switching between the sub- and

super-Gaussian learning rule is

A - " k; =1 : super-Gaussian
W x [I — K tanh(u)u’ — uu’]W, _ (A.14)
k; = —1 : sub-Gaussian
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where k; are the elements of the m-dimensional diagonal matrix K. It is also called switching

matrix. The switching component &; is estimated by
k; = sign(E{seChQ(ui)}E{u?} - E{[tanh(ui)]ui}> (A.15)

A.1.4 Conventional ICA Mixture models

Lee, Lewicki and Sejnowski (2000b) proposed ICA mixture model for extracting local ICA
structures by modeling the observed data as a mixture of several ICA models. Assume that

the data {z;} are drawn independently from a mixture density
plz: | ©) ZP (Ce)p(zy | Ok, Ci), (A.16)

where Cj. denotes the k-th non-Gaussian class and © = {6,, ..., 6.} are the unknown param-
eters. Let xy, @y, ..., £, be a random sample drawn from (5.17), then the log-likelihood of

the data for the unknown parameter © = {61, 6s,...0,.} is given by

L= ilogp(a:t | ©). (A.17)

t=1
Assume that the component densities are non-Gaussian and the data with in each class are

described by
Ty = Apsi + by (A.18)

where Ay is the mixing matrix and by is the bias vector for class k. The vector s; is called
the source vector, whose components are assume to be independent of each other. The
task is to classify the unlabeled data points and to determine the parameters for each class,
(Ag, br) and the probability of each class p(Cklx:, ©) for each data point. The gradients of

the parameters for class k is given by

s

L
80, ~ =p m,|e ) 86,7

0
& 90:P(Ch)p(=e | 6k, Cr)
=% o) (A20)

|
M s

(x| ©) (A.19)

Using the Bayes relation, the class probability for a given data vector x; is

p(Cr)p(@: | Ok, Cr)
P51 P(Cr)p(: | Bk, Cr)
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Substituting (A.21) in (A4.20) leads to

oL n p(Cr | 2, 0) 0
—_— = —p(C, Oy, C A.22
aek ;P(Ck)]?(mt 1 9k,0k) kop( k)P(% I k k) ( )
& 0
= > p(Cy| @, ©)=—logp(a, | b, Cy) (A.23)
= 00,
Now, 5%]; = ( implies
Y P(C | 2y, O)x,
by, = : A.24
" T PG| %0,0) (A24)
and
oL o .
oA, * p(Cy | mt,O)TAkIOgP(mt | Ok, Ck) (A.25)
o< p(Cy | @i, ©)Ax[I — K tanh(sy)s) — SkS; | (A.26)

where s; = A;'(z, — b;) and the switching matrix A is defined in Appendix 1.3. Note that

Wi = Ai! is called the filter matrix. The switching component k; is obtained as

ki = sign(E{sech?(sy,)} B{s,} — B [tanh(se) ke i} (A.27)

A.2 PCA Algorithm Related to Our Research

The following PCA algorithms are related with our main research described in this thesis.

A.2.1 Mixture of Probabilistic PCA

Tipping et al. (1999) proposed mixture of probabilistic PCA (PPCA) model for extracting

local PCA structures by modeling the observed data as a mixture of several PPCA models.
PPCA :
Let us consider the latent variable model as

r=Ws+u+e (A.28)

where,  is d-dimensional observed data vector, s is g-dimensional latent vector whose com-
ponents are assumed to be independent and Gaussian with unit variance, that is s ~ N(0, I).

W is the d x ¢ parameter matrix which contains factor loadings, 1 is the shifting parameter
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and e is the noise term. For the case of isotropic noise € ~ N(0,0?%I), equation A.28 implies

a probability distribution over z-space for a given s of the form

plals) = (210" exp {~ i — W — P} (A.29)
where
p(8) = (2m)" % exp {—%azT:c}. (A.30)
We obtain the marginal distribution of & in the form
pl@) = [ p(als)p(s)ds (A.31)
= @n R e Sz w O - )}, (A.32)

where the model covariance is
C=ocT+WWwT. (A.33)

The log-likelihood of observing the data under this model is

L = ﬁln{p(mn} (A.34)
- :—g{dlrl(er) +In|C] + tr(C~ Sz)) (A.35)

where
Sz = %z (@ — p)(we — p)? | (A.36)

is the sample covariance matrix of the observed {a;}. Then maximum likelihood (ML)

estimators are

1 n

Hyr = =D @ (A.37)

N
Wt = Uy(Ay — o*1)'/?R, (A.38)

and

2 1 &

OvL = g Z A (A.39)
) J=q+1

where the ¢ column vectors in the d x q matrix U, are eigenvectors of Sg, with corresponding
eigenvalues in the ¢ x ¢ diagonal matrix A, and R is an arbitrary g x ¢ orthogonal rota-
tion matrix. Also note that A;y1,..., Ay are the eigenvalues of Sp and so o4 has a clear

interpretation as the average variance ’lost’ per discarded dimension.
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Mixtures of PPCA :
The log-likelihood of observing the data for such a mixture model is

L= Y infp(e) (A.40)

- Zl {gmw)} (A1)

where, p(x|i) is the i-th PPCA model whose parameters are (py, Wi, 02) and m; is the cor-
responding mixing proportion, with 7 > 0 and 3¢, m; = 1. An iterative EM algorithm is
developed for optimization of all of the model parameters m;, py, Wiandof, (i = 1,2,...,¢). If
Ry = p(i|a,) is the posterior responsibility of mixture 4 for generating data point x,, given

by

p(a:]e)m;
Ry = A 42
’ p(:) ( )
where,
. _ _ 1 -
pxt) = (27) d/QICi' 2 exp {_’2“(mt - #i)TCi e, - /J’i)}a (A.43)
with the model covariance is
C;=all + W,W/. (A.44)
Then iterative EM algorithm gives the following update rule for MLE
1 n
7~r,~ = - ZRH (A45)
ni=1
i, = iz R (A.46)
t=1 i
Wi = SaiWi(o?I + MW SguWy), (A.47)
~ 9 1 v =1y, T
52 = Etr(Sg;i ~ SzWiM7MW, ), (A.48)
where
1 n . _
Sg; = ZRti(iBt = B) (s — #i)T~ (A.49)
TN i3

Note that given the established results for the single PPCA model, there is no need to use
the iterative updates (A.47) and (A.48), since W; and o? can be determined by (A.38) and
(A.39) using eigen-decomposition of Sg;. Also note that all information should be entered

in the EM algorithm through the sample covariance matrix.
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