
Boosting method for local learning
in statistical classification

Masanori KAWAKITA

DOCTOR OF PHILOSOPHY

Department of Statistical Science

School of Mathematical and Physical Science
Graduate University for Advanced Studies

2005 (School Year)

Contents

1 Introduction 1

2 Survey on ensemble learning 5

2.1 Setup and Notations . 5
2.2 Some preliminaries . 6

2.2.1 Concentration inequalities . 6
2.2.2 Class of base classifiers and its VC dimension 13

2.2.3 Bias-Variance theory of a classifier 17
2.3 Bagging . 19

2.3.1 Bagged predictors . 19
2.3.2 Statistical aspects of bagging . 19

2.4 Boosting algorithm . 20
2.4.1 Base classifiers . 22

2.4.2 Ordinary boosting . 24
2.4.3 Regularized Boosting . 29

2.4.4 AsymBoost . 32
2.5 Statistical properties of boosting . 38

2.5.1 Least favorable error . 38
2.5.2 Bayes rule equivalence . 39

2.5.3 Training error of AdaBoost . 45
2.5.4 Property of generalization error . 46
2.5.5 Comparison between ordinary boosting and regularized boosting . . 49

3 Application to shark bycatch data 53

3.1 Graphical display of contribution of each feature 55
3.2 Data sets . 57

3.3 Prediction by AdaBoost . 61
3.4 Comparison with logistic GAM . 66

3.5 Control of the balance between the false positive and negative ratios 71
3.6 Discussion . 72

4 Local boosting method 74
4.1 Derivation of the local boosting algorithm 75

4.2 Statistical properties of local boosting . 80
4.2.1 Model associated with local boosting 80

4.2.2 Bayes Risk Consistency . 83
4.2.3 Local least favorable error property 101

4.3 Simulations . 103
4.4 Discussion . 115

5 Concluding remarks 116

A Bayes classifier attains the minimum probability of misclassification 119

i

B Center limit theorem 120

C An equality on exponential function 120

ii

Abstract

The main objective is to study boosting methods in statistical classification. Several en-

semble learning methods including boosting have attracted many researchers’ interests in

the last decade. In particular, it has been reported that the boosting methods perform

well in many practical classification problems. The boosting algorithm constructs an ac-

curate classifier by combining several base classifiers, which are often at most slightly more

accurate than random guess. While many researchers have studied the boosting methods,

their success has still some mysterious aspects. More intensive theoretical studies are

required to clarify such mysteries.

We describe a survey on several ensemble learning methods. We set up the statisti-

cal classification problem and make some notations to develop discussion from learning

theories. Some theoretical preliminaries for analyzing the performance of classification

methods are also overviewed. Then, we survey some existing ensemble learning meth-

ods. In particular, we review theoretical properties of boosting methods, which have been

clarified by several researchers.

The application of AdaBoost with decision stumps to shark bycatch data from the

Eastern Pacific Ocean tuna purse-seine fishery is described. Generalized additive models

(GAMs) are one of the most widely-used tools for analyzing fisheries data. It is well known

that AdaBoost is closely connected to logistic GAMs when appropriate base classifiers

are used. We compared results of AdaBoost to those obtained from GAMs. Compared

to the logistic GAM, the prediction performance of AdaBoost was more stable, even

with correlated features. Standard deviations of the test error were often considerably

smaller for AdaBoost than for the logistic GAM. In addition, AdaBoost score plots,

graphical displays of the contribution of each feature to the discriminant function, were

also more stable than score plots of the logistic GAM, particularly in regions of sparse

data. AsymBoost, a variant of AdaBoost developed for binary classification of a skewed

response variable, was also shown to be effective at reducing the false negative ratio

without substantially increasing the overall test error. Boosting with decision stumps,

however, may not capture complicated structures in general since decision stumps are

considerably simple classifiers. Use of more complicated base classifiers possibly improves

the approximation ability of boosting. However, several literatures have pointed out that

the use of complicated base classifiers may increase the generalization error of boosting.

iii

In addition, it is difficult to find what types of base classifiers are appropriate to each

problem without any prior knowledge.

To overcome these difficulties, we propose a new method, the local boosting, that is

a localized version of boosting method based on the idea similar to but not the same as

the local likelihood. Application of the local likelihood may improve the approximation

ability considerably but also increases the computational cost, which makes the algorithm

infeasible. The local boosting, however, includes a simple device for computational feasi-

bility. We show that the local boosting has the Bayes risk consistency in the framework

of PAC learning. It is seen that the estimation error increases compared to the ordi-

nary boosting with simple base classifiers when we use the ordinary boosting with more

complicated base classifiers or when we use the local boosting. However, the increase

caused by the local boosting is not large. When same base classifiers are used, the local

boosting attains the Bayes risk consistency in wider situations than the ordinary boosting

by controlling the trade-off between estimation error and approximation error. Several

simulations confirm the theoretical results and the effectiveness of the local boosting over

the ordinary boosting in both binary and multiclass classifications.

iv

Glossary

Aλ
D, A

λ Aλ
D (Aλ) denotes an empirical (expected) loss functions

Bε(�, h) Kernel sphere Bε(�, h) = {x ∈ X |Kh(x, xl) < ε , x� ∈ K}
C C = {fj}J

j=1 denote a class of all available base classifiers mapping from X to Y .
D Training data set D = {Xi, Yi}n

i=1 are i.i.d. samples generated from P (x, Y = y).
D(·, ·) Statistical divergence D : F ×F → R+.
E[·] E denotes an expectation with respect to all random variables.
F F = {F (x) | X → R} denotes the set of all measurable discriminant functions.
g∗ Bayes classifier g∗(x) = I(η(x) > 1/2) − I(η(x) ≤ 1/2).
G G = {g : X → Y} denotes the set of all measurable classification functions.
Hf For any f ∈ C, Hf = {x ∈ X | f(x) = 1}.
H H = {Hf | f ∈ C}
IM IM denotes an M dimensional identity matrix.
I(·) I(·) denotes an indicator function.
J J denotes the cardinality of C.

Kh(·, ·) Kh is a kernel function mapping X ×X to R+ with the form Kh(x, y) = k(‖x−y‖
h

).
K K = {x� ∈ X | � = 1, 2, · · · , N}
L,LD L(g) = P (g(X) �= Y). LD denotes its empirical version over the training data D.
L∗ Bayes risk L∗ = infg∈G L(g) = E[min(P (Y =y | x), P (Y =−1 | x)]
M M indicates a number of available features.
n n denotes the sample number in D.
N N denotes a number of kernel center candidates, i.e., N = |K|.
P P (x, Y = y) = P (Y =y | x)P (x) is the underlying distributions of (X, Y).
RM ,
R+

RM denotes an M-dimensional Euclidean space and R+ denotes the set of all
nonnegative real values.

Sm(·) Score functions of each feature (x)m.
T T denotes the iteration number in the boosting algorithm.
U, u, ξ U : R → R is a differentiable, strictly convex and increasing function. We also

denote U ′ by u and u−1 by ξ.
V V denotes the VC dimension of base classifier class C.
(X, Y) (X, Y) is a pair of random variables taking values in X ×Y . The feature space is

X ⊂ RM . Y is the label set {1, 2, · · · , G}.
φ A cost function φ is a map from R to R satisfying some conditions.

lin(C) A linear hull of C is defined as lin(C) = {
∑J

j=1 θjfj(x) | fj ∈ C , θj ≥ 0}.
conv(C) A convex hull of C, i.e., conv(C) = {

∑J
j=1 θjfj(x) | fj ∈ C , θj ≥ 0 ,

∑J
j=1 θj = 1}.

MK The asymptotical model MK = {F (x) =
∑J

j=1 θ̄j(x)fj(x) | θ̄j(x) =

E[Kh(x,X)θj(X)] ,
∑J

j=1Eθj(X) = 1 , ∀j , fj ∈ C , θj(x) ≥ 0}.
MK The empirical model MK = {F (x) =

∑J
j=1 θ̄j(x)fj(x) | θ̄j(x) =

1
N

∑N
�=1Kh(x, x�)θj� ,

∑J
j=1

∑N
�=1 θj� = N , ∀j, fj ∈ C, θj� ≥ 0}.

λ λ is a regularization parameter in the regularized boosting algorithm.
N (μ,Σ) N (μ,Σ) denotes a normal density function with mean μ and covariance Σ.
Φ Φ(x) denotes a normal distribution function with mean 0 and variance 1.
ϕ ϕ denotes an empty set.

v

1 Introduction

The boosting method is one of the most attractive methods in statistical classification

problems that have rapidly expanded in the last decade. The expansion added momentum

to stimulating discussion in the theory of statistical learning. The open question of learn-

ability for a set of (weak) base classifiers to be integrated into a single classifier with more

accurate and efficient performance was presented by Kearns and Valiant (1988). That

leads to the theoretical and experimental developments of boosting algorithms by way of

several considerations including boost filtering (Schapire, 1990). (Freund and Schapire,

1997) developed the most famous and widely-used boosting algorithm, AdaBoost, in which

base classifiers are combined by a linear coefficient vector that minimizes the exponential

loss function. Then, several literatures proposed a generalized version of AdaBoost al-

gorithm as a functional gradient descent of general convex loss functions (e.g., Friedman

et al., 2000; Mason et al., 1999; Collins et al., 2002; Murata et al., 2004). The exponen-

tial loss function apparently differs from classical loss functions discussed in statistics, in

which the statistical interpretation of AdaBoost was given by Friedman et al. (2000) and

Lebanon and Lafferty (2002). Friedman et al. (2000) pointed out the connection between

AdaBoost and the maximum likelihood estimation for an additive logistic model associ-

ated with base classifiers. Lebanon and Lafferty (2002) also discussed the connection from

the view of extended Kullbuck-Leibler divergence from the empirical distribution to the

logistic model. This interpretation is extended to a boosting algorithm with a general loss

function by the use of the Bregman U-divergence class (Murata et al., 2004). The only

different point is that boosting works in the space of positive functions while the maximum

likelihood estimation works in the space of probability functions. The success of boosting

algorithm in practical situations is still mysterious. Freund and Schapire (1997) showed

that the training error of AdaBoost and AdaBoost.M2 decreases exponentially. However,

it is well known that a small training error does not indicate a small generalization error.

Several researchers have tried to evaluate the generalization performance of boosting. One

way to evaluate the generalization error is to derive its upperbound (Freund and Schapire,

1997; Schapire et al., 1998; Koltchinskii and Panchenko, 2002; Lugosi and Vayatis, 2004).

Breiman (1998) took another way. He pointed out the relationship between bagging and

boosting and studied their performance in view of bias-variance theory. However, there

still remain unclear points in the success of boosting algorithm. We summarize several

1

ensemble learning methods, including boosting algorithms with their properties that have

been already clarified in Section 2.

We demonstrate the application of boosting methods with decision stumps to fish-

eries data. Generalized linear models (GLMs) and Generalized additive models (GAMs)

are tools used conventionally in fisheries data analysis to standardize bycatch and catch

per unit effort data, as well as to identify factors leading to increased levels of bycatch

(incidental mortality of non-target species) (e.g., Punt et al., 2000; Bigelow et al., 1999;

Swartzman et al., 1992; Lo et al., 1992) and to predict bycatch (Walsh et al., 2002). As

described above, Friedman et al. (2000) elucidated that AdaBoost can be interpreted as

a forward fitting algorithm to an additive logistic model. In fact, AdaBoost and the lo-

gistic GAM fits to the same target function, the half log-odds, up to the multiplicative

constant. Therefore, we compare the prediction performance between AdaBoost and the

logistic GAM in the application to the shark bycatch data that was provided by IATTC

(Inter-American Tropical Tuna Commission). We use the decision stumps as base classi-

fiers in this analysis. Decision stumps are most widely-used base classifiers. The use of

decision stumps enables us to obtain a graphical tool, the score plot, for visualizing the de-

pendence of bycatch on individual features. This tool is similar to that used to summarize

additive contributions from a logistic GAM model. The results of the analysis indicate

that the standard deviation of the test error is smaller than that of the logistic GAM.

The results also indicate that score plots of AdaBoost are more stable than that of the

logistic GAM. We observed the strong asymmetry between the false positive ratio (FPR)

and the false negative ratio (FNR) in prediction performance of both methods. It is also

demonstrated that the application of AsymBoost reduced the false negative ratio at cost

of slight increase of the test error. One remarkable result in the analysis of shark bycatch

data is that we observed some spatially local structures. Therefore, the classification rule

that varies depending on location may improve the prediction performance.

Boosting methods with decision stumps, however, may not capture such complicated

structures in general since decision stumps are too simple. Generally, when we use a base

classifier that is based on only single feature, it is not difficult to find some examples

where boosting methods perform poorly. A natural idea to avoid this issue is the use of

complicated (stronger) classifiers. However, several literatures pointed out that the use of

more complicated base classifiers may increase the generalization error of boosting method

(Bartlett and Mendelson, 2002; Lugosi and Vayatis, 2004). In addition, it is difficult to

2

know what types of base classifiers are appropriate to each problem without any prior

knowledge.

An alternative way to improve the approximation ability is application of localiza-

tion techniques. Several statistical literatures have discussed localization techniques (e.g.,

Hastie and Tibshirani, 1990; Vincent and Bengio, 2003; Roweis and Saul, 2000), which

include the local likelihood method (Hjort and Jones, 1996; Fan and Gijbels, 1996; Eguchi

and Copas, 1998). The local likelihood method improves the approximation ability with-

out any prior knowledge about the underlying structure. However, the local likelihood

method has some disadvantageous points. It requires separately to solve the likelihood

equations that are localized by weight functions at many points. Thus, if we obtain the

maximum local likelihood estimator, θ̂z , for a given statistical model of probability density

function, P (x, θ), and the target point, z, then we define the estimated density function

as ZP (x, θ̂x) with the normalized factor, Z, in which the target point, z, is conformed

to the point x where the density should be estimated. Practical applications of the local

likelihood method are often infeasible in a case of a high-dimensional data space due to

the following reason. The computation task for obtaining θ̂z increases exponentially with

respect to the dimension because of dense evaluations over all grid points of the space.

If we consider installing the local likelihood method in boosting, we have to implement

boosting algorithms at all grid points separately.

We propose a localized version of boosting (denoted by the local boosting in the se-

quel) with localization similar to but not the same as the local likelihood method. The

key idea is to localize the combination of base classifiers directly rather than to localize

the exponential loss function as in the conventional local likelihood method. An advan-

tageous aspect of this idea is that the resultant form of the combined base classifiers is

naturally localized by the weight function. Thus, the expression enables us to reduce

the implementation of boosting algorithms on all grid points to only that on empirical

data points. As a result, the local boosting requires significantly less computational cost

than the conventional local likelihood method, so the implementation is feasible even in a

high-dimensional space. The local boosting constructs a single discriminant function over

the entire region at one time. Throughout this paper, we confine ourselves to regularized

boosting (e.g., Mason et al., 1999) although the localization based on our idea may apply

to an ordinary version of boosting.

We discuss the theoretical aspects of the local boosting from the viewpoint of the Bayes

3

risk consistency. Following the discussion of Lugosi and Vayatis (2004) on regularized

boosting, we prove the theorem that states that the local boosting also has the Bayes

risk consistency. The discussion on the theorem provides a useful understanding for

comparing the local boosting with the ordinary boosting with respect to estimation error

and approximation error. The estimation errors of both boosting methods are bounded

in slightly different ways, but both decrease to zero asymptotically if the class of base

classifiers have a finite VC dimension. Therefore, the Bayes risk consistency depends

on whether their approximation errors decrease to zero. Inspection of the proof of that

theorem indicates that the local boosting may reduce the approximation error considerably

at the cost of the increase in estimation error. As a result, the local boosting is shown

to have the Bayes risk consistency in wider situations than those of the usual boosting.

A simulation study confirmed several theoretical results and demonstrated that the local

AdaBoost overperformed AdaBoost in several situations where examples were simulated

from probabilistic settings with strongly nonlinear or locally linear decision boundaries.

We find it worth noting that our proposal is easily applied to AdaBoost.M2, which was

developed for the multiclass classification by Freund and Schapire (1997). It was also

demonstrated that a local AdaBoost.M2 overcame difficulties that faced AdaBoost.M2 in

the simulation study.

This thesis is organized as follows. In Section 2, we set up our problem and then de-

scribe conventional statistical classification methods and their properties. Some theorems

from PAC (Probably Approximately Correct) learning theory are also introduced in this

chapter. In addition, we give geometrical interpretation of boosting methods. Analysis of

shark bycatch data by AdaBoost with decision stumps, the logistic GAM and AsymBoost

is shown in Section 3. We introduce score plots that are graphical displays of the depen-

dence of the occurrence of shark bycatch on individual features in this chapter. Several

merits of AdaBoost with decision stumps are illustrated. In addition, we show that the

application of AsymBoost decreases FNR at cost of slight increase of test error. These

results were published in Kawakita et al. (2005). In Section 4, we derive the local boosting

algorithm and discuss its statistical properties. We prove the Bayes risk consistency of

the local boosting in the framework of PAC learning. Inspection of its proof elucidates

the difference between the local boosting and the ordinary boosting. Simulation stud-

ies illustrate the performance of the local AdaBoost compared with that of AdaBoost.

These results were summarized by Kawakita and Eguchi (2005). Finally, some concluding

4

remarks are given in Section 5.

2 Survey on ensemble learning

In this chapter, we first introduce some notations and set up our problem. Second, we

describe some theorems or definitions, which are used in later chapters. Then, several

ensemble learning methods and their properties are discussed. We first review bagging

(Breiman, 1996a) that constructs a strong classifier by resampling. Second, several con-

ventional boosting methods are reviewed including U-Boost, regularized U-Boost, Asym-

Boost. Boosting constructs a strong classifier by reweighting (adaptively resampling)

(Breiman, 1998). Both methods decrease variance by combining base classifiers.

2.1 Setup and Notations

We use notations similar to those of Lugosi and Vayatis (2004) in this paper. Let (X, Y) be

a pair of random variables taking values in X×Y . X is a feature space in anM-dimensional

Euclidean space. The label set Y is {−1, 1} in binary case and is {1, 2, · · · , G} in

multiclass case. We denote the m-th feature of feature vector X ∈ X by (X)m in the

remainder of this thesis. For a given training data set, D = {(Xi, Yi)}n
i=1, consisting of n

independent, identically distributed pairs having the same distribution as (X, Y), one is

asked to construct an accurate classifier gn : X → Y . The probability of misclassification

(generalization error) defined as

L(gn) = P (gn(X) �= Y |D) (1)

measures the performance of gn. Let us denote the set of all measurable classification

functions mapping X to Y by G. In binary case, we often use a classifier of the form

sign(F) where F is some function mapping from X to R, which is called discriminant

function, sign takes 1 if its argument is non-negative and takes −1 otherwise. Denote

the set of all discriminant functions mapping X to R by F . The infimum of L over all

classification function is obtained by the Bayes classifier,

g∗(x) = argmax
y∈{1, 2, ··· , G}

P (Y =y | x). (2)

Specifically, in binary case, g∗ is written as

g∗(x) = I(η(x) ≥ 1/2) − I(η(x) < 1/2), (3)

5

remarks are given in Section 5.

2 Survey on ensemble learning

In this chapter, we first introduce some notations and set up our problem. Second, we

describe some theorems or definitions, which are used in later chapters. Then, several

ensemble learning methods and their properties are discussed. We first review bagging

(Breiman, 1996a) that constructs a strong classifier by resampling. Second, several con-

ventional boosting methods are reviewed including U-Boost, regularized U-Boost, Asym-

Boost. Boosting constructs a strong classifier by reweighting (adaptively resampling)

(Breiman, 1998). Both methods decrease variance by combining base classifiers.

2.1 Setup and Notations

We use notations similar to those of Lugosi and Vayatis (2004) in this paper. Let (X, Y) be

a pair of random variables taking values in X×Y . X is a feature space in anM-dimensional

Euclidean space. The label set Y is {−1, 1} in binary case and is {1, 2, · · · , G} in

multiclass case. We denote the m-th feature of feature vector X ∈ X by (X)m in the

remainder of this thesis. For a given training data set, D = {(Xi, Yi)}n
i=1, consisting of n

independent, identically distributed pairs having the same distribution as (X, Y), one is

asked to construct an accurate classifier gn : X → Y . The probability of misclassification

(generalization error) defined as

L(gn) = P (gn(X) �= Y |D) (1)

measures the performance of gn. Let us denote the set of all measurable classification

functions mapping X to Y by G. In binary case, we often use a classifier of the form

sign(F) where F is some function mapping from X to R, which is called discriminant

function, sign takes 1 if its argument is non-negative and takes −1 otherwise. Denote

the set of all discriminant functions mapping X to R by F . The infimum of L over all

classification function is obtained by the Bayes classifier,

g∗(x) = argmax
y∈{1, 2, ··· , G}

P (Y =y | x). (2)

Specifically, in binary case, g∗ is written as

g∗(x) = I(η(x) ≥ 1/2) − I(η(x) < 1/2), (3)

5

where I denotes an indicator function, i.e.,

I(A) =

{
1 if A is true
0 otherwise

(4)

and η(x) is the posterior probability P (Y =1 | x). The proof appear in Appendix A. The

probability of misclassification of this Bayes classifier is calculated as

L(g∗) = Emin{η(X), 1 − η(X)},

where E denotes the expectation taken under true distribution of X. We denote L(g∗)

by L∗, which is referred to as the Bayes risk. Our goal is to construct a classifier that

has a probability of misclassification sufficiently close to L∗. We say that classification

method has the Bayes risk consistency if its probability of misclassification converges to

L∗ as n → ∞. In general, however, the probability of misclassification L of classifier gn

is not available since the underlying distribution of (X, Y) is unknown. Instead, we often

minimize an empirical version of probability of misclassification, defined as

LD(gn) =
1

n

n∑
i=1

I(gn(Xi) �= Yi). (5)

The empirical probability of misclassification LD(gn) usually underestimates the predic-

tion error L(gn) in general since the same data set is used for evaluation and training gn.

To evaluate the performance of gn, we prepare sufficient test data that are independent

and identically distributed with D. Then, we may approximate L(g) by Eq. (5) over test

data. We call Eq. (5) training error if it is computed over training data and call test

error if it is computed over test data.

2.2 Some preliminaries

We introduce several theorems that are often used in the framework of PAC learning

theory. There are many related references (Chernoff, 1952; Hoeffding, 1963; Ledoux and

Talagrand, 1991; McDiarmid, 1989; Devroye and Lugosi, 2001).

2.2.1 Concentration inequalities

We evaluate the probability of the difference between a random variable and its expec-

tation. Classical statistics develop some inequalities for bounding this probability. Note

that we assume that any moment of random variable exists when necessary.

Let us begin with Markov’s inequality.

6

Theorem 1 (Markov’s inequality). Let X be a nonnegative random variable. For

any ε > 0, we have

P (X ≤ ε) ≤ E[X]

ε
.

Proof. For simplicity, assume that X has a probability density function, denoted as

P (x). Then, we have

E[X] =

∫ ∞

0

xP (x)dx =

∫ ε

0

xP (x)dx+

∫ ∞

ε

xP (x)dx

≥
∫ ∞

ε

xP (x)dx

≥ ε

∫ ∞

ε

P (x)dx

= εP (X ≤ ε).

Markov’s inequality induces Chebyshev’s inequality.

Theorem 2 (Chebyshev’s inequality). Let X be an arbitrary random variable.

For any ε > 0, we have

P (|X − E[X]| ≥ ε) ≤ V ar[X]

ε2
.

Proof. Clearly,

P (|X −E[X]| ≥ ε) = P (|X − E[X]|2 ≥ ε2).

Applying Markov’s inequality to the nonnegative random variable |X − E[X]|2, we have

P (|X −E[X]| ≥ ε) ≤ E[(X − E[X])2]/ε2.

We give an example. Let {Xi}n
i=1 be independently and identically distributed (i.i.d.)

random samples generated from distribution of X and Sn be the sample mean, i.e.,

Sn = (1/n)
∑n

i=1Xi. If E[X] exists, we have, by Chebyshev’s inequality,

P (|Sn − E[X]| ≥ ε) ≤ Var(Sn)

ε2
=

Var(X)

nε2
.

7

To illustrate the weakness of Chebyshev’s bound, assume that eachXi is i.i.d. Bernoulli(p)

random variable (i.e., P (X = 1) = p = 1 − P (X = 0)). In this case,

P (|Sn − p| ≥ ε) ≤ p(1 − p)

nε2
.

Let Φ(x) =
∫ x

−∞ exp(−t2/2)/
√

2πdt be a normal distribution function. The center limit

theorem (See Appendix G) implies that

P

(√
n

p(1 − p)
(Sn − p) ≤ x

)
→ 1 − Φ(x) ≤ 1√

2π

exp(−x2/2)

x
.

The last inequality follows from Lemma 3.

Lemma 3. For any x,

1 − Φ(x) ≤ 1√
2π

e−
x2

2

x
.

Proof. The left-hand side of the statement is greater than or equal to∫ ∞

x

1√
2π

e−
t2

2 dt.

The right-hand side can be rewritten as

−
∫ ∞

x

− 1√
2π

(1 +
1

t2
) e−

t2

2 dt.

Thus,

1√
2π

e−
x2

2

x
− (1 − Φ(x)) ≥

∫ ∞

x

1√
2π

e−
t2

2

t2
dt ≥ 0.

Therefore, by taking ε = x
√
p(1 − p)/n,

P (Sn − p ≥ ε) →
√
p(1 − p)√

2πn

exp(−nε2/2p(1 − p))

ε
.

We similarly obtain

P (Sn − p ≥ −ε) →
√
p(1 − p)√

2πn

exp(−nε2/2p(1 − p))

ε
.

This indicates that P (|Sn − p| ≥ ε) decreases exponentially as n → ∞. Clearly, Cheby-

shev’s inequality is off the mark since its order is 1/n.

8

An improvement on the upperbound is obtained by Chernoff’s method. By Markov’s

inequality, we have

P (X ≥ ε) = P (exp(θX) ≥ exp(θε)) ≤ E[exp(θX)]/ exp(θε)

for any random variable X, any θ > 0, and any ε > 0. Thus, replacing X with Sn−E[Sn],

we have

P (Sn − E[Sn] ≥ ε) ≤ exp(−θε)E
[
exp

(
θ

n∑
i=1

(Xi − E[Xi])
)]

= exp(−θε)Πn
i=1E[exp(θ(Xi −E[Xi]))]

To obtain tight bounds, we have to minimize the right-hand side of this inequality with

respect to θ. Note that the search of such θ reduces to finding a tight upperbound for

the moment generating function of the random variables Xi − E[Xi]. Hoeffding gave an

elegant bound by using the following lemma.

Lemma 4. Let X be a random variable such that E[X] = 0 and X takes its values

on the interval [a, b]. Then, for any θ > 0,

E[exp(θX)] ≤ exp(
θ2(b− a)2

8
).

Proof. Since X takes values on [a, b], X can be written as

X = τa+ (1 − τ)b

where τ is random variable taking values on the interval [0, 1]. Due to the convexity of

the exponential function, we have

E[exp(θX)] = E[exp(θτa + θ(1 − τ)b)]

≤ E[τ exp(θa) + (1 − τ) exp(θb)]

= exp(θa)E[τ] + exp(θb)E[1 − τ]

for any fixed θ > 0. Since E[X] = 0, we have

E[X] = aE[τ] + bE[1 − τ] = aE[τ] + b(1 − E[τ]) = (a− b)E[τ] + b = 0.

Then, E[τ] = b/(b− a). Denote 1 − E[τ] by h, i.e., h = −a/(b− a). Therefore, we have

E[exp(θX)] ≤ exp(θa)(1 − h) + exp(θb)h

= {1 − h + exp(θ(b− a))h} exp(θa)

= {1 − h + h exp(θ(b− a))} exp(−θh(b− a))

= exp(−θh(b− a) + ln(1 − h+ h exp(θ(b− a))))

9

Denote the argument of the exponential function in the last equality as ψ and θ(b − a)

by ν, i.e., ψ(ν) = −hν + ln(1 − h + heν). By Taylor-expansion around zero, we have

ψ(ν) = ψ(0) + ψ′(0)ν + ψ′′(ξ)
ν2

2

where ξ ∈ [0, ν].

ψ(0) = 0

ψ′(0) = −h+
heν

1 − h+ heν

∣∣∣∣
ν=0

= 0

ψ′′(ξ) =
(heν)(1 − h + heν) − h2e2ν

(1 − h+ heν)2

∣∣∣∣
ν=ξ

=
(heν)(1 − h)

(1 − h+ heν)2

∣∣∣∣
ν=ξ

= {(e
−ν

h
+

1

1 − h
)(1 − h+ heν)}−1

∣∣∣∣
ν=ξ

= {2 +
1 − h

h
e−ν +

h

1 − h
eν}−1

∣∣∣∣
ν=ξ

≤ 1

4
.

The second last inequality is due to the inequality of arithmetic-geometric mean. Thus,

we have

ψ(ν) ≤ ν2/8 = θ2(b− a)2/8.

Combined with Chernoff’s bound, Lemma 4 immediately leads to Hoeffding’s inequal-

ity.

Theorem 5 (Hoeffding’s inequality). Let {Xi}n
i=1 be i.i.d. random variables such

that each Xi takes its value on the interval [ai, bi] with probability one. Then for any

ε > 0, we have

P (Sn − E[Sn] ≥ ε) ≤ exp(−2ε2/

n∑
i=1

(bi − ai)
2)

and

P (Sn −E[Sn] ≤ −ε) ≤ exp(−2ε2/

n∑
i=1

(bi − ai)
2).

10

Note that Chernoff (1952) and Okamoto (1958) proved this theorem for binomial

random variables.

The following lemma is often useful by combining Lemma 4.

Lemma 6. Let σ > 0, n ≥ 2. Let {X1, X2, · · · , Xn}n
i=1 be arbitrary random variables

satisfying E[exp(θXi)] ≤ exp(θ2σ2/2) for all 1 ≤ i ≤ n and θ > 0. Then, we have

E[max
1≤i≤n

≤ σ
√

2 lnn].

If, in addition, E[exp(θ(−Xi))] ≤ exp(θ2σ2/2) for all 1 ≤ i ≤ n and θ > 0. Then, for

any 1 ≤ n,

E[max
i∈{1,2,··· ,n}

|Xi|] ≤ σ
√

2 ln(2n).

Proof. Due to the Jensen’s inequality, we have

exp(θE[max
1≤i≤n

Xi]) ≤ E[exp(θ max
1≤i≤n

Xi)]

= E[max
1≤i≤n

exp(θXi)]

≤
n∑

i=1

E[exp(θXi)]

≤ n exp(θ2σ2/2).

Taking the logarithm of both side of this equation, we have

θE[max
1≤i≤n

Xi] ≤ lnn +
θ2σ2

2
,

E[max
1≤i≤n

Xi] ≤ lnn

θ
+
θσ2

2
.

The parameter θ∗ minimizing the right-hand side of this equation satisfies

− lnnθ−2
∗ +

σ2

2
= 0.

Thus, θ∗ =
√

2 ln n
σ2 minimizes the right-hand side and yields the first inequality. The second

inequality is obtained by applying the first inequality to {X1,−X1, X2,−X2, · · · , Xn,−Xn}
since max1≤i≤n |Xi| = max1≤i≤n{X1,−X1, X2,−X2, · · · , Xn,−Xn}.

McDiarmid (1989) extended Hoeffding’s inequality to general functions of independent

random variables. First, we introduce the definition of the bounded difference condition.

11

Definition 7 (Bounded difference condition). Let A be some set and g be a

function mapping An to R. We say that g satisfies the bounded difference condition if

there exists {ci}n
i=1 such that

sup
x1,x2,··· ,xn,x′

i∈A

|g(x1, x2, · · · , xn) − g(x1, · · · , xi−1, x
′
i, xi+1, · · · , xn)| ≤ ci.

This condition implies that, when we change the i-th variable of g while all the other

variables are kept, we cannot change the value of the function satisfying the bounded

difference condition by more than ci. Under this condition, we have the following useful

theorem (McDiarmid, 1989; Devroye et al., 1996).

Theorem 8 (McDiarmid’s inequality). Let {Xi}n
i=1 be random variables taking

their values on A. Assume that a function g satisfies the bounded difference condition.

Then, for all ε > 0,

P (g(X1, X2, · · · , Xn) − E[g(X1, X2, · · · , Xn)] ≤ ε) ≤ exp(−2ε2/
n∑

i=1

c2i),

P (g(X1, X2, · · · , Xn) −E[g(X1, X2, · · · , Xn)] ≥ ε) ≤ exp(−2ε2/

n∑
i=1

c2i).

Proof. Define V = g−Eg and Vi = E[g |X1, X2, · · · , Xi]−E[g |X1, X2, · · · , Xi−1] for

i = 1, 2, · · · , n. Then, clearly V =
∑n

i=1 Vi. DefineHi(X1, X2, · · · , Xi) = E[g |X1, X2, · · · , Xi].

Then, for any i,

Vi = Hi(X1, X2, · · · , Xi) −
∫

A

Hi(X1, X2, · · · , Xi−1, x)Fi(dx)

where Fi denotes the distribution of Xi. Then, due to the bounded difference condition,

we have

sup
Xi

Vi − inf
X′

i

Vi = sup
Xi

sup
X′

i

{Hi(X1, X2, · · · , Xi−1, Xi) −Hi(X1, X2, · · · , Xi−1, X
′
i)} ≤ ci.

for each i. Therefore, lemma 4 implies that, for all i = 1, 2, · · · , n,

E[exp(θVi |X1, X2, · · · , Xi−1)] ≤ exp(θ2c2i /8).

12

Chernoff’s bound is obtained for any θ > 0,

P (g −Eg ≥ ε) ≤ E[exp (θV)] exp(−θε)

= E
[
exp

(
θ

n∑
i=1

Vi

)]
exp(−θε)

= E
[
exp

(
θ

n−1∑
i=1

Vi

)]
E[exp(θVn) |X1, X2, · · · , Xn−1] exp(−θε)

≤ E
[
exp

(
θ

n−1∑
i=1

Vi

)]
exp

(θ2c2n
8

− θε
)

...

≤ exp(

n∑
i=1

(
θ2c2i
8

) − θε)

by repeating n times application of Lemma 4. The selection θ = 4ε/
∑n

i=1 c
2
i minimizes

the right-hand side and proves the first inequality. The proof of the second inequality is

similar.

We may deduce the following inequality directly from McDirmid’s inequality.

P (|g(X1, X2, · · · , Xn) − E[g(X1, X2, · · · , Xn)]| ≥ ε) ≤ 2 exp
(
− 2ε2/

n∑
i=1

c2i

)
2.2.2 Class of base classifiers and its VC dimension

Let H be a family of several subsets of RM .

Definition 9 (VC shatter coefficient). The VC shatter coefficient of H is defined

as

SH(n) = max
x1, x2, ··· , xn∈RM

|{(x1, x2, · · · , xn) ∩H |H ∈ H}|.

Proposition 10 (Properties of VC shatter coefficient). Let H be a family of

subsets in RM . The VC shatter coefficient of H, SH(n), satisfies:

(a) SH(n) ≤ 2n

(b) For any n < n′, SH(n′) ≤ SH(n)

(c) SH(n +m) ≤ SH(n)SH(m)

(d) SH∪B(n) ≤ SH(n) + SB(n)

13

(e) Let Hc = {Ac |A ∈ H}. SHc = SH.

These properties follow obviously from their definitions.

VC dimension of H, denoted as V , is defined as the largest number n such that

SH(n) = 2n. If, for any n, SH = 2n, then V is defined as V = ∞. In statistical

classification, VC dimension can be interpreted as follows. Let us consider a binary

classification, i.e., Y = {−1, 1}. Assume that C is a set of available classifiers, i.e.,

C = {fj : X → Y | j = 1, 2, · · · , n}.

Define Hf as {x ∈ X | f(x) = 1} for each f ∈ C and H as {Hf | f ∈ C}. V is interpreted

as the largest number of samples such that we may find the classifier that can classify all

samples correctly for any labelling of {x1, x2, · · · , xn}.
The following lemma given by Sauer (1972) is an example illustrating the usefulness

of VC dimension.

Lemma 11 (Sauer’s lemma). Let A be a family of some subsets of RM with VC

dimension V <∞. Then, for all n,

SA(n) ≤
V∑

i=0

(
n
i

)
.

Before jumping the proof of this lemma, we introduce some notations. For fixed

{x1, x2, · · · , xn}, the finite set A(xn) is defined as

A(xn) = {(b1, b2, · · · , bn) ∈ {0, 1}n | ∃A ∈ A, bi = I(xi ∈ A) , i = 1, 2, · · · , n},

where xn = {x1, x2, · · · , xn}. Then, the shatter coefficient of A is rewritten as

SA(n) = max
x1, x2, ··· , xn∈RM

|A(xn)|.

Definition 12. Let B be an arbitrary subset of {0, 1}n. We denote an arbitrary subset

of {1, 2, · · · , n} by S = {s(1), s(2), · · · , s(n′)}. Note that we denote by S and s different

things in other chapters. We say that B shatters a set S = {s(1), s(2), · · · , s(n′)} ⊂
{1, 2, · · · , n} if the restriction of B to the components {s(1), s(2), · · · , s(n′)} is the full

n′ dimensional binary hypercube, i.e.,

{(bs(1), bs(2), · · · , bs(n′)) | b = (b1, b2, · · · , bn) ∈ B} = {0, 1}n′
.

14

Using these notations, the proof of Lemma 11 is given below.

Proof. Fix xn such that SA(n) = maxx1, x2, ··· , xn∈RM |A(xn)|. Denote B0 = A(xn). It

suffices to show that the cardinality of any set B0 that cannot shatter any set of size

n′ > V , is at most
∑V

i=0

(
n
i

)
. To show this, we transform B0 into a set Bn with

|Bn| = |B0| such that any set shattered by Bn is also shattered by B0.

For every vector b = (b1, b2, · · · , bn) ∈ B0, if b1 = 1, then flip b1 to zero unless

(0, b2, b3, · · · , bn) is already in B0. Keep b unchanged if b1 = 0. Clearly, the set B1 of

vectors obtained in this way has the same cardinality as B0. In addition, if B1 shatters

a set S = {s(1), s(2), · · · , s(n′)} ⊂ {1, 2, · · · , n}, B0 also shatters S. If 1 /∈ S, this is

trivial. If 1 ∈ S, then we assume that s(1) = 1 without loss of generality. The fact

that B1 shatters S implies that, for any v ∈ {0, 1}n′−1, there exists a b ∈ B1 such that

b1 = 1 and (bs(2), · · · , bs(n′)) = v. By the construction of B1 this is possible only if,

for any vector v ∈ {0, 1}{n′−1}, both the vectors (0, b2, · · · , bn) and (1, b2, · · · , bn) where

(bs(2), · · · , bs(n′)) = v are in B0. This means that B0 also shatters S.

Next, execute the same transformation of B1 on the second component of each vector.

That is, for each vector b ∈ B1, if b2 = 1, flip b2 to zero unless (b1, 0, b2, · · · , bn) is in B1.

Then, the obtained set B2 also has the same cardinality, and any set shattered by B2 is

also shattered by B1.

Repeating this transformation over all components, we obtain Bn such that Bn does

not shatter sets of cardinality larger than V , since otherwise B0 would necessarily shatter

sets of the same size. In addition, it is easily seen that, for any vector b ∈ Bn, all vectors

of the form c = (c1, c2, · · · , cn) such that ci ∈ {bi, 0}. Then, Bn is a subset of the set

T = {b ∈ {0, 1}n | b has at most V ones}.

The cardinality of T is clearly
∑V

i=0

(
n
i

)
. The statement follows from

SA(n) = |B0| = |Bn| ≤ |T | =
V∑

i=0

(
n
i

)
.

We note that in the proof of Lemma 11 it does not hold that any set shattered by B0

is necessarily shattered by B1 (and therefore also by Bn).

The following proposition gives a more transparent upperbound of shatter coefficient.

15

Proposition 13. Let A be a family of some subsets of RM . Assume that A has a VC

dimension V <∞. Then,

SA(n) ≤ (n+ 1)V ,

and for all n ≥ V ,

SA(n) ≤
(ne
V

)V

.

Proof. From Lemma 11, we have

SA(n) ≤
V∑

i=1

(
n
i

)
.

Thus, we have

(n + 1)V ≥
V∑

i=0

(
V
i

)
ni

≥
V∑

i=1

V !

i!(V − i)!
ni ≥

V∑
i=1

ni

i!
≥

V∑
i=1

ni

i!(n− i)!

=

V∑
i=1

(
n
i

)
≥ SA(n).

If V/n ≤ 1, then(
V

n

)V V∑
i=0

(
n
i

)
≤

V∑
i=0

(
V

n

)i(
n
i

)
≤

n∑
i=0

(
V

n

)i(
n
i

)
=

(
1 +

V

n

)n

≤ eV .

The last inequality follows from Lemma 43 in Appendix. Therefore,

SA(n) ≤
V∑

i=0

(
n
i

)
≤
(ne
V

)V

.

Vapnik (1982) showed an upperbound of generalization error. Before jumping to the

theorem, we introduce some notations. Let Hf = {x ∈ RM | f(x) = 1} for each f ∈ C.

Define H = {Hf | f ∈ C}.

Theorem 14.

P

(
sup
f∈C

|LD(f) − L(f)| > ε

)
≤ 6SH(2n) exp

(
−ε

2n

4

)
.

16

2.2.3 Bias-Variance theory of a classifier

We overview the bias-variance theory discussed by Breiman (1998) in statistical classifi-

cation. Consider a multiclass classification problem with a label set Y = {1, 2, · · · , G}.
Now let D be a set of random variables. The probability of misclassification is redefined

as

L(g) = P (g(X;D) �= Y |D).

Write

Q(y | x) = P (g(x;D) = y)

for each y ∈ Y . Then Q can be regarded as the probability of that g based on independent

replicas ofD assigns the label y at x. This corresponds to the bagged classifier (See Section

2.3.1). Then, the probability of misclassification of g is

L(g) = E

[∫
X

{∑
y∈Y

(1 −Q(y | x))P (Y =y | x)
}
P (x)dx

]
.

Clearly,∑
y∈Y

(1 −Q(y | x))P (Y =y | x) = 1 −
∑
y∈Y

Q(y | x)P (Y =y | x) ≥ 1 − max
y∈Y

P (Y =y | x).

with equality if and only if

Q(y | x) =

{
1 if y = argmaxy′∈Y P (Y = y′ | x)
0 otherwise

.

Obviously, the Bayes classifier g∗ leads to such Q(y | x) and attains the minimum proba-

bility of misclassification:

L(g) = 1 −
∫
X

max
y∈Y

P (Y =y | x)P (x)dx.

Definition 15 (Unbiasedness of classifier). Define an aggregated classifier g∗A(x) =

argmaxy∈Y Q(y | x). g(x;D) is unbiased at x if g∗A(x) = g∗(x).

Note that the unbiasedness of g(x;D) at x does not necessarily mean that g predicts

a label of x accurately. For instance in binary classification, P (Y = 1 | x) = 0.9, P (Y =

2 | x) = 0.1 and Q(Y = 1 | x) = 0.6, Q(Y = 2 | x) = 0.4. Let U be the set of all x at which

g is unbiased, i.e.,

U = {x ∈ X | g∗A(x) = g∗(x)}.

17

and call U the unbiased set. The complement of U is denoted by U and is called the biased

set. Clearly the aggregated (bagged) classifier is the best (Bayes) classifier at any point

x ∈ U .

Definition 16 (Bias and variance). The bias of a classifier g(x;D) is defined as

Bias(g) = P (g∗(X) = Y,X ∈ U) − E[P (g(X;D) = Y,X ∈ U |D)], (6)

and its variance is defined as

Var(g) = P (g∗(X) = Y,X ∈ U) −E[P (g(X;D) = Y,X ∈ U |D)]. (7)

These definitions lead to the Bias-variance decomposition:

L(g) = L∗ + Bias(g) + Var(g). (8)

This decomposition follows from the following observation:

L∗ + Bias(g) + Var(g) = (1 − P (g∗(X) = Y,X ∈ U)) + (1 − P (g∗(X) = Y,X ∈ U))

+P (g∗(X) = Y,X ∈ U) − E[P (g(X;D) = Y,X ∈ U |D)]

+P (g∗(X) = Y,X ∈ U) − E[P (g(X;D) = Y,X ∈ U |D)]

= E[P (g(X;D) �= Y,X ∈ U |D)] + E[P (g(X;D) �= Y,X ∈ U |D)]

= E[P (g(X;D) �= Y |D)] = L(g).

Proposition 17 (Properties of bias and variance). Bias and variance has the

following properties:

1. Bias and variance are always nonnegative.

2. The variance of gA(x) is necessarily zero.

3. If g(x;D) is deterministic, i.e., does not depend on D, then its variance is zero.

4. The bias of g∗ is zero.

The proofs of 1 − 4 are immediate from definitions of bias and variance. Breiman

(1996a) and Breiman (1998) established a clear discussions about bagging and arcing

(boosting) from the view of bias-variance theory, which will be reviewed later.

Friedman (1997) gave a thoughtful analysis of the meaning of bias and variance in

binary case. Other definitions of bias and variance in classification are given in (Kong

and Dietterich, 1995; Kohavi and Wolpert, 1996; Tibshirani, 1996).

18

2.3 Bagging

Breiman (1996a) discussed the bagging predictors. Breiman (1996b) pointed out the in-

stability of some recently developed methods, including neural networks, CART (Morgan

and Sonquist, 1963; Breiman et al., 1984; Quinlan, 1993), and subset selection in linear

regression. Bagging improve prediction performance of such instable methods.

2.3.1 Bagged predictors

Assume that we have a training data set D consisting of n samples. Statistical method

constructs a predictor g : X ×X n → Y based on the information of D. Therefore, write g

by g(x;D). We denote the b-th bootstrapped data set from D by D(b) for b = 1, 2, · · · , B.

Then, the bagged classifier for regression is defined as

gA(x) =
1

B

B∑
b=1

g(x;D(b)).

The bagged classifier for multiclass classification is defined as

gA(x) = argmax
y∈Y

1

B

B∑
b=1

I(g(x;D(b)) = y).

2.3.2 Statistical aspects of bagging

Some theoretical observations explain how the aggregated predictor constructed by bag-

ging works well.

Regression (Y = R) Assume that the sample size n of D is sufficiently large such that

g∗A(x) = E[g(x;D)] (recall thatD is a set of random variables). For a fixed (x, y) ∈ (X ,Y),

we have

E[(y − g(x;D))2] = y2 − 2yE[g(x,D)] + E[g2(x;D)].

By applying Jensen’s inequality to the third term, i.e., E[g2(x;D)] ≥ E[g(x;D)]2, we

have

E[(y − g(x;D))2] ≥ (y − g∗A(x))2.

Taking expectation of both sides with respect to the joint underlying distribution of

(X, Y), the mean-squared error of g∗A is equal to or less than that of g, i.e.,

E[(Y − g(X;D))2] ≥ E[(Y − g∗A(X))2].

19

The extent of improvement obtained by g∗A depends on how unequal the two sides of

E[g2(x;D)] ≥ E[g(x;D)]2 = g∗A(x)2.

The role of instability of predictor is clear. If g(x;D) changes largely with replicate D,

the aggregation improves g(x;D) largely. Otherwise, the aggregation would not improve

it so much. In any way, g∗A always improve g.

The bagged predictor, however, is not equal to g∗A in general since the underlying

distribution is unknown. Indeed, the bagged predictor approximates g∗A(x) by bootstrap

method. Thus, if g(x;D) is stable predictor, bagging predictor may lead to worse predic-

tion because of the uncertainty in the estimation of g∗A. Thus, there may exist a trade-off

between the stability and the estimation error.

Classification in Y = {1, 2, · · · , G} In a classification problem, a predictor g(x;D)

predicts a label y ∈ Y . Define an aggregated classifier gA(x;D) = argmaxy∈Y P (g(x;D) =

y). As was already seen, the aggregated classifier gA(x) decreases its variance, defined in

Eq. (7), to zero. However, it is not guaranteed that the bias of gA decreases. Therefore, if

the unbiased set dominates in X , the bagged classifier performs well. Otherwise, bagging

classifier may make the prediction performance worse.

2.4 Boosting algorithm

Boosting methods combine (weak) base classifiers to obtain a strong classifier. A classifier

is called a weak classifier if its error rate is slightly better than random guessing and is

called a strong classifier if it is very accurate. We will use this terminology for the

remainder of this thesis. Let C be a set of available base classifiers. We describe details of

C in Section 2.4.1. In binary classification, for example, boosting constructs a resultant

classifier such that g(x) = sign(F (x)), where F (x) is found in the linear hull of C and sign

denotes the sign of its argument. Denote the set of all linear combination of arbitrary

classifiers in C by lin(C). Note that F (x) takes value on not only {−1, 1}. Thus, F (x) is a

discriminant function. In this case, our goal is to search the discriminant function, F , from

lin(C) that minimizes L(sign(F ′)) in F ′. The minimization of L(sign(F)) over a linear

hull of C, however, is an NP -hard problem in general (Höffgen et al., 1995). Instead, the

classification algorithm often minimizes an increasing, differentiable, and convex function

that places an upperbound on L. Let φ be a function mapping R to R. Instead of L,

20

define a loss function A : F → R as

A(F) = E[φ(−Y F (X))].

Unless otherwise stated, we always assume that φ satisfies the following condition through-

out this thesis.

Condition 18 (Conditions for cost function). Let φ : R → R be a cost function.

1. φ is strictly convex and strictly increasing.

2. φ(0) = 1.

3. limx→−∞ φ(x) = 0.

4. φ is differentiable.

The first condition is essential. Without the second and third conditions, boosting

algorithm is still Bayes risk consistent even though A is not an upperbound of L. Not few

cost functions of existing methods satisfy Condition 18. If φ satisfies Condition 18, A is

upperbound for L, i.e., for any F ∈ F ,

L(F) ≤ A(F)

since always I(F (X) �= Y) ≤ φ(−Y F (X)). Therefore, we may expect minimizing the

probability of misclassification by these methods since their upperbounds are minimized.

For example, AdaBoost is designed to find a classifier minimizing the exponential loss φ =

exp, and F consists of a linear combination of C. Because the underlying distribution of

X and Y is unknown in an actual situation, boosting methods iteratively find a minimizer

of the empirical version of the loss function,

AD(F) =
1

n

n∑
i=1

φ(−YiF (Xi)). (9)

Subsequent sections describe how boosting methods minimize the empirical loss function

iteratively.

Let F ∗ = argminF ′∈F A(F ′), where the infimum is taken over all measurable functions

F ′ mapping from X to R. We know that the classifier, sign(F ∗(x)), equals to the Bayes

classifier, g∗(x) (Section 2.5.2). Thus, boosting method may construct a Bayes classifier

21

that has a probability of misclassification L∗ asymptotically if F ∗(x) is in lin(C), a scaled

linear hull of C. Otherwise, AdaBoost does not guarantee an accurate prediction, which

sometimes occurs even when we use widely-used base classifiers. To overcome this sit-

uation, we propose a localized version of boosting that attains a higher approximation

performance even together with the same base classifiers in Section 4.

2.4.1 Base classifiers

We describe base classifiers to be combined by boosting methods. First, we introduce

several assumptions for a class of base classifiers. Let C be a set of available base classifiers:

C = {fj : X → Y | j = 1, 2, · · · , J}.

Definition 19 (Negation closedness). We say that a class of base classifiers is

negation closed if −f ∈ C for any base classifier f in C.

We assume that C is negation closed and has a finite VC dimension, denoted by V .

Most widely-used base classifiers to be combined by boosting method is decision stump.

Decision stump f s(x;m, b, s) is a type of weak classifier and is defined as follows:

f s(x;m, b, s) = s · sign((x)m − b), (10)

where m = 1, 2, · · · , M , (x)m is the m-th element of x, b ∈ R is a threshold value, and s

is a sign variable taking values of 1 or −1. It is easily seen that, for fixed values of s and

b, the decision stump is a shifted step function that assigns x a label based on only the

m-th feature (x)m. Cds is defined as the set of f s(x;m, b, s) for all possible combinations

of m, s, and b. Note that the cardinality of C is infinity when b may take a value in R, but

we often prepare finite candidates of b in practical use as follows. Given a training data

set D = {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)}, we prepare a collection of decision stumps for

each feature (X)m in the following manner.

(a) Sort all unique values of the m-th feature (X)m as {(Xi′)m}i′=1,2,···nm where nm is

the number of unique values of the m-th feature;

(b) Find all mid-points between sequential pairs of points in this sorted collection;

(c) For each mid-point (indicated by b), prepare two candidate decision stumps f s(x;m, b, 1)

and f s(x;m, b,−1) whose the discontinuity points b are at the mid-points.

22

Finally, we construct Cds by gathering all classifiers prepared in the step (c) for all (x)m.

Therefore J , the number of classifiers contained in Cds, is
∑M

m=1 2(nm − 1).

Any strong classifiers can be used as well as base classifiers in boosting. However,

boosting with Cds has several advantages. Since decision stumps are simple classifiers, its

computational cost is not much and Cds has a small VC dimension as described below.

The upperbounds of generalization error in Section 2.5.4 or 4.2.2 indicates that, if a

base classifier class C has a smaller VC dimension, boosting method attains sometimes a

smaller generalization error since it avoids overfitting. Data analysis in Section 3.3 also

demonstrated that it is unlikely that AdaBoost with Cds overfits to the training data.

Another advantage is that predictions of boosting with Cds are invariant under any one-

to-one transformation of each feature. Thus, centralization or normalization, which are

often needed by conventional discrimination methods, become unnecessary. In addition,

graphical displays of the contribution of individual feature to the value of discriminant

function, score plots, that are introduced in Section 3.1 are easily constructed. Finally,

boosting with decision stumps may perform well with correlated features. Considering

these merits, we use decision stumps as classifiers to be combined by AdaBoost in all

simulations in Section 3.3 and 4.3.

The following proposition indicates that Cds has a VC dimension that is necessarily

finite and is relatively small in general.

Proposition 20 (Finiteness of VC dimension of Cds). The VC dimension of Cds

is less than or equal to 2(1 + log2M)�.

Proof. Denote the shatter coefficient of Cds by

SCds
(n) = max

x1,x2,··· ,xn∈RM
|{{x1, x2, · · · , xn} ∩ {x | f s(x;m, s, b) = 1} | f s(x;m, s, b) ∈ Cds}|.

The VC dimension of Cds is defined as

V = max
n′

{n′ | SCds
(n′) = 2n′}.

For each feature (x)m (m = 1, 2, · · · , M), decision stumps yield at most 2n different

subsets of {x1, x2, · · · , xn}. Thus, we have

SCds
(n) ≤ 2Mn.

V is less than any n satisfying that

2Mn < 2n,

23

or equivalently,

1 + log2M < n− log2 n.

For any positive integer n′,
n′

2
≤ n′ − log2 n

′.

Therefore, V is at most 2(1 + log2M), i.e., V ≤ 2(1 + log2M)�.

In multiclass case, we modify decision stumps slightly:

f s(x;m, s, b, g) =

{
g if s · sign((x)m − b) = 1

{1, 2, · · · , G}\g otherwise
,

where g may take values in m ∈ {1, 2, · · · , M} and s is a sign variable as defined before.

We prepare such classifiers with b in the same manner as that in the binary case for all

possible combinations of feature m, class g.

2.4.2 Ordinary boosting

The algorithm of the ordinary boosting with general loss function is described. Boosting

method with general loss function has been discussed by Mason et al. (1999), Fried-

man et al. (2000), Murata et al. (2004), and so on. Literatures often interpret boosting

method as general functional gradient descent algorithm. We also describe the algorithm

of boosting method from this viewpoint.

Binary case The algorithm of the ordinary boosting algorithm iteratively minimizes

its loss function by adding a linear term of base classifier. Let F0(x) ≡ 0 be an initial

discriminant function. For a given current discriminant function, Ft−1, AdaBoost chooses

a new base classifier, f , and its coefficient, α, iteratively as follows.

f = argmin
f ′∈C

AD(Ft−1 + α′f ′) for any positive α′ (11)

α = argmin
α′>0

AD(Ft−1 + α′f) (12)

Then, the discriminant function is updated as

Ft(x) = Ft−1(x) + αf(x). (13)

The final classifier is obtained as g(x) = sign(FT (x)) after T repetitions in this process.

Note that we may assume that α is always positive since C is negation closed.

24

The optimization in Eq. (11) should depend on two variables f ′ and α′, which make

boosting algorithm computationally infeasible. The following one-dimensional approx-

imation removes this difficulty of the optimization in Eq. (11). By Taylor-expansion

around α′ = 0, we have

f = argmin
f ′∈C

AD(Ft−1 + α′f ′)

≈ argmin
f ′∈C

AD(Ft−1) +
∂AD(Ft−1 + α′f ′)

∂α′

∣∣∣∣
α′=0

α′

= argmin
f ′∈C

n∑
i=1

φ′(−YiFt−1(Xi))(−Yif
′(Xi))α

′

= argmin
f ′∈C

n∑
i=1

φ′(−YiFt−1(Xi))(2I(Yi �= f ′(Xi)) − 1).

= argmin
f ′∈C

n∑
i=1

φ′(−YiFt−1(Xi))I(Yi �= f ′(Xi)). (14)

As a result, the optimization in Eq. (11) reduces to the optimization Eq. (14) that does

not depend on α′.

We may not have the explicit solution α in the optimization in Eq. (12) in general.

Therefore, some numerical optimization technique should be applied. The optimization

in Eq. (12) is over one variable and thus many existing strong techniques may be used.

The summary of boosting algorithm with general loss function is described below.

1. Initialize weights on sample {w0(i)}n
i=1 as 1/n for each i and F0 ≡ 0.

2. For t = 1, 2, · · · , T , repeat the following process.

(a) Find a new best classifier its coefficient, denoted as fj(t) and αt, as follows:

j(t) = argmin
j∈{1,2,··· ,J}

εt(fj) (15)

αt = argmin
α∈R+

AD(Ft−1 + αfj(t))} (16)

with α1 = 1 where the weighted error rate, εt(f), is defined as

εt(f) =

n∑
i=1

wt−1(i)I(Yi �= f(Xi)). (17)

25

(b) Update the discrimination function Ft−1, and weights {wt−1(i)}n
i=1 as follows.

Ft+1(x) = Ft(x) + αtfj(t)(x)

wt(i) =
1

Zt
φ′(−YiFt(Xi))

where Zt is a normalization constant such that
∑n

i=1wt(i) = 1.

3. Finally, we obtain a resultant classifier g(x) = sign(FT (x)).

With φ = exp, we obtain AdaBoost algorithm that is the boosting algorithm proposed

by Freund and Schapire (1997). In AdaBoost algorithm, the minimization in Eq. (11)

is exactly independent of choice of α′. In addition, the optimization in Eq. (16) has an

explicit solution:

αt =
1

2
ln

1 − εt(ft)

εt(ft)
.

Therefore, AdaBoost algorithm is rather simpler than others as seen below.

1. Initialize weights on sample {w0(i)}n
i=1 as 1/n for each i and F0 ≡ 0.

2. For t = 1, 2, · · · , T , repeat the following process.

(a) Find a new best classifier and its coefficient, denoted as fj(t) and αt, as follows:

j(t) = argmin
j∈{1,2,··· ,J}

εt(fj)

αt =
1

2
ln

1 − εt(fj(t))

εt(fj(t))

εt(f), is defined as

εt(f) =
n∑

i=1

wt−1(i)I(Yi �= f(Xi)).

(b) Update {wt−1(i)}n
i=1 and the discrimination function, Ft−1, as follows.

wt(i) =
1

Zt

wt−1(i) exp(−Yiαtfj(t)(Xi)} (18)

Ft(x) = Ft−1(x) + αtfj(t)(x)

where Zt is a normalization constant such that
∑n

i=1wt(i) = 1.

26

3. Finally, we obtain a resultant classifier g(x) = sign(FT (x)).

Different loss functions yield different boosting algorithm. We list loss functions of

existing boosting methods in Table 1. Properties of these methods are discussed in Section

2.5.

Table 1: List of loss function φ, its derivative φ′, and the inverse of the derivative ξ =
(φ′)−1. Note that η in η-boost does not denote P (Y =1 | x) but denote just a real value
in the interval [0, 1].
Method φ φ′ ξ
AdaBoost exp(z) exp(z) ln(z)

LogitBoost ln{1 + exp(2z)} 2 exp(2z)
1+exp(2z)

1
2
ln z

2−z

η-Boost (1 − η) exp(z) + ηz (1 − η) exp(z) + η ln z−η
1−η

β-Boost 1
β+1

(1 + βz)(β+1)/β (βz + 1)(1/β) zβ−1
β

MadaBoost

{
1
2
exp(2z) (z < 0)

z + (1/2) (otherwise)

{
exp(2z) (z < 0)

1 otherwise
(1/2) ln(z) z ∈ (0, 1]

Extension to multiclass problem We extend the boosting method for binary classi-

fication to a multiclass case. In statistical classification, it is natural to aim at modeling

the posterior probability P (Y = y | x). Therefore, we model the underlying probability

P (Y = y | x) by discriminant function F (x, y). Then, similarly to the Bayes classifier g∗,

we predict a label of x as

ŷ = argmax
y′∈Y

F (x, y′).

There is no necessity to normalize F (x, y) by
∑

y∈Y F (x, y) = 1 because of the virtue of

boosting method. Similarly to binary case, boosting method for multiclass case constructs

F (x, y) by combining base classifiers linearly. For each classifier fj ∈ C, define fj(x, y) =

I(y ∈ fj(x)). A loss function for multiclass classification is defined as:

A(F) = E[
∑
y∈Y

φ(F (X, y)− E[F (X, Y) |X])]

AD(F) =
1

n

n∑
i=1

∑
y∈Y

φ(F (Xi, y) − F (Xi, Yi)).

It should be noted that A and AD denote either binary loss functions or multiclass loss

functions depending on their context. Denote a Dirac’s delta function by δ. Then, em-

27

pirical versions of P (x) and P (Y =y | x) are defined as

P̂ (x) =
1

n

n∑
i=1

δ(x,Xi)

and

P̂ (Y = y | x) =

n∑
i=1

δ(x,Xi)δ(y, Yi)/

n∑
i=1

δ(x,Xi).

Note that replacing P (x) and P (Y =y | x) in A(F) with their empirical version alone does

not yield AD. One more assumption is needed. That is, for any x ∈ X , there is at most

one y ∈ Y for which P̂ (Y = y | x) > 0. With this assumption, AD is derived as follows.

A(F)|P=P̂ =

∫
X

∑
y∈Y

P̂ (x)φ(F (x, y) −
∑
y′∈Y

F (x, y′)P̂ (Y = y′ | x))dx

=
1

n

n∑
i=1

∑
y∈Y

φ(F (Xi, y) −
∑
y′∈Y

F (Xi, y
′)P̂ (Y = y′ |Xi))

=
1

n

n∑
i=1

∑
y∈Y

φ(F (Xi, y) − F (Xi, Yi)).

In real world, it may not be expected that the employed assumption is satisfied. However,

the resultant algorithm works well in several situations. The derivation of the algorithm

follows from the iterative minimization of empirical loss function in a similar way with

Eq. (11) and (12). Therefore, we omit its derivation and show the resultant algorithm

below.

1. Initialize weights on each sample {w0(i, y)}n
i=1 as I(y
=Yi)

n(G−1)
for each i and F0 ≡ 0.

2. For t = 1, 2, · · · , T , repeat the following process.

(a) Find a new best classifier and its coefficient, denoted as fj(t) and αt, as follows:

j(t) = argmin
j∈{1,2,··· ,J}

εt(fj)

αt = argminα∈R+
AD(Ft−1 + αfj(t))

where the weighted error rate, εt(f), is defined as

εt(f) =
1

2

n∑
i=1

∑
y∈Y

wt(i, y){f(Xi, y) − f(Xi, Yi) + 1}I(y �= Yi) (19)

28

(b) Update {wt−1(i, y)}n
i=1 and the discrimination function, Ft−1, as follows.

Ft(x, y) = Ft−1(x, y) + αtfj(t)(x, y)

wt(i, y) =
1

Zt
φ′(Ft(Xi, y) − Ft(Xi, Yi))

where Zt is a normalization constant such that
∑n

i=1

∑
y∈Y wt(i, y)I(y �= Yi) =

1.

3. Finally, we obtain a classifier F (x) = argmaxy∈Y FT (x, y).

Note that the above algorithm reduces to the binary boosting algorithm if we take

f(x, y) = (yf(x) + 1)/2. Thus, the binary boosting algorithm is a special case of the

above algorithm.

When φ = exp, this algorithm reduces to AdaBoost.M2 that was proposed by Freund

and Schapire (1997). Similarly to the binary case, computational cost of AdaBoost.M2 is

relatively low due to its simplicity.

2.4.3 Regularized Boosting

A regularized version of boosting method is introduced in this section. In general, un-

regularized minimization of empirical probability of misclassification is apt to suffer from

overfitting. The minimizer of empirical probability of misclassification is the empirical

Bayes classifier ĝ∗(x) defined as

ĝ∗(x) = 2I(P̂ (Y = y | x) ≥ 1

2
) − 1.

Note that ĝ∗(x) is not unique since prediction of ĝ∗(x) at any x not in the training data

has no effect on empirical probability of misclassification. Considering that there usually

exist at most one datum for a fixed x, ĝ∗(x) predicts a label of x based on only the training

data. We say that a datum (Xi, Yi) is mislabelled if its label Yi differs from the label that

the Bayes classifier, Eq. (3), predicts, i.e., Yi �= g∗(Xi). Since the training data contain

mislabelled data in general, ĝ∗(x) may perform poorly.

The ordinary boosting methods may also suffer from overfitting. The ordinary boost-

ing methods does not put any restriction on the sum of coefficients of combined classifiers.

This causes that the resultant classifier would inevitably overfit to the training data, even

29

though the overfitting sometimes does not occur until long iterations in boosting algo-

rithm. This was also suggested by theoretical discussions. The upperbound of general-

ization error of the ordinary boosting that was obtained by Freund and Schapire (1997)

indicates that the generalization error may increase as the iteration number of boosting

goes to infinity. Note that an iterative gradient descent in boosting algorithm converges

significantly slowly and then the overfitting will not occur until a large number of itera-

tions in some practical cases. However, the overfitting occurs if the number of training

data is quite few, or the training data contains many mislabelled data.

There are two ways for avoiding the overfitting. One is early stopping that was dis-

cussed by Jiang (2004) or Zhang and Yu (2005). The other way is to restrict sum of

coefficients of combined classifiers, which was suggested by, e.g., Mason et al. (1999). In

this version, the sum of coefficients of combined classifier is always restricted to a some

constant λ > 0. This implies that base classifiers are combined not linearly but convexly.

We focus on this regularized boosting method in this section.

The regularized boosting algorithm is derived similarly to the ordinary boosting. Let

C be a set of all available classifiers again. Define

Aλ(F) = E
[∑

y∈Y
φ(−λY F (X))

]
Aλ

D(F) =
1

n

n∑
i=1

∑
y∈Y

φ(−λYiF (Xi)).

Note that A(F) under the restriction that
∑T

t=1 αt = λ in which F (x) =
∑T

t=1 αtfj(t)(x)

is equivalent to Aλ(F) under the restriction that
∑T

t=1 αt = 1. We denote the set of all

convex combination of arbitrary classifiers in C by conv(C) in the sequel. Let F0(x) ≡
0 be an initial discriminant function. For a given current discriminant function, Ft−1,

regularized boosting chooses a new base classifier, f , and its coefficient, α, iteratively as

follows.

f = argmin
f ′∈C

Aλ
D(Ft−1 + α′(f ′ − Ft−1)) for any positive α′ (20)

α = argmin
α′>0

Aλ
D(Ft−1 + α′(f − Ft−1)) (21)

Then, the discriminant function is updated as

Ft(x) = (1 − α)Ft−1(x) + αf(x). (22)

30

The final classifier is obtained as g(x) = sign(FT (x)) after T repetitions of this process.

The difference from the ordinary boosting is only the way of combining base classifiers.

Thus, almost same arguments hold for regularized boosting. We describe the complete

summary of regularized boosting below.

1. Determine a smoothing parameter λ > 0.

2. Initialize weights on sample {w0(i)}n
i=1 as 1/n for each i and F0 ≡ 0.

3. For t = 1, 2, · · · , T , repeat the following process.

(a) Find a new best classifier and its coefficient, denoted as fj(t) and αt, as follows:

j(t) = argmin
j∈{1,2,··· ,J}

εt(fj) (23)

αt = argmin
α∈R+

Aλ
D(Ft−1 + α(fj(t) − Ft−1)} (t ≥ 2)

with α1 = 1 where the weighted error rate, εt(f), is defined as

εt(f) =

n∑
i=1

wt(i)I(Yi �= f(Xi)).

(b) Update {wt−1(i)}n
i=1 and the discrimination function, Ft−1, as follows.

Ft(x) = (1 − αt)Ft−1(x) + αtfj(t)(x) (24)

wt(i) =
1

Zt

φ′(−λYiFt(Xi)) (25)

where Zt is a normalization constant such that
∑n

i=1wt(i) = 1.

4. Finally, we obtain a resultant classifier g(x) = sign(FT (x)).

It holds that
∑T

t=1 αt = 1. This implies that FT (x) necessarily takes its value in the closed

interval [−1, 1].

We also describe the summary of regularized boosting for multiclass classification for

the completeness.

1. Determine a smoothing parameter, λ > 0.

31

2. Initialize weights on each sample {w0(i, y)}n
i=1 as I(y
=Yi)

n(|Y−1|) for each i and F0 ≡ 0.

3. For t = 1, 2, · · · , T , repeat the following process.

(a) Find a new best classifier and its coefficient, denoted as fj(t) and αt, as follows:

j(t) = argmin
j∈{1,2,··· ,J}

εt(fj)

αt =

{
argminα∈R+

Aλ
D(Ft−1 + α(fj(t) − Ft−1)} (t > 1)

1 (t = 1)

where the weighted error rate, εt(f), is defined as

εt(f) = (1/2)

n∑
i=1

∑
y∈Y

wt(i, y){f(Xi, y) − f(Xi, Yi) + 1}I(y �= Yi)

(b) Update {wt−1(i, y)}n
i=1 and the discrimination function, Ft−1, as follows.

Ft(x, y) = (1 − αt)Ft−1(x, y) + αtfj(t)(x, y)

wt(i, y) =
1

Zt
φ′(λ(Ft(Xi, y) − Ft(Xi, Yi)))

where Zt is a normalization constant such that
∑n

i=1

∑
y∈Y wt(i, y)I(y �= Yi) =

1.

4. Finally, we obtain a classifier F (x) = argmaxy∈Y FT (x, y).

Lugosi and Vayatis (2004) proved the Bayes risk consistency of regularized boosting

method under appropriate choice of λ. They suggested λ should be chosen as a function

of the sample size of the training data. Instead of description of their result, we note that

Section 4 provides a complete information about this issue since our proposed method

that appear in Section 4 contains the ordinary regularized boosting as a special case. See,

however, (Mason et al., 1999; Lugosi and Vayatis, 2004) for the role of λ in details. We

show a simple example to illustrate the effectiveness of this type of regularized boosting

in Section 2.5.5.

2.4.4 AsymBoost

AsymBoost (Viola and Jones, 2001) is a variant of AdaBoost, developed specifically for

binary classification where the distributions of positive and negative samples are highly

32

skewed. To illustrate this issue, consider an example of binary classification with one

feature (Figure 1), with a simple discriminant function F (x) = sign(x − b) where x = b

corresponds to the decision boundary. In the asymmetric case (a), the decision boundary

minimizing prediction error is shifted to the right compared to the symmetric case (b) since

negative samples are much more likely to occur than positive samples. As a result, the

false negative ratio for the asymmetric case (a) is much larger than that of the symmetric

case (b), where the false positive ratio (FPR) and the false negative ratio (FNR) are

defined as:

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

pr
ob

ab
ilit

y d
en

sit
y

density of positive

density of negative

(a)

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

pr
ob

ab
ilit

y d
en

sit
y

density of positive

density of negative

(b)

Figure 1: The probability density functions P (x , Y = 1) (solid line) and P (x , Y =

−1) (dotted line) in a binary classification problem are shown. Panel (a)

is the asymmetric case (P (Y = 1) � P (Y = −1)) and panel (b) is the

symmetric case (P (Y = 1) = P (Y = −1)) in the same setting. Given a

simple discriminant function F (x) = sign(x−b), where x = b corresponds

to its decision boundary, the dotted vertical line shows the Bayes optimal

decision boundary which minimizes the probability of misclassification.

The false negative ratio corresponds to the proportion of the light solid

area to the under area of P (x , Y = 1), while the false positive ratio

corresponds to the proportion of the the dense solid area to the under area

of P (x , Y = −1). The probability of misclassification of F corresponds

to the sum of the light solid are and the dense solid area.

33

FPR = P (F (x) ≥ 0 | Y = −1),

FNR = P (F (x) < 0 | Y = 1). (26)

FPR denotes the probability of false prediction given a negative sample, while FNR

denotes the probability of false prediction given a positive sample. AsymBoost enables

us to attain an arbitrary balance between the FPR and the FNR. This is achieved by

modifying the symmetric loss function used by the ordinary boosting. The AsymBoost

algorithm seeks to minimize the following asymmetric empirical loss function:

Aasym
D (F) =

1

n

n∑
i=1

(
√
k)Yi exp(−YiF (Xi)) (27)

where k > 0 is a balance parameter. It is easily extended to boosting with general loss

function even though the original AsymBoost proposed by Viola and Jones (2001) is an

asymmetric version of AdaBoost. As easily seen in (27), the loss for positive samples

are weighted k times more than that for negative samples. It should be mentioned that

AsymBoost cannot be regarded as one of the ordinary boosting method since the asym-

metric loss function in Eq. (27) does not satisfy Condition 18. AsymBoost minimizes this

asymmetric loss iteratively in a manner similar to AdaBoost:

f = argmin
f ′∈C

Aasym
D (Ft−1 + α′f ′) for any positiveα′

α = argmin
α′>0

Aasym
D (Ft−1 + α′f).

Define

wt(i) =
1

Zt

exp(−YiFt−1(Xi) + Yi ln
√
k),

where

Zt =

n∑
i′=1

exp(−Yi′Ft−1(Xi′) + Yi′ ln
√
k).

34

The loss function Aasym
D (Ft−1 + α′f ′) can be written as

Aasym
D (FT−1 + α′f ′) =

1

n

n∑
i=1

(
√
k)Yi exp(−Yi(Ft−1(Xi) + α′f ′(Xi)))

=
1

n

n∑
i=1

exp(−YiFt−1(Xi) + Yi ln
√
k) exp(−Yiα

′f ′(Xi))

=
1

n

n∑
i=1

Ztwt(i) exp(−Yiα
′f ′(Xi))

=
1

n

n∑
i=1

Ztwt(i){I(Yi �= f ′(Xi))e
α′

+ I(Yi = f ′(Xi))e
−α′}

=
Zt

n

n∑
i=1

wt(i){I(Yi �= f ′(Xi))(e
α′ − e−α′

) + e−α′}.

Therefore, the search of f = argminf ′∈C = Aasym
D (FT−1 + α′f ′) reduces to

f = argmin
f ′∈C

n∑
i=1

wt(i)I(Yi �= f ′(Xi)),

regardless of the value of positive α′. Thus, it is natural to define the weighted error rate

εt(f) as

εt(f) =

n∑
i=1

wt(i)I(Yi �= f(Xi)).

In addition, it is easy to see that α = argminα′∈R+
= Aasym

D (FT−1 + α′f ′) for any fixed

f ′ ∈ C is calculated as
1

2
ln

1 − εt(f
′)

εt(f ′)
.

We show the complete summary of AsymBoost algorithm below.

1. Initialize weights on sample {w0(i)}n
i=1 as 1/n for each i and F0 ≡ 0.

2. For t = 1, 2, · · · , T , repeat the following process.

(a) Find a new best classifier and its coefficient, denoted as fj(t) and αt, as follows:

j(t) = argmin
j∈{1,2,··· ,J}

εt(fj)

αt =
1

2
ln

1 − εt(fj(t))

εt(fj(t))
,

35

where εt(f) is defined as

εt(f) =

n∑
i=1

wt−1(i)I(Yi �= f(Xi)).

(b) Update {wt−1(i)}n
i=1 and the discrimination function, Ft−1, as follows.

wt(i) =
1

Zt
wt−1(i) exp

(
−Yiαtfj(t)(Xi) +

Yi

T
ln
√
k

)
(28)

Ft(x) = Ft−1(x) + αtfj(t)(x)

where Zt is a normalization constant such that
∑n

i=1wt(i) = 1.

3. Finally, we obtain a resultant classifier g(x) = sign(FT (x)).

Thus, the AsymBoost algorithm is quite similar to that of AdaBoost. The difference is

only the weight update rule Eq. (28). Note that the reason why Yi ln
√
k is divided by

the iteration number T is to assign the influence of the asymmetric term
√
k

Yi
to all base

classifiers chosen in the learning process equally.

The value of k determines the balance between the FPR and the FNR. If k > 1, false

prediction of positive samples are penalized stronger and vice versa. Intuitively, the larger

k, the larger the FPR and the smaller the FNR. To understand this point, we follow a

similar argument of Friedman et al. (2000). The population minimizer of the asymmetric

loss Eq. (27), denoted by F ∗
asym, is calculated as:

Proposition 21. Let

Aasym(F) = E[
√
k

Y
exp(−Y F (X))].

Then, the population minimizer of A(·) is obtained as

F ∗
asym(x) = argmin

F∈F
Aasym(F) =

1

2
ln

P (Y =1 | x)
P (Y =−1 | x) + ln

√
k.

Proof. Due to the decomposition of expectation, we have

Aasym(F) = E[
√
k

Y
exp(−Y F (X))]

= EE[
√
k

Y
exp(−Y F (x))|x]

= E[P (Y =1 | x)
√
k exp(−F (x)) + P (Y =−1 | x) 1√

k
exp(F (x))].

36

Write F (x) as c and the inside of E[·] as Â(c). The constant, c, that minimizes Â(c)

satisfies

Â(c)

dc
= −P (Y =1 | x)

√
ke−c + P (Y =−1 | x) 1√

k
ec = 0.

Thus, we have

c = F (x) =
1

2
ln k

P (Y =1 | x)
P (Y =−1 | x) .

F ∗
asym(x) satisfying this relationship for any x minimizes Aasym(F).

This implies that F ∗
asym = F ∗

ada + ln
√
k where F ∗

ada denotes the target discriminant

function of AdaBoost (See Section 2.5.2). Therefore, sign(F ∗
asym(x)) is not equal to the

Bayes classifier in general. Note that the discriminant function estimated by AsymBoost

differs from that estimated by AdaBoost by the intercept ln
√
k in general. They coincide

with each other if the base classifier class C contains a constant classifier f(x) ≡ 1. In

such a case, AdaBoost or AsymBoost algorithm may directly estimate the intercept term

and their estimates are same except the intercept. The value of discriminant function

F ∗
asym(x) ≥ 0 increases as k becomes large. This results in an increase in the FPR and a

decrease in the FNR. As a specific example, suppose we estimate k = P (Y = −1)/P (Y =

1) as:

k =
nn

np
(29)

where np is the number of positive samples and nn is the number of negative samples in

a training data set D. In this way, we can obtain the FPR and the FNR that we would

have obtained had our sample contained equal numbers of positive and negative values

(np = nn). With k estimated as Eq. (29), we have

F ∗
asym(x) =

1

2
ln

P (x | Y = 1)

P (x | Y = −1)
.

In the case that the form of the densities of positive and negative samples are as illustrated

in Figure 1 (identical shapes and point-symmetric1), the FPR and the FNR given by

AsymBoost will be equal.

1A function f(x) is point-symmetric if the value of f(x) depends only on the distance from a certain
point m, i.e., f can be rewritten as f(x) = g(‖x − m‖) for some function g. If f is unimodal, m is the
mode.

37

2.5 Statistical properties of boosting

Several literatures have tried to explain why the boosting method is successful. Freund

and Schapire (1997) showed that the upperbound of training error given by AdaBoost

and AdaBoost.M2 decreases exponentially. However, it is commonly known that the min-

imization of training error does not necessarily lead to the minimization of generalization

error. To elucidate why boosting methods perform well, it is needed to evaluate the

generalization error of boosting. There are two approaches for evaluating generalization

performance of boosting method. One is the bias-variance theory approach. The other is

the evaluation of the upperbound of generalization error. Breiman (1998) took the former

approach by regarding the boosting method as ARCING algorithm. As a result, it was

elucidated that boosting methods reduced the variance of decision tree algorithm more

than bagging. However, Schapire et al. (1998) pointed out that variance reduction was

not sufficient as an explanation of the success of boosting. Several researchers have taken

the latter approach (Freund and Schapire, 1997; Schapire et al., 1998; Koltchinskii and

Panchenko, 2002; Bartlett and Mendelson, 2002; Lugosi and Vayatis, 2004) although this

approach does not explain the success of boosting perfectly. Still now, intensive theoret-

ical research on boosting is required. In addition, we discuss the Bayes rule equivalence,

the least favorable error property and the geometrical interpretation of boosting method

in this section.

2.5.1 Least favorable error

The ordinary boosting has an interesting property of the weighted error rate. The

weighted error εt(f) defined in Eq. (17) and (19) has an important role in the ordinary

boosting algorithm.

Proposition 22 (Least favorable error property). At each iteration step t in the

ordinary boosting algorithm, it holds that

εt(fj(t−1)) = 1/2.

Proof. It suffices to prove this statement for multiclass case since the ordinary boosting

for binary case is obtained as a special case of multiclass algorithm. Since αt minimizes

AD(Ft−1 + αft), αt must satisfy

∂

∂α
AD(Ft−1 + αft) = 0.

38

This implies that∑
y∈Y

φ′(Ft(Xi, y) − Ft(Xi, Yi))(ft(Xi, y) − ft(Xi, Yi)) = 0.

It is easy to see that the left-hand side of this equation equals to 2εt(fj(t)) − 1.

The weighted error rate in binary case can be interpreted as follows. Recall that

the sum of all {wt(i)}n
i=1 is always restricted to one. Thus, we can regard wt(i) as the

probability assigned to the i-th sample (Xi, Yi). Suppose that a pair of new random vari-

ables (X ′
t, Y

′
t) is resampled from D according to the probabilities {wt(i)}n

i=1. Inspection

of Eq. (17) indicates that each weight on sample is proportional to φ′{−YiFt−1(Xi)} in

the search of fj(t). Thus, (X ′
t, Y

′
t) takes its values in either i-th sample (Xi, Yi) on D

with a higher probability if a larger Ft−1(Xi) predicts a label of Xi incorrectly, i.e., the

larger that −YiF (Xi) is. Therefore the weighted error rate εt(f) can be regarded as the

probability of false prediction over (X ′
t, Y

′
t) given by f . Similar interpretation is given

for multiclass case by Murata et al. (2004). The least favorable error property indicates

that the chosen classifier fj(t) is the best classifier on the resampled data sets that is least

favorable for fj(t−1) in the sense that the error rate of fj(t−1) is worst among all base

classifiers. Intuitively, fj(t) is the base classifier that improves the prediction performance

of fj(t−1) most.

2.5.2 Bayes rule equivalence

The population minimizer of loss function with cost function φ satisfying Condition 18

necessarily yields the Bayes classifier. Friedman et al. (2000) showed that the population

minimizer of exponential loss function (φ = exp) over F in binary classification is the half

log-odds. Clearly the sign of the half log-odds is the Bayes classifier. Similar calculations

indicate that the population minimizer of general cost function satisfying Condition φ

necessarily yields the Bayes classifier.

Binary case

Proposition 23. Let φ : R → R be a cost function satisfying Condition 18. Define

F ∗(x) = argminF∈F A(F).

Case (a) Assume that η(x) ∈ (0, 1) holds almost everywhere. Then gF (x) = sign(F ∗(x))

is the Bayes classifier.

39

Case (b) Assume that η(x) ∈ {0, 1} is almost everywhere. Then,

inf
F∈F

A(F) = 0.

Proof. Case (a) Assume that η(x) /∈ {0, 1} with probability one. Due to the decom-

position of expectation, we have

A(F) = E[φ(−Y F (X))] = E[η(X)φ(−F (X)) + (1 − η(X))φ(F (X))].

F ∗ should minimize the inside of the last expectation for each x ∈ X . Define

h(η, α) = ηφ(−α) + (1 − η)φ(α). Thus, for a fixed x, F ∗(x) satisfies

F ∗(x) = argmin
α∈R

h(η(x), α).

Since η(x) /∈ {0, 1} and φ is strictly increasing and convex, h(η, α) has the unique

minimum in α. Since φ is differentiable, F ∗(x) must satisfy

−η(x)φ(−F ∗(x)) + (1 − η(x))φ(F ∗(x)) = 0.

Therefore, we have
φ(F ∗(x))
φ(−F ∗(x))

=
η(x)

1 − η(x)
.

This implies that F ∗(x) > 0 if and only if η(x) > 1/2, proving that sign(F ∗(x)) is

the Bayes classifier.

Case (b) Assume that η(x) ∈ {0, 1} with probability one. Clearly, there is no minimizer

of h(η, α) in α. Define fn taking values n if η(x) = 1 and −n if η(x) = 0. Taking

the limit in n combined with the fact A(F) ≥ 0 leads to inff∈F A(F) = 0.

Multiclass case Similarly to the binary case, the population minimizer of loss functions

in multiclass classification also yields the Bayes classifier.

Proposition 24. Let φ : R → R be a cost function satisfying Condition 18. Define

F ∗(x) = argminF∈F A(F).

Case (a) Assume that P (Y = y | x) �= 1 for any y almost everywhere. Then gF (x) =

argmaxy∈Y(F ∗(x, y)) is the Bayes classifier.

40

Case (b) Assume that there exists a single ȳ ∈ Y such that P (Y = ȳ | x) = 1 almost

everywhere. Then,

inf
F∈F

A(F) = 1.

Proof. Case (a) Assume that P (Y =y | x){0, 1} with probability one. The loss func-

tion for multiclass classification is written as

A(F) = E
[∑

y∈Y
φ(F (X, y) −E[F (X, Y) |X])

]
.

Write the inside of the expectation as A|X=x(F). For any fixed x and y′, the mini-

mizer of A(F), denoted by F ∗, should satisfy

∂

∂F (x, y′)
A|X=x(F

∗) = (1 − P (Y = y′ | x))φ′(F ∗(x, y′) −E[F ∗(x, Y) | x]) +∑
y
=y′

P (Y = y′ | x)φ′(F ∗(x, y) − E[F ∗(x, Y) | x])

= 0.

Therefore, the posterior P (Y =y | x) can be written as

P (Y =y | x) =
φ′(F ∗(x, y) − E[F ∗(x, Y) | x])∑
y′∈Y φ

′(F ∗(x, y′) −E[F ∗(x, Y)])
(30)

for any fixed x and y. This implies that there must exist a positive function c(x) such

that φ′(F ∗(x, y)−E[F ∗(x, Y) | x]) = c(x)P (Y =y | x). Due to the strict monotonicity

of φ′, we have

argmax
y∈Y

F ∗(x, y) = argmax
y∈Y

F ∗(x, y) − E[F ∗(x, Y) | x]

= argmax
y∈Y

φ′(F ∗(x, y) − E[F ∗(x, Y) | x])

= argmax
y∈Y

c(x)P (Y =y | x)

= argmax
y∈Y

P (Y =y | x).

Case (b) Assume that there exists a single ȳ ∈ Y such that P (Y = ȳ | x) = 1 with

probability one. For any y �= ȳ, P (Y =y | x) = 0. Clearly, there is no F ∗ satisfying

Eq. (30) since φ′ is strictly positive. Since E[F (x, Y) | x] = F (x, ȳ), A(F) has the

41

form:

A(F) = E
[∑

y∈Y
φ(F (x, y)− E[F (x, Y) | x])

]
= E

[∑
y∈Y

φ(F (x, y)− F (x, ȳ))
]

= E
[∑

y
=ȳ

φ(F (x, y)− F (x, ȳ))
]

+ 1.

Define Fn(x, y) taking values n if y = ȳ and taking values −n otherwise for any x.

Taking the limit in n combined with the fact A(F) ≥ 1 leads to inff∈F A(F) = 1.

We derive the population minimizers of several loss functions in binary classification.

AdaBoost The population minimizer of the expected exponential loss function is equal

to the half log-odds.

Proposition 25. Let φ = exp. Then, the population minimizer of A(·) is obtained as

F ∗
ada(x) = argmin

F∈F
A(F) =

1

2
ln

P (Y =1 | x)
P (Y =−1 | x) (31)

where E[·] denotes the expectation with respect to the true joint distribution of X and Y .

Proof. Due to the decomposition of expectation, we have

A(F) = E exp(−Y F (X))

= EE[exp(−Y F (x))|x]

= E[P (Y =1 | x) exp(−F (x)} + P (Y =−1 | x) exp(F (x)}].

Write F (x) as c and the inside of E[·] as Â(c). The constant, c, that minimizes Â(c)

satisfies
Â(c)

dc
= −P (Y =1 | x) exp(−c) + P (Y =−1 | x) exp(c) = 0.

Thus, we have

c = F (x) =
1

2
ln

P (Y =1 | x)
P (Y =−1 | x) .

F ∗(x) satisfying this relationship for any x minimizes A(F).

42

We may rewrite the above equation as

P (Y =y | x) =
−(y + 1)F ∗

ada(x)

1 + exp(−2F ∗
ada(x))

. (32)

This indicates that the AdaBoost algorithm is interpreted as a forward fitting of this

logistic model.

LogitBoost

Proposition 26. Let φ(x) = ln(1 + exp(−2x)). Then, the population minimizer of

A(·) is obtained as

F ∗
logit(x) = argmin

F∈F
A(F) =

1

2
ln

P (Y =1 | x)
P (Y =−1 | x) .

Proof. Due to the decomposition of expectation, we have

A(F) = E[ln(1 + exp(−2Y F (X)))]

= EE[ln(1 + exp(−Y F (x))) | x]

= E[P (Y =1 | x) ln(1 + exp(−2F (x))) + P (Y =−1 | x) ln(1 + (exp(2F (x)))) | x].

Write F (x) as c and the inside of E[·] as Â(c). The constant, c, that minimizes Â(c)

satisfies

Â(c)

dc
= P (Y =1 | x) −2 exp(−2c)

1 + exp(−2c)
+ P (Y =−1 | x) 2 exp(2c)

1 + exp(2c)
= 0.

Thus, we have

P (Y =1 | x)
P (Y =−1 | x) =

e4c(1 + e−2c)

1 + e2c

=
e4c(1 + e−2c)

1 + e2c

=
(e4c + e2c)

1 + e2c
.

Denoting the left-hand side by u, this equation is rewritten as

e4c + (1 − u)e2c − u = 0.

By solving this quadratic equation, we have

c = F (x) =
1

2
ln

P (Y =1 | x)
P (Y =−1 | x) .

F ∗(x) satisfying this relationship for any x minimizes A(F).

43

It is easy to see that the minimization of φ(x) = ln(1 + exp(2x)) is equal to the

maximization of the log-likelihood with exponential model defined in Eq. (32). In fact,

LogitBoost is deeply connected to AdaBoost in view of extended KL-divergence (Lebanon

and Lafferty, 2002).

β-Boost

Proposition 27. Let

φ(x) =
1

β + 1
(1 + βx)

β+1
β .

Then, the population minimizer of A(·) is obtained as

F ∗
β (x) = argmin

F∈F
A(F) =

1

β

(
P (Y=1 |x)

P (Y=−1 | x)

)β

− 1(
P (Y=1 |x)

P (Y=−1 | x)

)β

+ 1
.

Proof. Due to the decomposition of expectation, we have

A(F) = E

[
1

β + 1
(1 − βY F (X))

β+1
β

]
= EE

[
1

β + 1
(1 − βY F (x))

β+1
β | x

]
= E

[
1

β + 1
{P (Y =1 | x)(1 − βF (X))

β+1
β +

P (Y =−1 | x)P (Y =1 | x)(1 + βF (X))
β+1

β }
]
.

Write F (x) as c and the inside of E[·] as Â(c). The constant, c, that minimizes Â(c)

satisfies

Â(c)

dc
=

1

β
{−P (Y =1 | x)(1 − βc)

1
β + P (Y =−1 | x)(1 + βc)

1
β } = 0.

Thus, we have

P (Y =1 | x)
P (Y =−1 | x) =

(
1 + βc

1 − βc

) 1
β

1 + βc

1 − βc
=

(
P (Y =1 | x)
P (Y =−1 | x)

)β

c =
1

β

(
P (Y=1 | x)

P (Y=−1 |x)

)β

− 1(
P (Y=1 | x)

P (Y=−1 |x)

)β

+ 1
.

The population minimizer F ∗
β (x) = c must satisfy this equation for all x ∈ X .

44

η-Boost η-loss has also unique population minimizer of the expected loss function,

denoted by F ∗
η . The minimizer F ∗

η , however has a complicated form so that we may not

interpret easily. Instead, we show its relationship to the underlying distribution.

Proposition 28. Let φ(x) = (1−η) exp(x)+ηx where η is a real value in the interval

[0, 1]. Define F ∗
η = argminF∈F A(F). Then, the population minimizer F ∗

η satisfies

P (Y =y | x) =
(1 − η) exp(yF ∗

η (x))∑
y′∈{−1,1}(1 − η) exp(y′F (x)) + η

.

Proof. Due to the decomposition of expectation, we have

A(F) = E[(1 − η) exp(−Y F (X)) + η(−Y F (X))]

= EE[(1 − η) exp(−Y F (x)) + η(−Y F (x)) | x]

= E[P (Y =1 | x){(1 − η) exp(−F (X)) − ηF (X)} +

P (Y =−1 | x){(1 − η) exp(F (X)) + ηF (X)}].

Write F (x) as c and the inside of E[·] as Â(c). The constant, c, that minimizes Â(c)

satisfies

Â(c)

dc
= P (Y =1 | x){−(1 − η) exp(−c) − η} + P (Y =−1 | x){(1 − η) exp(c) + η} = 0.

Thus, the population minimizer F ∗
η (x) satisfies the following equations:

P (Y =1 | x)
P (Y =−1 | x) =

(1 − η) exp(F ∗
η) + η

(1 − η) exp(−F ∗
η) + η

P (Y =1 | x) =
(1 − η) exp(F ∗

η) + η∑
y′∈{−1,1}(1 − η) exp(y′F ∗

η) + η
.

This completes the proof.

2.5.3 Training error of AdaBoost

Freund and Schapire (1997) shows that the training error of the ordinary AdaBoost de-

creases exponentially.

Theorem 29. Let FT (x) be a discriminant function constructed by the ordinary Ad-

aBoost algorithm. Then, the training error of sign(FT (x)) is bounded above by

LD(sign(FT (x))) ≤ 2T ΠT
t=1

√
εt(fj(t))(1 − εt(fj(t))).

45

Proof. In the AdaBoost algorithm, the discriminant function is constructed as

FT (x) =
T∑

t=1

αtfj(t)(x).

The coefficient αT satisfies

αT =
1

2
ln

1 − εT (fj(T))

εT (fj(T))

where εt(f) =
∑n

i=1 I(Yi �= f(Xi))wt−1(i). Recall that the weight wT−1(i) is written as

wT−1(i) =
1

Zt
exp(−YiFT−1(Xi)),

where

ZT =

n∑
i=1

exp(−YiFT−1(Xi)) = nAD(FT−1).

Then, we have

AD(FT) =
1

n

n∑
i=1

exp(−YiFT (Xi))

=
1

n

n∑
i=1

I(Yi �= fj(T)(Xi)) exp(αT)ZTwT−1(i) + I(Yi = fj(T)) exp(−αT)ZtwT−1(i)

=
ZT

n
exp(αT)εT +

ZT

n
exp(−αT)(1 − εT)

=
ZT

n

{√
1 − εT
εT

εT +

√
εT

1 − εT
(1 − εT)

}
= AD(FT−1)2

√
(1 − εT (fj(T)))εT (fj(T)).

Therefore, we have

AD(FT) = 2T ΠT
t=1

√
(1 − εt(fj(t)))εt(fj(t)).

Combined with the fact that LD(FT) ≤ AD(FT), this completes the proof.

Similar upperbound of training error can be obtained for AdaBoost.M2.

2.5.4 Property of generalization error

Preliminary results on the bound of generalization error is derived by Freund and Schapire

(1997).

Freund and Schapire (1997) derived an upperbound of generalization error of Ad-

aBoost.

46

Theorem 30 (Upperbound of generalization error). Let ΘT (C) be

ΘT (C) = {sign(

T∑
t=1

αtfj(t) − b) | a, b, α1, α2, · · · , αT ∈ R , ∀t, fj(t) ∈ C}

With at least probability 1 − ε,

sup
F∈ΘT (C)

|LD(F) − L(F)| ≤ 2

√
d(ln(2n

d
+ 1)) + ln 9

ε

n

where d = 2(V + 1)(T + 1) log2(e(T + 1)).

Schapire et al. (1998) derived the upperbound of generalization error that does not

depend on T .

Theorem 31 (Margin bound of boosting). Let θ > 0 and δ ∈ (0, 1]. For any

f ∈ conv(C),

P (Y f(X) ≤ 0) ≤ PD(Y f(X) ≤ θ) + 2 exp(−Tθ2/8) +

√
ln(T (T + 1)2JT/2δ)

2n
.

where PD(·) denotes the empirical probability of its argument.

Proof. f ∈ conv(C) has the form as

f(x) =
J∑

j=1

αtfj(x)

where fj ∈ C and the weights {αj} are positive and satisfy
∑J

j=1 αj = 1. Therefore,

{αj}J
j=1 can be regarded as probabilities on C. Define F as

F = {F (x) =
1

T

n∑
t=1

fj(t)(x) | fj(t) ∈ C}

where j(t) is independently chosen at random from {1, 2, · · · , J} according to the prob-

ability {αj}J
j=1. Thus, f can be associated with a distribution over F as defined by the

coefficients {αj}J
j=1.

In general, for two events A and B,

P (A) = P (A ∩ B) + P (A ∩Bc) ≤ P (A) + P (A ∩ Bc).

Then, we have, for any fixed g ∈ F and θ > 0,

P (Y f(X) ≤ 0) ≤ P (Y g(X) ≤ θ/2) + P (Y g(X) > θ/2 ∩ Y f(X) < 0).

47

Taking both side of this inequality with respect to the distribution on F , we have

P (Y f(X) ≤ 0) ≤ E[P (Y g(X) ≤ θ/2 | g)] + E[P (Y g(X) > θ/2 ∩ Y f(X) ≤ 0 | g)]

= E[P (Y g(X) ≤ θ/2 | g)] + E[P (Y g(X) > θ/2 ∩ Y f(X) ≤ 0 |X, Y)]

≤ E[P (Y g(X) ≤ θ/2 | g)]

+E[P (Y g(X) > θ/2 | Y f(X) ≤ 0, X, Y)] (33)

Due to Hoeffding’s inequality (Theorem 5), the inside of the expectation of the second

term is upperbounded as

P (Y g(X) > θ/2 | Y f(X) ≤ 0 |X, Y) ≤ P (Y g(X) − Y f(X) > θ/2 | Y f(X) ≤ 0 |X, Y)

≤ exp(−2
θ2

4
/(

T∑
t=1

(
2

T

)2

))

= exp(−Tθ2/8).

The right-hand side does not depend on X and Y . Thus, the second term in (33) has

the same upperbound. The inside of the expectation of the first term in (33) is upperly

bounded as follows: By applying Hoeffding’s inequality, for a fixed g ∈ F and θ > 0, we

have

P (P (Y g(X) ≤ θ/2) − PD(Y g(X) ≤ θ/2) > ε) ≤ exp(−2nε2).

The number of candidates of g (the number of possible combinations) is |J |T where J

is |C| as was described before. The candidates of θ is {2t/T}T
t=0 and thus its number is

(T + 1). Therefore, the probability of that there exist at least g ∈ F and θ > 0 such that

P (Y g(X) ≤ θ/2) − PD(Y g(X) ≤ θ/2) > ε

is at most (T + 1)|C|T exp(−2nε2). This implies with at least probability 1 − ε,

P (Y g(X) ≤ θ/2) ≤ PD(Y g(X) ≤ θ/2) +

√
ln((T + 1)JT/ε)

2n
.

The empirical probability in the first term is bounded as we did above:

PD(Y g(X) ≤ θ/2) ≤ PD(Y f(X) ≤ θ) + PD(Y g(X) ≤ θ/2 | Y f(X) ≤ θ)

≤ PD(Y f(X) ≤ θ) + PD(Y g(X) ≤ θ/2 | Y f(X) ≤ θ)

≤ PD(Y f(X) ≤ θ) + exp(−Tθ2/8).

48

Combined these results, with at least probability 1 − ε

P (Y f(X) ≤ 0) ≤ PD(Y f(X) ≤ θ) + 2 exp(−Tθ2/8) +

√
ln((T + 1)JT/ε)

2n
.

This inequality holds for any T ′ = 1, 2, · · · , T with at least probability 1−
∑T

T ′=1 ε since

the probability of the occurrence of several events is at most the sum of the probability of

the occurrence of each event. Therefore, taking ε = 2δ/T (T + 1), we have, with at least

probability 1 − δ,

P (Y f(X) ≤ 0) ≤ PD(Y f(X) ≤ θ) + 2 exp(−Tθ2/8) +

√
ln(T (T + 1)2JT/2δ)

2n
.

2.5.5 Comparison between ordinary boosting and regularized boosting

We show a simple example of binary classification to illustrate the effectiveness of this

type of regularized boosting. Suppose that the prior probability P (Y = 1) = P (Y =

−1) = 1/2 and that P (x | Y = 1) = N (μ1, 3I2) and P (x | Y = −1) = N (μ−1, 3I2) where

μ1 = (−2, 0)T and μ−1 = (2, 0). Here, N (μ, σ2) denotes a normal density function with

mean μ and covariance matrix Σ and IM denotes an M-dimensional identity matrix. In

this case, the target discriminant function F ∗
ada(x) defined in Eq. (31) is easily calculated

as

F ∗
ada(x) =

1

12
{‖x− μ−1‖2 − ‖x− μ1‖2}.

The Bayes classifier g∗ in this example is easily calculated as

g∗(x) = −sign((x)1).

When we use decision stump g∗ = f s(x; 1, 0,−1). Thus, this example is considerably

easy problem for AdaBoost. However, inspection of Figure 2 shows that AdaBoost per-

forms somewhat poorly in this example. AdaBoost found the optimal base classifier

f s(x; 1, 0,−1) at the first step and then overfitted to the training data as the step in-

creases. As a result, the decision boundary of AdaBoost was too complicated (Figure

2).

49

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2
(b)

Figure 2: The panel (a) shows the plot of error rates of AdaBoost prediction for gaussian
data. The panel (b) shows the plot of AdaBoost prediction over training data. Each
color corresponds to each class label. Black line shows the decision boundary given by
AdaBoost.

AdaBoost.L1 (See Section 2.4.3) performs better when its regularization parameter λ

is appropriately chosen (Figure 3-7). When λ is sufficiently large, the decision boundary

of AdaBoost.L1 is quite similar to that of AdaBoost. As λ becomes smaller, AdaBoost.L1

constructed more smooth decision boundary. Specifically, AdaBoost.L1 with λ = 1 yielded

the Bayes classifier. Therefore, we may control the smoothness of decision boundary by

tuning the regularization parameter λ. One way to choose λ was discussed by Lugosi and

Vayatis (2004). The other way is to choose λ yielding the best test error estimated by

cross-validation.

50

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2
(b)

Figure 3: The panel (a) shows the plot of error rates of AdaBoost.L1 with λ = 500 for
gaussian data. The panel (b) shows the training data (each color corresponds to each class
label) with the decision boundary (black line) that was constructed by AdaBoost.L1.

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(b)

Figure 4: The panel (a) shows the plot of error rates of AdaBoost.L1 with λ = 20 for
gaussian data. The panel (b) shows the training data (each color corresponds to each class
label) with the decision boundary (black line) that was constructed by AdaBoost.L1.

51

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2
(b)

Figure 5: The panel (a) shows the plot of error rates of AdaBoost.L1 with λ = 10 for
gaussian data. The panel (b) shows the training data (each color corresponds to each class
label) with the decision boundary (black line) that was constructed by AdaBoost.L1.

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(b)

Figure 6: The panel (a) shows the plot of error rates of AdaBoost.L1 with λ = 4 for
gaussian data. The panel (b) shows the training data (each color corresponds to each
class label) with the decision boundary (black line) that was constructed by AdaBoost.L1.

52

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2
(b)

Figure 7: The panel (a) shows the plot of error rates of AdaBoost.L1 with λ = 1 for
gaussian data. The panel (b) shows the training data (each color corresponds to each
class label) with the decision boundary (black line) that was constructed by AdaBoost.L1.

3 Application to shark bycatch data

There is a growing body of statistical literature on new algorithmic methods that are

good predictive techniques with complex data, such as the types of data frequently used

in fisheries analyses. Such methods include neural networks, random forests and boosting

(Hastie et al., 2001; Breiman, 2001; Breiman, 1999). These algorithmic techniques are not

model based as are generalized linear models (GLMs) (McCullagh and Nelder, 1989) and

generalized additive models (GAMs) (Hastie and Tibshirani, 1990). GLMs and GAMs are

tools used in fisheries data analysis to standardize bycatch and catch per unit effort data,

as well as to identify factors leading to increased levels of bycatch (incidental mortality

of non-target species) and to predict bycatch. The fishery-dependent data used in these

analyses are usually collected opportunistically. Such data are typically characterized by

a lack of a balanced sampling design and may contain correlated and/or weak features.

These aspects can make analysis with GLM and GAM techniques problematic. With the

increasing sizes of databases of fishery-dependent data, opportunities exist for exploring

statistical techniques that can yield stable predictions or serve as exploratory analysis

tools for these types of data.

53

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2
(b)

Figure 7: The panel (a) shows the plot of error rates of AdaBoost.L1 with λ = 1 for
gaussian data. The panel (b) shows the training data (each color corresponds to each
class label) with the decision boundary (black line) that was constructed by AdaBoost.L1.

3 Application to shark bycatch data

There is a growing body of statistical literature on new algorithmic methods that are

good predictive techniques with complex data, such as the types of data frequently used

in fisheries analyses. Such methods include neural networks, random forests and boosting

(Hastie et al., 2001; Breiman, 2001; Breiman, 1999). These algorithmic techniques are not

model based as are generalized linear models (GLMs) (McCullagh and Nelder, 1989) and

generalized additive models (GAMs) (Hastie and Tibshirani, 1990). GLMs and GAMs are

tools used in fisheries data analysis to standardize bycatch and catch per unit effort data,

as well as to identify factors leading to increased levels of bycatch (incidental mortality

of non-target species) and to predict bycatch. The fishery-dependent data used in these

analyses are usually collected opportunistically. Such data are typically characterized by

a lack of a balanced sampling design and may contain correlated and/or weak features.

These aspects can make analysis with GLM and GAM techniques problematic. With the

increasing sizes of databases of fishery-dependent data, opportunities exist for exploring

statistical techniques that can yield stable predictions or serve as exploratory analysis

tools for these types of data.

53

Few examples of the application of supervised learning methods to fisheries data are

available in the published literature. Decision trees have been used to relate species

groups to environmental variables and sampling locations (Taquet et al., 1997; Tserpes

et al., 1999). Some earlier methods for constructing decision trees have been found to

be unstable in the sense that a small perturbation in the data causes large changes in

predictions (Breiman, 1996b). As described in Section 2, recently developed methods for

constructing decision trees that make use of ensembles of classifiers or iterative reweighting

schemes tend to provide more stable predictions than earlier methods. Bagging is an

effective technique for reducing instability of decision trees, which is based on resampling

the data. Boosting is a recently developed method that employs an adaptively resampling

and combining algorithm to yield stable predictions. As a result, it was repoted by

Breiman (1998) that decision trees constructed by boosting are often more stable than

those constructed by bagging. In addition, one interesting thing is that boosting method

can be effective at yielding stable predictions for problems involving correlated features

where some conventional methods may fail to perform well. This property makes boosting

an attractive tool for analysis of fisheries bycatch data when problems can be cast in a

presence/absence context.

In many situations, bycatch data can be meaningfully studied in terms of presence/absence.

For example, presence/absence often adequately describes the bycatch of rare species, such

as turtles. For vulnerable species, such as sharks with delayed maturation and low re-

productive potential, a precautionary approach to bycatch mitigation may be desirable,

and thus, it may be preferable to reduce the data to presence/absence. In addition, if

counting error is severe, bycatch data may only be informative on the occurrence of by-

catch, not the exact magnitude. If bycatches are large but rare, there may be insufficient

observations of non-zero bycatch to build a good predictive model for the magnitude of

bycatch.

In this section we demonstrate the use of AdaBoost with shark bycatch data from the

eastern Pacific Ocean tuna purse-seine fishery. In Section 3.1, we present a graphical tool,

the score plot, for visualizing the dependence of bycatch on individual features. This tool

is similar to that used to summarize additive contributions from a logistic GAM model.

We explain the details of shark bycatch data in Section 3.2. In Section 3.3, AdaBoost

with decision stumps is applied to shark bycatch presence/absence data. We compare

the results of AdaBoost to those of the logistic GAM in Section 3.4. In Section 3.5, we

54

demonstrate that AsymBoost with decision stumps reduces FNR at cost of slight increase

in test error. Several discussions appear in Section 3.6.

3.1 Graphical display of contribution of each feature

Score plots are a graphical representation of the contribution of each feature to the dis-

criminant function. The discriminant function FT (x) built using AdaBoost with decision

stumps can be written as the sum of contributions from each of the m features:

FT (x) =

T∑
t=1

αtf
s
j(t)(x;mt, bt, st)

=
∑

{t|mt=1}
αtf

s
j(t)(x; 1, bt, st)

+
∑

{t|mt=2}
αtf

s
j(t)(x; 2, bt, st)

...

+
∑

{t|mt=M}
αtf

s
j(t)(x;M, bt, st)

=
M∑

m=1

Sm((x)m) (34)

The last equality is obtained by defining Sm((x)m), called the score function of (x)m, as

Sm((x)m) =
∑

{t|mt=m}
αtf

s
j(t)(x;mt, bt, st) (35)

where {t |mt = m} denotes the collection of values of the index t where the t-th classifier

f s
j(t) is based on the m-th feature. A plot of Sm((x)m) versus (x)m is referred to as a score

plot. Given new data x, Eq. (34) shows that FT (x) predicts a label according to the sign

of the sum of the scores of each feature.

We introduce the interpretation of Sm((x)m) based on the results of Friedman et al.

(2000). The logistic GAM models the log-odds by a linear function of x:

ln
P (Y =1 | x)
P (Y =−1 | x) =

M∑
m=1

sm((x)m; θm) (36)

where P (Y = 1 | x) denotes the probability that Y = 1 conditional on x, P (Y =

−1 | x) = 1 − P (Y =1 | x), and sm((x)m; θm) denotes a function of (x)m specified by the

55

parameter vector θm. For linear logistic regression, sm((x)m; am) = am(x)m where am is a

scalar parameter. For logistic GAM in our use, sm represents a smoothing spline. Given a

feature vector x, the prediction of the logistic GAM is the label {−1, 1} with the greatest

conditional probability. This prediction rule is the same as assigning the label according

to the sign of the right-hand side of Eq. (34). Therefore, the right-hand side of the Eq.

(36) is equivalent to Eq. (34) in terms of the prediction rule. The right-hand side of the

Eq. (36) is referred to as the discriminant function of the logistic GAM and each term

sm((x)m) the score of (x)m. For AdaBoost the true log-odds, denoted by F ∗
ada, minimizes

the expected exponential loss function as described in Section 2.5.2. Thus, logistic GAM

and AdaBoost aim at the same goal, aside from a positive constant multiplier, which

has no effect on prediction. The score function of each feature given by the logistic GAM

approximates the relationship between log-odds and each feature with a smoothing spline,

whereas AdaBoost with decision stumps approximates the relationship with a linear sum

of shifted step functions. Thus, it is meaningful to compare the properties of the score

function given by the logistic GAM with that given by AdaBoost. We present such a

comparison in Section 3.4.

The score plot provides a graphical means of screening features. A feature is informa-

tive if its score function has a large absolute value over most of the range of the feature.

Given a value of even a single feature, the prediction based on it is relatively sure if the

score of the feature takes on a large absolute value and if the pointwise confidence region

for the score function does not include zero at many points. Thus, inspection of score

plots can indicate which features are informative.

The leave-one-out test error can also be used to measure the informativeness of each

feature. The leave-one-out test error for feature (x)m is defined as the test error when (x)m

is excluded from building the classifier. Inspection of score plot shows the informativeness

of each feature based on only training data. By contrast, inspection of the leave-one-out

test error is based on both training and test data since leave-one-out test error is the

test error of the discriminant function that was constructed on the training data. This

implies that the leave-one-out test error can be a more effective means of determining

which features are informative for prediction because it is not affected by overfitting.

The score function also allows us to determine features which are unlikely to be useful

for discrimination. A feature is not likely to be useful for discrimination if its score is

almost zero. To see this quantitatively, we propose the following rough criterion, denoted

56

as |Sm|max.

|Sm|max =
max

x′
|Sm(x′)|

(1/n)
∑n

i=1 |
∑M

m′=1 Sm′((Xi)j′)|

where {X1, X2, · · · , Xn} are test data. |Sm|max is the ratio of the maximum absolute

value of m-th feature’s score to the averaged value of the discriminant function over the

test data set. Features that are unlikely to be useful for discrimination will have relatively

smaller values of |Sm|max. Note that we cannot know which features are most informative

for prediction entirely from |Sm|max because the score function is based only on the training

data and can be affected by overfitting. For this reason, |Sm|max is not useful for selecting

informative features because large values of Sm((x)m) over a small subset of the values

of (x)m will lead to a large |Sm|max, even if Sm((x)m) is close to zero over the rest of

the values of (x)m. However, it is unlikely that overfitting leads to large absolute values

of Sm((x)m) over the majority of the range of (x)m. For this reason, |Sm|max and the

leave-one-out test error will often agree on a feature’s utility. Features associated with

very large |Sm|max are typically informative in terms of the leave-one-out test error, while

features that do not have very large values of |Sm|max are not necessarily informative in

terms of the leave-one-out test error.

3.2 Data sets

Observers of IATTC aboard large fishing vessels of the international tuna purse-seine

fishery record bycatches of several species, including sharks, that are incidentally caught

as part of fishing operations (Bayliff, 2001). This surface fishery operates primarily in

oceanic waters of the eastern Pacific Ocean (Watters, 1999). In addition to estimating the

amounts of tuna catch and bycatch, observers record details about the local environment

(e.g., sea surface temperature) and details of the fishing operations and fishing gear. Silky

sharks (Carcharhinus falciformis) dominate the shark bycatch in this fishery2, with most

bycatch occurring in purse-seine sets on tunas associated with floating objects (‘floating

object’ sets)(IATTC, 2004). This analysis focuses on the bycatch of large silky sharks

(>150 cm total length), which are most likely sub-adult and adult animals (Oshitani

et al., 2003). Large silky sharks typically comprise about one-third of the silky shark

2Unpublished data of the Inter-American Tropical Tuna Commission, 8604 La Jolla Shores Drive, La
Jolla, California 92037-1508. Contact person: Marlon Roman-Verdesoto.

57

bycatch.

As an example of the application of AdaBoost to fisheries data, we regard the silky

shark bycatch problem as a binary classification problem. We use AdaBoost to develop

a classifier for predicting the occurrence of large silky shark bycatch (presence:Y = 1;

absence:Y = −1) in floating objects sets. To build this classifier, we use data on 3, 772

floating objects sets from 2001. Thirty percent of these sets had bycatch of one or more

large silky sharks. In spite of the predominance of sets with no sharks, shark bycatch is

distributed throughout the area occupied by the fishery (Figure 8). Candidate features

of the occurrence of silky shark bycatch include descriptors of the set location (latitude,

longitude), local environment (e.g., sea surfacee.g., temperature), characteristics of the

floating object and the purse-seine net, and characteristics of the community at the float-

ing object (e.g., biomass of other groups of animals). In total, 16 features were included

in the analysis. Details of these features are presented in Table 2. Some features are

correlated (Table 3), which may lead to instability of several classical classification tech-

niques.

58

Table 2: List of available features (with their abbreviations), the feature type and

the models in which each feature was used. Each model contains the fea-

tures marked with
√

. The feature shp takes on the values as as (1=cylin-

drical 2=polygonal 4=irregular 5=aggregated 6=other 7=spherical) de-

pending on the shape of the floating object. The feature col takes on the

values (1=red 2=green 3=orange 4=blue 5=yellow 6=black 7=white)

depending on the color of the floating object.

Feature abbrev. type Model I Model II Model III
Julian date dat Continuous

√ √ √

latitude (decimal degrees) lat Continuous
√ √ √

longitude (decimal degrees) lon Continuous
√ √ √

amount of small fishes
(numbers of animals)

sml Continuous
√ √ √

amount of tunas that could
have been prey for sharks
(metric tons)

pry Continuous
√ √ √

amount of target species of
tunas (metric tons)

tgt Continuous
√ √ √

amount of non-target species
of tunas (metric tons)

ntgt Continuous
√

amount of bycatch of species
other than tunas (number
of animals, excluding silky
sharks)

ntn Continuous
√

start time of the purse-seine
set (local time)

time Continuous
√

percentage of the floating ob-
ject covered with epibiota

epi Continuous
√ √

depth of the floating object
(meters)

dev Continuous
√ √

depth of the purse-seine net
(fathoms)

net Continuous
√ √

sea surface temperature (de-
grees Centigrade)

tmp Continuous
√ √

Beaufort sea state beau Categorical
√ √

shape of the floating object shp Categorical
√ √

color of the floating object col Categorical
√ √

59

Table 3: Sample correlations between several features in the shark bycatch data.

dat lat lon pry
lat 0.36
lon -0.41 -0.33
pry -0.10 -0.03 -0.02
tgt -0.20 -0.19 0.08 0.78

Figure 8: Proportion of sets with shark bycatch by one degree square area. Light gray

indicates values of 0, dark gray indicates values between 0 and 0.75, and black

indicates values of greater than 0.75.

We develop classifiers for the occurrence of shark bycatch using AdaBoost, AsymBoost

and logistic GAM for three models of increasing complexity (Table 2). Error rates, their

standard deviations, |Sm|max and the leave-one-out test error were calculated by averaging

the results of 100 trials. The training data and the test data sets for each trial were

60

independently constructed by dividing the original data set as follows. Each observation

of the original data set is assigned to either the training data set or the test data set

with probability 1/2. For the purpose of illustrating feature effects, score functions for

selected trials are presented. Approximate pointwise 95% confidence regions for score

functions were computed from the bootstrap resampled data as follows. We made 200

bootstrapped data sets from the training data set that was used in that trial. By applying

AdaBoost to each, we obtain 200 estimated discriminant functions. The upper bound of

95% confidence region is the plot of the fifth largest score and the lower bound is the plot

of the fifth smallest score at each point.

3.3 Prediction by AdaBoost

Application of AdaBoost to the shark bycatch data demonstrates the point that AdaBoost

with decision stumps gives very stable predictions with respect to the test error, even as

model complexity increases (Table 4). It can be seen that there is a slight reduction in the

average test error as the number of parameters increases. However, more importantly in

this specific example, the standard deviations of the test error remain largely the same as

the model complexity increases, illustrating the point that AdaBoost predictions remain

relatively stable. Inspection of Table 4 also shows that the FNR was much larger than

the FPR. Recall that the FPR is the probability that AdaBoost predicts the occurrence

of shark bycatch when no sharks were caught, while the FNR is the probability that

AdaBoost predicts no shark bycatch when in fact sharks were caught (see Eq. (26)).

Although this situation would be expected given the predominance of sets in the data

with no shark bycatch, it is not desirable from the point of view of identifying options

for bycatch mitigation. We illustrate an improvement to this situation with application

of AsymBoost in Section 3.5.

Table 4: AdaBoost test error rates and their standard deviations for each of the three

models.

Test Error(%) False Positive Ratio(%) False Negative Ratio(%)
model I 25.77 ± 0.76 10.75 ± 1.26 61.14 ± 3.06
model II 25.88 ± 0.76 10.63 ± 1.36 61.79 ± 2.98
model III 26.45 ± 0.70 9.48 ± 1.48 66.39 ± 3.36

Overfitting was not apparent with these data. k-fold cross validation (we used k =

61

10) is an effective technique for estimating the test error without referring to the test

data set. Generally, k-fold cross validation should be used to determine the optimal

iteration number (T), even though it requires additional computational cost. However,

with AdaBoost the choice of the exact value of T is often not a critical issue since the

increase of the test error caused by overfitting is relatively slow. In fact, the average test

error in our analysis does not vary much after it reaches its minimum value at around

step 130 (Figure 9). Therefore, even if the boosting iterations were stopped at step 200

(chosen heuristically), the average test errors are 26.77, 27.04 and 27.85 for model I, II

and III, respectively. These are equal to or only slightly worse than those obtained when

ten-fold cross-validation was used to select T . Note that this does not always hold when

the number of samples is significantly small or when other types of base classifiers are

used.

|Sm|max and the leave-one-out test errors indicate the existence of two types of non-

informative features. Inspection of Figure 10 shows that the following features, ‘amount

of non-target species of tunas’ (ntgt), ‘Beaufort sea state’ (beau), ‘shape of the floating

object’ (shp) and ‘color of the floating object’ (col), all have very low values of |Sm|max,

suggesting that they are the least informative features for the training data. From Figure

11 we can see that ‘amount of small fishes’ (sml), ‘amount of tunas that could have

been prey for sharks’ (pry), ‘amount of target species of tunas’ (tgt), ‘amount of non-

target species of tunas’ (ntgt), ‘start time of the purse-seine set’ (time), ‘percentage of

the floating object covered with epibiota’ (epi), ‘Beaufort sea state’ (beau), ‘shape of

the floating object’ (shp) and ‘color of the floating object’ do not increase the test error

significantly when they are removed. |Sm|max tells us which features are non-informative

for the training data, however, with the leave-one-out test error tells us which features

are non-informative for the test data set. In particular, the features, ‘amount of tunas

that could have been prey for sharks’ (pry), ‘start time of the purse-seine set’ (time),

‘percentage of the floating object covered with epibiota’ (epi) are slightly informative for

the training data set, but are not informative for the test data set. This implies that these

features contribute to overfit to the training data set. The features ‘Beaufort sea state’

(beau) and ‘shape of the floating object’ (shp) are neither informative for the training

data set nor for the test data set. These features are of little use for classification of shark

bycatch with this data set.

62

0 100 200 300 400

0
5

10
15

20
25

30

step

er
ro

r r
at

e(
%

)

Training Error(model I)

Test Error (model I)

Training Error(model II)

Test Error (model II)

Training Error(model III)

Test Error (model III)

Figure 9: AdaBoost training and test errors for each of the three models as a function of

the iteration number (step).

Informative features are most easily identified from the leave-one-out test error. In-

spection of Figure 11 shows that the features: ‘Julian date’ (dat), ‘longitude’ (lon), ‘lat-

itude’ (lat), have relatively large leave-one-out test error, well above the 95% confidence

region of the original test error, and are thus the informative features for this data set.

Most features were not found to be very informative with these data, although the features

‘amount of bycatch of species other than tunas’ (ntn) , ‘depth of the floating object’ (dev)

63

and ‘depth of the purse-seine net’ (net) and ‘sea surface temperature’ (tmp) are slightly

informative. This indicates that, in this data set, there are no prominent features except

‘dat’, ‘lon’ and ‘lat’ that are useful for the prediction of the occurrence of bycatch. Highly

informative features can also be identified from the score function, but care is needed.

Informative features are those that have large score values over most range of the feature

and narrow confidence regions with few zero-crossings. Inspection of Figure 12 shows

that, for example, the score function of the features ‘Julian date’ (dat) and ‘longitude’

(lon) have these characteristics.

The shape of the score function shows how each feature contributes to the discriminant

function. Inspection of Figure 12 shows that sharks were likely to be caught in sets made

during the first part of the year, in sets made far from the coast and in sets with a

large amount of bycatch of species other than tunas. The score plots also show when the

prediction based on each feature is not reliable. For example, for purse-seine sets between

about 90◦W and 130◦W , the feature ‘longitude’ (lon) does not contribute strongly to

the discriminant function since the confidence region crosses the zero line and the score

function takes relatively small absolute values. Finally, we may easily see from the bottom

right panel of Figure 12 that the feature ‘shape of the floating object’ (shp) does not

contribute to the discriminant function over the entire range of its values, as already

indicated by |Sm|max.

64

dat lat lon sml pry tgt ntgt ntn time epi dev net tmp beau shp col

feature left out

te
st

 e
rr

or

24
25

26
27

28

Figure 10: The average value of |Sm|max for each feature of AdaBoost (averaged over 100

trials.)

dat lat lon sml pry tgt ntgt ntn time epi dev net tmp beau shp col

feature

S
m

m
ax

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 11: The average value of the leave-one-out test error of AdaBoost (averaged over 100

trials.) The thick horizontal line indicates the test error for model I (averaged

over 100 trials) and the dashed lines indicate the upperbound and the lowerbound

of its 95% confidence region (calculated by bootstrap).

65

3.4 Comparison with logistic GAM

Comparison of the prediction performance and the score functions of AdaBoost and lo-

gistic GAM shows that those of AdaBoost are more stable than those of logistic GAM.

To obtain logistic GAM predictions for this comparison, we used the R package mgcv

(version 0.9-6) in the R language. The mgcv implementation of GAM uses thin-plate re-

gression splines (Wood, 2003) to represent the smooth functions and solves the multivari-

ate smoothing parameter estimation problem by using the Generalized Cross Validation

(GCV) criterion (Hastie et al., 2001, pp.216-217) with stable and efficient computational

methods (Wood, 2000; Wood, 2004). The thin plate regression splines are optimal low

rank smooths which do not have knots, thus avoiding the problems associated with “knot

placement”.

Table 5: Logistic GAM test error rates and their standard deviations for each of the three

models.

Test Error(%) False Positive Ratio(%) False Negative Ratio(%)
model I 26.28 ± 3.91 11.65 ± 6.60 60.74 ± 4.31
model II 26.48 ± 4.47 11.67 ± 8.4 61.29 ± 7.18
model III 26.44 ± 0.75 9.09 ± 1.18 67.25 ± 2.41

Inspection of Tables 4 and 5 shows that the prediction performance of AdaBoost and

of the logistic GAM are almost equal in terms of the average test error; both techniques

yielded an average test error of about 26%. However, it also shows that the standard

deviation of the test error of AdaBoost is smaller than that of logistic GAM. There are

two reasons why the prediction performance of logistic GAM varies. First, the logistic

GAM suffers from high correlation between features, even if they are informative, as do

some other classical methods. In fact, more careful inspection of Table 5 shows that

the standard deviations of the test error of model I and II given by the logistic GAM

are considerably larger than that of model III. We should note that ‘mgcv’ package was

already improved to be resistant to the high correlation between features. For our analysis,

the ‘mgcv’ package performed well in most trials, however, in a few trials, the test error

of logistic GAM was extremely large. Such trials occurred four times for model I and

five times for model II. By contrast, the test error of AdaBoost was stable for all trials.

Second, the shape of the score function of the logistic GAM varies considerably (‘edge

effect’). We discuss edge effects from the point of view of the score plot below.

66

Comparison of the score functions of AdaBoost and of the logistic GAM shows that,

in the presence of correlated features, the score functions of AdaBoost are more stable

than those of the logistic GAM. Recall that the score function given by the logistic GAM

approximates the relationship between the log-odds and each feature with a smoothing

spline, whereas AdaBoost with decision stumps approximates this relationship with a

linear sum of shifted step functions. Therefore, the shapes of the score functions given

by the two methods would be expected to be somewhat different. However, in the trials

where the test error of logistic GAM increased dramatically between model II and model

I, the score functions of logistic GAM also took excessively large values and lost their

shape, while those of AdaBoost remained very stable. This is illustrated in Figure 13

with the feature ‘amount of target species of tunas’ (tgt). The variability in the logistic

GAM score function between trials indicates its instability, while AdaBoost attains better

prediction performance with consistent score shape. We note that these variations are

seen only in the score plots of weakly informative features and only in the region where

the data are sparse. Thus, these variations do not cause much increase in the average test

error, but they do inflate the standard deviation of the test error (Table 5). Note that

the true score function of feature may change its shape in general when other features

are added, unless conditional on the label y, that feature and the additional features are

statistically independent.

Even for a specified set of features the score shape of the logistic GAM can be quite

variable, while that of AdaBoost is generally stable. Inspection of the right panel of Figure

14 shows that the score shape of logistic GAM varies most in the region where the data are

sparse. This is because the logistic GAM tries to estimate parameters based on only a few

data points, which may vary considerably depending on the data set. This phenomenon is

called an edge effect. Unbounded features, for example, ‘amount of target species tunas’

(tgt), tend to suffer from edge effects, regardless of their informativeness or the other

features in the model, because they have regions where the data are sparse. By contrast,

inspection of Figure 14 shows that the AdaBoost score functions have more stable shapes

across the entire range of values of the feature. Note that, in the region where the data are

dense, the score shape of AdaBoost and of the logistic GAM are not as variable and their

shapes are similar, both indicating that the occurrence of shark bycatch increased with

the amount of catch of target species of tunas. Because edge effects are most pronounced

in regions where data are sparse, edge effects do not typically lead to large increases in

67

the average test error. However, given new data which has an outlier value for a feature

that suffers from the edge effect, the prediction can be unreliable because the large value

of score of that feature may dominate the value of discriminant function. In this sense,

the score functions of AdaBoost are more tractable than those the logistic GAM. We note

that the range of AdaBoost score was half of that of logistic GAM because AdaBoost

approximates half the log-odds, while the logistic GAM approximates the log-odds (See

section 3.1).

68

0 100 200 300−
1

.5
−

0
.5

0
.5

1
.5

dat

s
c
o

re

0 100 200 300−
1

.5
−

0
.5

0
.5

1
.5

dat

s
c
o

re

−160 −140 −120 −100 −80−
1

.5
−

0
.5

0
.5

1
.5

lon

s
c
o

re

−160 −140 −120 −100 −80−
1

.5
−

0
.5

0
.5

1
.5

lon

s
c
o

re

0 500 1000 1500 2000−
1

.5
−

0
.5

0
.5

1
.5

ntn

s
c
o

re

0 500 1000 1500 2000−
1

.5
−

0
.5

0
.5

1
.5

ntn

s
c
o

re

1 2 3 4 5 6 7−
1

.5
−

0
.5

0
.5

1
.5

shp

s
c
o

re

1 2 3 4 5 6 7−
1

.5
−

0
.5

0
.5

1
.5

shp

s
c
o

re

Figure 12: Score plots obtained from the bycatch prediction by AdaBoost. The solid line

shows the score function The gray shaded region indicates the 95% confidence

region. The dotted horizontal line shows the zero level. The rug plot in each

panel shows the distribution of the data with respect to the range of each feature.

69

0 100 200 300 400 500

−3
−2

−1
0

1
2

3

tgt

sc
or

e

Model I

Model II

Model III

0 100 200 300 400 500

−3
−2

−1
0

1
2

3
sc

or
e

0 100 200 300 400 500

−3
−2

−1
0

1
2

3
sc

or
e

trial 1

tgt

sc
or

e
sc

or
e

sc
or

e

0 100 200 300 400 500

−3
−2

−1
0

1
2

3

tgt

sc
or

e

0 100 200 300 400 500

−3
−2

−1
0

1
2

3
sc

or
e

0 100 200 300 400 500

−3
−2

−1
0

1
2

3
sc

or
e

trial 1

tgt

sc
or

e
sc

or
e

sc
or

e
Figure 13: Score plots of ‘amount of target species of tunas’ (tgt) for AdaBoost and logistic

GAM predictions from models I, II and III in two separate trials. The rug plot

shows the distribution of the data with respect to ‘amount of target species

of tunas’ (tgt). Note that the value of the score of AdaBoost in this figure is

doubled for the comparison to the logistic GAM.

0 100 200 300 400 500

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

tgt

sc
or

e

(a)

0 100 200 300 400 500

−3
−2

−1
0

1
2

3

tgt

sc
or

e

(b)

Figure 14: Score plots of ‘amount of target species of tunas’ (tgt) for AdaBoost (a) and

logistic GAM (b) predictions of bycatch from model I for nine trials. The rug

plot shows the distribution of the data with respect to the range of the feature.

70

3.5 Control of the balance between the false positive and nega-

tive ratios

Highly skewed proportions of positive and negative samples in the data can strongly

influence the FPR and FNR. The relationship between the probability of misclassification

and FPR and FNR is given by the following equation:

probability of misclassification L(F) = P (Y = 1) · FNR + P (Y = −1) · FPR (37)

When nn dominates in the data, P (Y = 1) � P (Y = −1). In this case, the probability of

misclassification is minimized when FNR � FPR. Because of the preponderance of sets

with no shark bycatch in our data set (70% of sets had no shark bycatch), the imbalance

between the FPR and the FNR obtained from AdaBoost (Table 4) and the logistic GAM

(Table 5) is expected. This imbalance is, however, not desirable if the goal is to accurately

predict the occurrence of the shark bycatch. On average, 61% of the time the AdaBoost

model I predicted no bycatch given that bycatch had in fact occurred (Table 4).

Table 6: AsymBoost test error rates and their standard deviations for each of

the three models.

Test Error(%) False Positive Ratio(%) False Negative Ratio(%)
model I 29.53 ± 0.77 27.67 ± 1.48 33.90 ± 2.02
model II 30.40 ± 1.20 28.82 ± 2.07 34.15 ± 2.34
model III 31.71 ± 1.37 31.10 ± 2.68 33.15 ± 3.29

71

Figure 15: The proportion of the false negative predictions is shown by one degree square

area. The left panel shows results from AdaBoost, the right panel shows results

from AsymBoost. Light gray indicates values of 0, dark gray indicates values

between 0 and 0.75, and black indicates values of greater than 0.75.

Application of AsymBoost to the shark bycatch data decreased the FNR considerably

as compared to that of AdaBoost with only a slight increase in the overall test error.

Application of AsymBoost enables us to control the trade-off between the FPR and the

FNR whereby the FNR can be decreased at the expense of the FPR or vice versa. The

ideal trade-off depends on the purpose of the analysis. As a specific example, application

of AsymBoost to the shark bycatch data with its parameter k determined as per Eq. (29)

shows that the FNR of AsymBoost decreased to about half that of the FNR of AdaBoost,

with only a 3% increase in the test error (Table 6). Inspection of Figure 15 shows that the

proportion of false negative predictions by AsymBoost remains large in the eastern and

north-eastern region of the fishery, while it decreased in the south-western region. This

implies that the discriminant function of AdaBoost often took on small absolute values

for positive samples in this south-western region.

3.6 Discussion

We have demonstrated the use of a new predictive technique AdaBoost on the shark

bycatch data. First, when decision stumps are used as base classifiers, AdaBoost can

still yield stable predictions, even with many correlated features. This is not necessarily

true for classical discriminant techniques, such as logistic regression (Ryan, 1997, Section

9.9). Unlike most classical techniques, AdaBoost exploits all features together and can

72

achieve more accurate predictions. Second, AdaBoost with sufficiently base classifiers is

also relatively resistant to over-fitting. This means that the test error increases slowly for t

greater than the optimal iteration number (T).Thus, the prediction accuracy is not overly

sensitive to the stopping rule. Finally, with base classifiers based on only one feature, the

contribution of each feature to the discriminant function F (x) can be explored graphically

using score plots, an option not available for some other algorithmic techniques such as

neural networks.

Our analyses show that, compared to the logistic GAM, AdaBoost with decision

stumps gives stable predictions even with problematic data. We have illustrated that

AdaBoost performs well with correlated features, whereas the test error of the logistic

GAM was sometimes large. Generally, the use of logistic GAM requires extra effort to

remove the high correlation between features in the situation where many features are

available and their predictive utility is unknown. AdaBoost with decision stumps will

yield more stable predictions in such a situation. It was also demonstrated that, com-

pared with logistic GAM, score functions of AdaBoost were relatively consistent both

with respect to variability within the training data set and/or with increasing numbers

of features. It should be mentioned that these shortcomings of the logistic GAM stem

from the fact that the logistic GAM was not developed specifically for discrimination.

In fisheries science, GAMs have been mostly employed for standardization of indices of

relative abundance, and for modeling the effects of various features (e.g., temperature)

on such indices. In these cases, GAMs have been proven beneficial. It is still unknown

whether boosting methods will perform well in such applications. Comparison of both

methods for standardization of indices of relative abundance remains a challenge of future

work.

The use of more complicated base classifiers with AdaBoost may improve some as-

pects of the prediction performance. There exist decision boundaries which cannot be

approximated with linear sums of decision stumps. A simple example of this is when the

true decision boundary, (i.e., the true log-odds) is defined by products of the features:

ln
P (Y =1 | x)
P (Y =−1 | x) = ΠM

m=1(x)m.

In such cases, other types of classifiers are required. However, care is needed because the

properties of boosting depend strongly on the choice of the classifiers. AdaBoost with

73

classifiers other than decision stumps may not have all the favorable properties illustrated

in this thesis. Thus, the type of classifiers should be determined after due consideration

of the properties of the data.

Our results suggest that post-stratification of data such as the shark bycatch data

may improve the prediction performance of AdaBoost. As indicated by the results of

AsymBoost, the prediction performance of AdaBoost is not spatially uniform (Figure

15). We found that discriminant function of AdaBoost often takes on small absolute

values in the south-western region of the fishery (see Section 3.5). This indicates that

predicting shark bycatch in this area is more difficult than in other areas. Thus, there

is the possibility of improving the prediction performance of AdaBoost by stratifying the

data spatially and then applying AdaBoost separately to each stratum. Note that however

division of the data set may lead to increased overfitting because it decreases the number

of samples in each data set. Some improvements to the stopping rule may be needed to

mitigate overfitting.

Our results also suggest that bycatch prediction with such the shark bycatch data

may be improved by including information on the bycatch of nearby sets. Date (dat)

and location (lat, lon) were by far the most informative features of the occurrence of

shark bycatch for this data set (Figures 10-11). Similar results have been obtained from

other studies using were conventional techniques (e.g., Bigelow et al., 1999; Walsh and

Kleiber, 2001). These features undoubtedly serve as proxies for characteristics of the local

environment and community structure that were not adequately captured by sea surface

temperature (tmp) and the various measures of the size of the community at the floating

object (sml, pry, tgt, ntgt, and ntn). Although no theory currently exists for including

values of the label y in nearby sets at earlier time periods as features in AdaBoost, our

results suggest that this would be worthy of further study. Results of such analyses might

lead to both improved prediction of bycatch and a better understanding of the important

spatial and temporal scales for bycatch.

4 Local boosting method

We propose a new boosting method for improving the approximation error. As was

illustrated in the previous section, AdaBoost with decision stumps performs well in several

situations. However, much complicated decision boundary cannot be approximated by

74

classifiers other than decision stumps may not have all the favorable properties illustrated

in this thesis. Thus, the type of classifiers should be determined after due consideration

of the properties of the data.

Our results suggest that post-stratification of data such as the shark bycatch data

may improve the prediction performance of AdaBoost. As indicated by the results of

AsymBoost, the prediction performance of AdaBoost is not spatially uniform (Figure

15). We found that discriminant function of AdaBoost often takes on small absolute

values in the south-western region of the fishery (see Section 3.5). This indicates that

predicting shark bycatch in this area is more difficult than in other areas. Thus, there

is the possibility of improving the prediction performance of AdaBoost by stratifying the

data spatially and then applying AdaBoost separately to each stratum. Note that however

division of the data set may lead to increased overfitting because it decreases the number

of samples in each data set. Some improvements to the stopping rule may be needed to

mitigate overfitting.

Our results also suggest that bycatch prediction with such the shark bycatch data

may be improved by including information on the bycatch of nearby sets. Date (dat)

and location (lat, lon) were by far the most informative features of the occurrence of

shark bycatch for this data set (Figures 10-11). Similar results have been obtained from

other studies using were conventional techniques (e.g., Bigelow et al., 1999; Walsh and

Kleiber, 2001). These features undoubtedly serve as proxies for characteristics of the local

environment and community structure that were not adequately captured by sea surface

temperature (tmp) and the various measures of the size of the community at the floating

object (sml, pry, tgt, ntgt, and ntn). Although no theory currently exists for including

values of the label y in nearby sets at earlier time periods as features in AdaBoost, our

results suggest that this would be worthy of further study. Results of such analyses might

lead to both improved prediction of bycatch and a better understanding of the important

spatial and temporal scales for bycatch.

4 Local boosting method

We propose a new boosting method for improving the approximation error. As was

illustrated in the previous section, AdaBoost with decision stumps performs well in several

situations. However, much complicated decision boundary cannot be approximated by

74

the boosting method when base classifiers are too simple. In fact, it is easy to find many

examples in which the boosting method with decision stumps performs poorly.

A simple way to overcome this difficulty is to use more complicated base classifiers.

For example, decision stumps on a product of some pair of feature, decision trees, and so

on. It is, however, not desirable in general since the upperbound on the generalization

error increases as the complexity of base classifier class increases (See Section 2.5.4).

In addition, the use of complicated base classifiers may make it impossible to interpret

discriminant functions. For examples, we may not obtain score plots (See Section 3.1)

when base classifiers based on more than one feature are used.

These observations motivated us to develop a localized version of boosting method,

which is referred to as the local boosting. The local boosting is derived based on an

idea similar to but not same as the local likelihood. A direct application of the local

likelihood approach to boosting method would increase the computational cost of boosting

method significantly in high-dimensional case, which often makes the implementation of

the algorithm infeasible. The local boosting, however, does not require much increase of

computational cost. The localization improves the approximation error of the ordinary

boosting method in complicated situations even when decision stumps are used. We give

the proof of the Bayes risk consistency of local boosting. Inspection of the proof elucidates

that the local boosting improves the approximation error at cost of slight increase of

estimation error, compared to the ordinary boosting. Simulation studies illustrate the

theoretical results and the advantageous aspects of the local boosting.

4.1 Derivation of the local boosting algorithm

We now derive the algorithm of the local boosting for binary and multiclass classification.

By borrowing an idea from the local likelihood methods, the local boosting algorithm is

derived by localizing the base classifier. For this purpose, we introduce kernel functions

Kh : RM ×RM → R+ with the form Kh(x, y) = k(‖x−y‖/h) such that maxx∈X K(x, x′) ≤
1 and

∫
X Kh(x, x

′)dx < ∞ for any x′ ∈ X , where h > 0 is a bandwidth, R+ denotes the

set of nonnegative real numbers, ‖ · ‖ is an arbitrary norm on X and k : R+ → R+ is a

function such that K(0) = 1 and limz→±∞ k(z) = 0. A few examples of function k are

75

listed below.

krec(z) = I(|z| ≤ 1) (rectangular kernel)

kgau(z) = exp(−z2) (gaussian kernel)

ktri(z) = I(|z| ≤ 1)(1 − |z|3)3 (tricube kernel)

Let K be a set of kernel centers:

K = {x� ∈ X | � = 1, 2, · · · , N}.

The set K should cover the whole range of X as densely as possible. However, covering

X in a high-dimensional case is difficult. A reasonable choice of K will be discussed in

Sections 4.2.1 and 4.2.2. We here derive a local version of regularized boosting though our

localization idea may also apply to the ordinary boosting. Let us first consider a binary

classification. Recall that the usual regularized boosting algorithm is derived from the

optimizations in Eq. (20) and (21). The local boosting algorithm is obtained by replacing

the base classifier, f , in these optimizations by Kh(·, x′)f as follows.

f = argmin
f ′∈C

Aλ
D(Ft−1 + α′(Kh(·, x′)f ′ − Ft−1)), for any positive α′ (38)

α = argmin
α′>0

Aλ
D(Ft−1 + α′(Kh(·, x′)f − Ft−1)). (39)

where x′ is selected randomly from K. Then, the discriminant function is updated as

Ft(x) = (1−α)Ft−1(x)+αKh(x, x
′)f(x). We may assume the positiveness of α because of

the assumption that C is negation closed. We calculate f approximately by using Taylor

expansion with respect to α′ as follows.

f = argmin
f ′∈C

Aλ
D(Ft−1 + α′(Kh(·, x′)f ′ − Ft−1))

≈ argmin
f ′∈C

Aλ
D(Ft−1) +

∂Aλ
D(Ft−1 + α′(Kh(·, x′)f ′ − Ft−1))

∂α′

∣∣∣∣
α′=0

α′

= argmin
f ′∈C

n∑
i=1

φ′(−λYiFt−1(Xi))(−Yi)(Kh(Xi, x
′)f ′(Xi) − Ft−1(Xi))λα

′

= argmin
f ′∈C

n∑
i=1

Kh(Xi, x
′)φ′(−λYiFt−1(Xi))(−Yif

′(Xi))λα
′

= argmin
f ′∈C

n∑
i=1

Kh(Xi, x
′)φ′(−λYiFt−1(Xi))I(Yi �= f ′(Xi)). (40)

76

As a result, the optimization in Eq. (38) does not depend on α′. It is worth noting the

difference compared to the direct application of the local likelihood approach to boosting.

The conventional local likelihood approach would suggest that Eq. (11) would be localized

as

f = argmin
f ′∈C

1

n

n∑
i=1

Kh(Xi, x
′)φ(−Yi(Ft−1(Xi) + α′(f ′(Xi) − Ft−1(Xi))))

and similarly for α. This approach would require a high computational cost because

the boosting algorithm is repeated N times for each kernel center x′ ∈ K. In addition,

this approach does not construct a single discriminant function but different discriminant

functions for all x′ ∈ K. The proposed localization overcomes these difficulties with minor

changes made to the usual boosting algorithm. The complete summary of the algorithm

of the local boosting is described below.

1. Prepare K and determine a bandwidth h and a smoothing parameter λ.

2. Initialize weights on sample {d0(i)}n
i=1 as 1/n for each i and F0 ≡ 0.

3. For t = 1, 2, · · · , T , repeat the following process.

(a) Choose a new kernel center x�(t) from K such that �(t) is randomly chosen from

{1, 2, · · · , N}. Set

wt(i) =
1

Zt
dt−1(i)Kh(Xi, x�(t)) (41)

for each i where Zt is a normalization constant such that
∑n

i=1wt(i) = 1.

(b) Find a new locally best classifier around x�(t) and its coefficient, denoted as

fj(t) and αt, as follows:

j(t) = argmin
j∈{1,2,··· ,J}

εt(fj) (42)

αt = argmin
α∈R+

Aλ
D(Ft−1 + α(Kh(·, x�(t))fj(t) − Ft−1)} (t ≥ 2)

with α1 = 1 where the localized weighted error rate, εt(f), is defined as

εt(f) =

n∑
i=1

wt(i)I(Yi �= f(Xi)).

77

(c) Update {dt−1(i)}n
i=1 and the discrimination function, Ft−1, as follows.

Ft(x) = (1 − αt)Ft−1(x) + αtKh(x, x�(t))fj(t)(x) (43)

dt(i) = φ′(−λYiFt(Xi)) (44)

4. Finally, we obtain a resultant classifier g(x) = sign(FT (x)).

It holds that
∑T

t=1 αt = 1. This implies that FT (x) necessarily takes its value in the closed

interval [−1, 1].

In the local boosting algorithm, fj(t) is a locally best classifier around x�(t) in the

following sense. To see this, we may interpret the local boosting algorithm from the

view of resampling, similarly to that of the usual boosting (Section 2.5.1). From the

fact that the sum of all {wt(i)}n
i=1 is always restricted to one, we can regard wt(i) as

the probability assigned to the i-th sample (Xi, Yi). Suppose that a pair of new random

variables (X ′
t, Y

′
t) is resampled from D according to the probabilities {wt(i)}n

i=1. Inspec-

tion of Eq. (41) and (44) indicates that each weight on sample wt(i) is proportional to

Kh(Xi, x�(t))φ
′(−λYiFt−1(Xi)). Thus, (X ′

t, Y
′
t) takes its values on either samples {(Xi, Yi)}

in D with a higher probability if Xi is nearer to x�(t) and/or if a larger Ft−1(Xi) predicts

a label of Xi incorrectly, i.e., the larger that −YiF (Xi) is. The locally weighted error

rate εt(f) can be regarded as the probability of misclassification over (X ′
t, Y

′
t) given by

f . Intuitively, Eq. (42) corresponds to the search of f that most improves the prediction

performance of Ft−1 locally around x�(t). Finally, fj(t) is added to Ft−1 as in Eq. (43)

after being localized in the same way as that in Eq. (41).

Bandwidth h controls the extent of localization of boosting. Infinite bandwidth (h→
∞) introduces no localization and reduces the local boosting to the usual boosting because

Kh(·, ·) always takes the value one, and then, a base classifier is chosen in Eq. (42) based

on all the training data. When a discriminant function consisting of only a single convex

combination of base classifiers performs poorly over all the training data, h should be

small. If h is smaller, the base classifier must works in smaller area and may perform

better. The final discriminant function is constructed by combining such locally accurate

classifiers and then may perform well. The selection of h will be discussed in Sections

4.2.1 and 4.2.2.

We should mention that our idea about localization can directly apply to the multiclass

case. It is easy to see that regularized boosting for multiclass classification is localized in

78

the same way. Therefore, we omit the redundant derivation and show just its algorithm

below.

1. Prepare K and determine a bandwidth, h, and a smoothing parameter, λ.

2. Initialize weights on each sample {d0(i, y)}n
i=1 as I(y
=Yi)

n(|Y|−1)
for each i and F0 ≡ 0.

3. For t = 1, 2, · · · , T , repeat the following process.

(a) Choose a new kernel center x�(t) from K such that �(t) is randomly chosen from

{1, 2, · · · , N}. Set

wt(i, y) =
1

Zt
dt(i, y)K(Xi, x�(t))

for each i where Zt is a normalization constant such that
∑n

i=1

∑
y∈Y wt(i, y)I(y �=

Yi) = 1.

(b) Find a new locally best classifier around x�(t) and its coefficient, denoted as

fj(t) and αt, as follows:

j(t) = argmin
j∈{1,2,··· ,J}

εt(fj)

αt =

{
argminα∈R+

Aλ
D(Ft−1 + α(Kh(·, x�(t))fj(t) − Ft−1)} (t > 1)

1 (t = 1)

where the localized weighted error rate, εt(f), is defined as

εt(f) = (1/2)
n∑

i=1

∑
y∈Y

wt(i, y)(f(Xi, y) − f(Xi, Yi) + 1)I(y �= Yi)

(c) Update {dt−1(i, y)}n
i=1 and the discrimination function, Ft−1, as follows.

Ft(x, y) = (1 − αt)Ft−1(x, y) + αtKh(x, x�(t))fj(t)(x, y)

dt(i, y) = φ′(−λYi(Ft(Xi, y) − Ft(Xi, Yi)))

4. Finally, we obtain a classifier F (x) = argmaxy∈Y FT (x, y).

79

4.2 Statistical properties of local boosting

We discuss several statistical properties of the local boosting, compared to the usual boost-

ing. First, we derive statistical models associated with both boosting methods. Then,

we prove the Bayes risk consistency of the local boosting. Inspection of the proof pro-

vides a useful viewpoint for understanding how the local boosting improves the prediction

performance of the usual boosting.

4.2.1 Model associated with local boosting

The ordinary boosting and the local boosting are connected to different models respec-

tively made from the same class of base classifiers.

For comparison, we first show the model associated with usual boosting. Let us

consider the global model, M, defined as

M = {F (x) =
J∑

j=1

θjfj(x) |
J∑

j=1

θj = 1, ∀j, fj ∈ C, θj ≥ 0}.

The global model M is the set of discriminant functions consisting of any convex combi-

nation of C. The usual boosting searches for the minimizer of Aλ
D from M as seen below.

The update rule, Eq. (22), indicates that a discriminant function constructed by the usual

boosting has the form:

FT (x) =

T∑
t=1

αtfj(t)(x),

such that
∑T

t=1 αt = 1. Let Γj = {t | fj(t) = fj}. Defining θj =
∑

t∈Γj
αt, FT (x) can be

rewritten as

FT (x) =

J∑
j=1

θjfj(x).

Thus, any discriminant function constructed by usual boosting can be regarded as an

element of the global model, M.

The local boosting is connected to a local model, MK, defined as

MK = {F (x) =
J∑

j=1

θ̄j(x)fj(x) | θ̄j(x) =
1

N

N∑
�=1

Kh(x, x�)θj� ,

J∑
j=1

N∑
�=1

θj� = N , ∀j, fj ∈ C, θj� ≥ 0}. (45)

80

Any discriminant function constructed by the local boosting is an element of MK as

follows. The update rule, Eq. (43), indicates that the local boosting constructs a discrim-

inant function with the form

FT (x) =

T∑
t=1

Kh(x, x�(t))αtfj(t)(x) (46)

such that �(t) is randomly chosen from {1, 2, · · · , N} and
∑T

t=1 αt = 1. Let Γj,� =

{t | fj(t) = fj , �(t) = �}. Taking θj� =
∑

t∈Γj,�
Nαt, the discriminant function, Eq. (46),

can be rewritten as

FT (x) =
1

N

N∑
�=1

J∑
j=1

θj�Kh(x, x�)fj(x).

Clearly, the discriminant function, FT (x), is in MK. A discriminant function in MK con-

sists of different convex combinations depending on the location in X while a discriminant

function in M consists of a single convex combination of base classifiers. Therefore, MK

can be more greedy than M. This richness of MK causes the local boosting to be Bayes

risk consistent in a variety of situations than that of the usual boosting.

The selection of K and a bandwidth h plays an important role in the local boosting

algorithm. A (K, h) pair is referred to as a localizing factor in the remainder of this thesis.

A localizing factor controls the trade-off between the approximation ability of MK and an

overfitting. We discuss this issue roughly here and will discuss it again more theoretically

from the view of the Bayes risk consistency in Section 4.2.2. MK with h→ ∞ reduces to

M regardless of K. As described in the previous section, h → ∞ reduces the algorithm

of the local boosting to that of usual boosting. In fact, taking h → ∞, Kh(·, x�) ≡ 1 for

any x� ∈ K, and then, θ̄j(x) does not depend on x because

lim
h→∞

θ̄j(x) →
1

N

N∑
�=1

θj�.

Clearly, discriminant function F (x) =
∑J

j=1 θ̄j(x)fj(x) is an element of M in this case.

Thus, MK reduces to M when h→ ∞. Decreasing h enhances the approximation ability

of MK but also suffers from overfitting to the training data and requires a more dense K.

To see that, we introduce some notation. Let Bε(�, h) be the region where the value of a

kernel with center x� ∈ K takes a value larger than ε, i.e.,

Bε(�, h) = {x ∈ X |Kh(x, x�) > ε}.

81

We also denote the union of {Bε(�, h)}n
�=1 by Bε(K, h) and denote the region {x ∈ X | x /∈

Bε(K, h)} by Bε(K, h). For a given kernel center, x�, a discriminant function, Ft−1, is

updated in the local boosting algorithm such that only training data in Bε(�, h) with

0 < ε � 1 are more accurately classified. Roughly, a discriminant function constructed

by the local boosting consists of local discriminant functions that are constructed by the

usual boosting based on training data in Bε(�, h). Therefore, Bε(K, h) should cover the

whole region of X . When h is large, Bε(K, h) can cover X even with small K. In particular,

when h → ∞, Bε(K, h) covers X even with a single point set K and then FT consists of

only a single convex combination classifier. In contrast, small h and dense K partition X
into small areas finely and then yield a more complicated discriminant function. However,

an h that is too small requires a significantly large K because Bε(K, h) should cover X ,

which is often infeasible in a high-dimensional case. Let us focus on a specific Bε(�, h).

If h is smaller, Bε(�, h) is narrower and there will be fewer training data in Bε(�, h). In

particular, when h approaches zero, several problems may occur. When a kernel function

with compact support is used, special care is needed. If a kernel center x′ such that

x′ �= Xi for any i is selected, then the local boosting algorithm with too small h comes to

a halt because wt(i) = 0 for all i in Eq. (41). Even when we use a kernel function with

infinite support, Bε(�, h) includes only the training data on x�, i.e., at most one datum

in general. In this case, the weights {wt(i)} are zero except on indices in which Xi is the

point nearest to x�. (Note that this holds exactly for any kernel function with infinite

support satisfying limn→∞ k(xn)/k(yn) → 0 for any {xn, yn}∞n=1 such that xn, yn → ∞
and yn − xn → ∞ as n → ∞.) In this case, the local boosting is significantly overfit to

the training data. When the training data nearest to x� are mislabels (defined in Section

2.4.3), local boosting may perform poorly over the region around x�. In addition, if there

are training data in Bε(K, h), they have almost no effect through the construction of a

discriminant function. A localizing factor should be selected by considering the trade-off

between approximation ability and overfitting.

A practical choice of K is the training data itself. In actual situations, samples are

often generated in a specific region of X . It is not necessary to cover the whole region of

X but only the support of X:

supp(X) = {x ∈ X |P (x) > 0},

where P (x) denotes the underlying marginal distribution of X. One simple and practical

82

choice of K based on this idea is a set of the points in the given training data, D =

{(Xi, Yi)}n
i=1, i.e.,

K∗ = {x� = X� | � = 1, 2, · · · , n}. (47)

Bε(K∗, h) covers a region where data are likely to be generated and asymptotically cover

supp(X). In addition, there are no training data in Bε(K∗, h). Thus, we used this K∗

in the simulation studies in Section 4.3. Note that the local boosting with small h still

tends to overfit to training data even when K∗ is used. As n→ ∞, the coefficient θ̄j(x) in

the model MK with K∗ converges to E[Kh(x,X)θj(X)] due to the law of large numbers

(Recall that θj� = θj(x�)). Thus, the local boosting with K∗ is asymptotically associated

with the asymptotical model, MK, defined as

MK = {F (x) =
J∑

j=1

θ̄j(x) | θ̄j(x) = E[Kh(x,X)θj(X)]fj(x),

J∑
j=1

Eθj(X) = 1 , ∀j , fj ∈ C , θj(x) ≥ 0}.

Note that θj(x) is defined on supp(X) because any element of K∗ is necessarily in supp(X).

We may use other types of K if it satisfies the condition discussed in Section 4.2.2. For

example, we may use the points generated from a uniform distribution over the support of

X for decreasing duplicates of kernel centers if supp(X) is known in advance. In addition,

it is not necessary to increase the number of points in K as n→ ∞.

4.2.2 Bayes Risk Consistency

The risk of the local boosting converges to Bayes risk L∗ almost surely in a variety

of situations, compared to that of the usual boosting. We confine ourselves to binary

classification in this section. The convergence of the risk to L∗ is referred to as the Bayes

risk consistency (Lugosi and Vayatis, 2004). The Bayes risk consistency of the local

boosting is shown in Theorem 32. The local boosting iteratively minimizes Aλ
D as the

iteration number T increases infinitely. Therefore, we survey properties of an estimator

given by the local boosting, F̂ , defined as

F̂ = argmin
F ′∈MK

Aλ
D(F ′),

where MK is defined in Eq. (45). Note that we often design to find an appropriate T to

avoid overfitting in practical uses. We use the notion of Rademacher complexity in the

83

proof (e.g., Bartlett and Mendelson, 2002; Bartlett et al., 2003). For a given set, F , of

mappings from X to R, Rademacher complexity of F is defined as

Rn(F) =
2

n
E sup

F∈F
|σiF (Xi)| ,

where σi is a Rademacher variable for each i, i.e., a random variable that is independent

of all other random variables and that takes the values 1 or −1 with probability 1/2.

One can find various upperbounds of Rademacher complexity in many literatures (e.g.,

Ledoux and Talagrand, 1991; van der Vaart and Wellner, 1996). Although several steps

in the proof of the theorem are the same as those in (Koltchinskii and Panchenko, 2002;

Lugosi and Vayatis, 2004), we describe all steps of the proof for completeness.

Theorem 32. Let φ be a strictly convex and strictly increasing cost function such that

φ(0) = 1 and limx→−∞ φ(x) = 0. For each n, let K be a set of fixed points in X ,

K = {x� ∈ X | � = 1, 2, · · · , Nn},

such that Nn, the cardinality of K, is less than or equal to nβ for a finite β > 0. Assume

that the class of base classifier, C, has a finite VC dimension, V , is negation closed, and

that the distribution of (X, Y) satisfies

lim
λ→∞

inf
F∈MK

Aλ(F) −A∗ = 0, (48)

where A∗ = inff ′:X→RA(f ′). Let λn be a sequence of positive numbers such that

λn → ∞, λnφ
′(λn)

√
lnn

n
→ 0

as n→ ∞ and define the estimator, F̂n, as

F̂n = argmin
F ′∈MK

Aλn
D (F ′).

Then, gF̂n
= sign(F̂n) is strongly Bayes risk consistent, that is,

lim
n→∞

L(gF̂n
) = L∗ almost surely.

Before jumping to the proof of Theorem 32, we introduce some lemmas that were

given by Lugosi and Vayatis (2004).

Lemma 33. Let h(η, α) = ηφ(−α) + (1− η)φ(α) and H(η) = infα∈R h(η, α). H(η) is

a strictly concave function on the interval (0, 1).

84

Proof. Since η ∈ (0, 1), there exists uniquely α that minimizes h(η, α) for any fixed η

from Proposition 23. Write α minimizing h(η, α) as α(η). It is easy to show that, for any

η1 �= η2, α(η1) �= α(η2). Therefore, for any fixed θ ∈ [0, 1], we have

H(θη1 + (1 − θ)η2) = inf
α
h(θη1 + (1 − θ)η2, α)

= inf
α
h(θη1 + (1 − θ)η2, α)

= inf
α

(θη1 + (1 − θ)η2)φ(−α) + (1 − θη1 − (1 − θ)η2)φ(α)

= inf
α
θ(η1φ(−α) + (1 − η1)φ(α)) + (1 − θ)(η2φ(−α) + (1 − η2)φ(α))

= inf
α
θh(η1, α) + (1 − θ)h(η2, α)

> θ inf
α
h(η1, α) + (1 − θ) inf

α
h(η2, α)

= θH(η1) + (1 − θ)H(η2).

Lemma 34 (Lemma 4 of Lugosi and Vayatis, 2004). Let φ : R → R be a cost

function satisfying Condition 18. Then the function

H(η) = inf
α∈R

ηφ(−α) + (1 − η)φ(α)

defined for η ∈ [0, 1], is strictly concave, symmetric around 1/2, and H(0) = H(1) = 0,

H(1/2) = 1.

Proof. Concavity follows from Lemma 33. Define h(η, α) = ηφ(−α) + (1 − η)φ(α).

Then, H(η) = infα∈R h(η, α). Concavity of H follows from Lemma 33. For any η′ ∈
[0, 1/2],

H(1/2 − η′) = inf
α∈R

h(1/2 − η′, α)

= inf
α∈R

(1/2 − η′)φ(−α) + (1/2 + η′)φ(α)

= inf
α∈R

(1/2 + η′)φ(α) + (1 − (1/2 + η′))φ(−α)

= inf
α∈R

h(1/2 + η′,−α)

= H(1/2 + η′).

Thus, H is symmetry around 1/2. Clearly H(0) = H(1) = 0. Due to the strict convexity

85

of φ, we have,

H(1/2) = inf
α∈R

h(1/2, α)

= inf
α∈R

1

2
{φ(−α) + φ(α)}

≤ φ

(
1

2
(−α) +

1

2
(α)

)
= φ(0) = 1.

Lemma 35 (Lemma 5 of Lugosi and Vayatis, 2004). Let φ be a cost function

satisfying Condition 18. Let {fn : X → R} be an arbitrary sequence such that

lim
n→∞

A(fn) − A∗ = 0

where A∗ = inff∈F A(f). Then, gn(x) = sign(fn(x)) has a probability of misclassification

converging to L∗.

Proof. The difference of probability of misclassification can be rewritten as follows

(Devroye et al., 1996).

L(gn) − L∗ = E[I(gn(X) �= Y) − I(g∗(X) �= Y)]

= E[I(gn(X) �= g∗(X)){I(gn(X) �= Y) − I(g∗(X) �= Y)}]

= E[I(gn(X) �= g∗(X)){η(X)(I(gn(X) �= 1) − I(g∗(X) �= 1))

+(1 − η(X))(I(gn(X) �= −1) − I(g∗(X) �= −1))}]

For a fixed x such that η(x) ≥ 1/2, the inside of the expectation in the last equality is

calculated as

I(gn(x) �= g∗(x)){η(x)(I(gn(x) �= 1) − I(g∗(x) �= 1))

+(1 − η(x))(I(gn(x) �= −1) − I(g∗(x) �= −1))} = I(gn(x) �= g∗(x)){η(x) − (1 − η(x))}

= I(gn(x) �= g∗(x))(2η(x) − 1).

86

For a fixed x such that η(x) < 1/2,

I(gn(x) �= g∗(x)){η(x)(I(gn(x) �= 1) − I(g∗(x) �= 1))

+(1 − η(x))(I(gn(x) �= −1) − I(g∗(x) �= −1))} = I(gn(x) �= g∗(x)){−η(x) + (1 − η(x))}

= I(gn(x) �= g∗(x))(1 − 2η(x))

Thus,

L(gn) − L∗ = E[I(gn(X) �= g∗(X))|2η(X)− 1|].

Define Sδ = {x | η(x) ∈ [1/2 − δ, 1/2 + δ]}. Clearly,

L(gn) − L∗ ≤ 2δ + P (X /∈ Sδ and gn(X) �= g∗(X)).

Proceeding by contradiction, assume that P (X /∈ Sδ and gn(X) �= g∗(X)) does not vanish

as n → ∞. Then, there necessarily exists a sequence of sets Kn ⊂ S̄δ such that gn(x) �=
g∗(x) on Bn and lim infn P (X ∈ Bn) > 0. Without loss of generality, we may assume that

gn(x) = 1 and g∗(x) = −1 on Bn due to the symmetry. Then, fn(x) ≥ 0 and f ∗(x) < 0.

Note that f ∗(x) < 0 implies that η(x) < 1/2 − δ.

Define h(η, α) = ηφ(−α)+(1−η)φ(α). Then, the difference A(fn)−A∗ can be written

as

A(fn) − A∗ = E[h(η(X), fn(X)) − inf
f ′∈F

h(η(X), f ′(X))]. (49)

Write, for any set B ⊂ X ,

A|B(f) = E[I(X ∈ B){η(X)h(η(X), f(X))}].

Since the inside of the expectation in Eq. (49) is a positive function, we then have, for

any B ⊂ X ,

A(fn) − A∗ ≥ A|B(fn) −A|B(f ∗).

Since h(η(x), ·) is a strictly convex function taking its minimum at f ∗(x), we have that

h(η(x), fn(x)) > h(η(x), 0) = φ(0) = 1. Then, we have

A|Bn(fn) = E[I(X ∈ Bn)h(η(X), fn(X))] > E[I(X ∈ Bn)] = P (X ∈ Bn).

On the other hand, H(η) = infα∈R h(η, α) is strictly increasing on the interval [0, 1/2]

due to Lemma 34. Then, we have

A|Bn(f ∗) = E[I(X ∈ Bn)H(η(X))] ≥ E[I(X ∈ Bn)H(1/2− δ)] = H(1/2− δ)P (X ∈ Bn).

87

Thus,

A(fn) − A∗ ≥ A|B(fn) − A|B(f ∗) > (1 −H(1/2 − δ))P (X ∈ Bn).

Because of the concavity of H (Lemma 34), we have lim infn→∞A(fn)−A∗ > 0, which is

a contradiction.

We also use Theorem 4.12 of Ledoux and Talagrand (1991). Before jumping to this

theorem, we define contraction.

Definition 36 (Contraction). Let ψ be a function mapping from R to R. We say

that ψ is a contraction if |ψ(s) − ψ(t) ≤ |s− t| for any s, t ∈ R.

Theorem 37 (Theorem 4.12 of Ledoux and Talagrand 1991). Let F : R+ → R+

be convex and increasing. Let further ψi : R → R (i = 1, 2, · · · , n) be contractions such

that ψi(0) = 0. Then, for any bounded subset T in Rn,

EF

(
1

2
sup
t∈T

∣∣∣∣∣
n∑

i=1

σiψi(ti)

∣∣∣∣∣
)

≤ EF

(
sup
t∈T

∣∣∣∣∣
n∑

i=1

σiti

∣∣∣∣∣
)
.

Proof. Define (A)+ as AI(A > 0) and (A)− as A(I(A < 0)). Then, we have

1

2
sup
t∈T

∣∣∣∣∣
n∑

i=1

σiψi(ti)

∣∣∣∣∣ =
1

2
sup
t∈T

(
n∑

i=1

σiψi(ti)

)+

−
(

n∑
i=1

σiψi(ti)

)−

(since |A| = (A)+ − (−A)−)

≤ 1

2
sup
t∈T

(
n∑

i=1

σiψi(ti)

)+

− 1

2
sup
t∈T

(
n∑

i=1

σiψi(ti)

)−

Since F is convex and increasing, we have

EF

(
1

2
sup
t∈T

∣∣∣∣∣
n∑

i=1

σiψi(ti)

∣∣∣∣∣
)

≤ EF

(
1

2
sup
t∈T

(
n∑

i=1

σiψi(ti)

)+

− 1

2
sup
t∈T

(
n∑

i=1

σiψi(ti)

)−)

≤ 1

2
EF

(
sup
t∈T

(
n∑

i=1

σiψi(ti)

)+)
+

1

2
EF

(
sup
t∈T

−
(

n∑
i=1

σiψi(ti)

)−)
.

Using the fact that (A)− = −(−A)+ and that −σi has the same distribution of as σi, we

have

EF

(
sup
t∈T

−
(

n∑
i=1

σiψi(ti)

)−)
= EF

(
sup
t∈T

(
n∑

i=1

(−σi)ψi(ti)

)+)

= EF

(
sup
t∈T

(
n∑

i=1

σiψi(ti)

)+)

88

Thus,

EF

(
1

2
sup
t∈T

∣∣∣∣∣
n∑

i=1

σiψi(ti)

∣∣∣∣∣
)

≤ EF

(
sup
t∈T

(
n∑

i=1

σiψi(ti)

)+)
The statement follows from the following lemma with G = F ((·)+).

Lemma 38. If G : R → R be convex and increasing, then

EG

(
sup
t∈T

n∑
i=1

σiψi(ti)

)
≤ EG

(
sup
t∈T

n∑
i=1

σiti

)
.

Proof. By conditioning and iteration, it suffices to show that if T is a subset of R2

and ψ is a contraction on R such that ψ(0) = 0, then

EG

(
sup
t∈T

n∑
i=1

t1 + σ2ψ(t2)

)
≤ EG

(
sup
t∈T

n∑
i=1

t1 + σ2t2

)
.

Instead of proving this inequality directly, we show that, for any t, s ∈ T ,

EG

(
sup
t∈T

n∑
i=1

t1 + σ2t2

)
≥ 1

2
G(t1 + ψ(t2)) +

1

2
G(s1 + ψ(s2))

, which implies the above statement. We may assume that

(∗) t1 + ψ(t2) ≤ s1 + ψ(s2)

(∗∗) s1 − ψ(s2) ≤ t1 − ψ(t2)

without loss of generality. We distinguish the following four cases.

Case: t2 ≥ 0, s2 ≥ 0 First, Assume that s2 ≤ t2. It suffices to show that

1

2
G(t1 + ψ(t2)) +

1

2
G(s1 − ψ(s2)) ≤

1

2
G(t1 + t2) +

1

2
G(s1 − s2)

since the right-hand side is obviously less than or equal to EG(supt∈T (t1 + σ2t2)).

Set a = s1 − ψ(s2), b = s1 − s2, a
′ = t1 + t2, b

′ = t1 + ψ(t2) so that we sould like to

prove that

G(a) −G(b) ≤ G(a′) −G(b′).

Since φ is a contraction with ψ(0) = 0 and s2 ≥ 0, |ψ(s2)| ≤ s2. Therefore,

a− b = s2 − ψ(s2) ≥ 0.

89

Due to (∗), we also have

b′ − b = t1 + ψ(t2) − s1 + s2 ≥ s1 + ψ(s2) − s1 + s2 = ψ(s2) + s2 ≥ 0.

Furthermore, again by contraction and s2 ≤ t2,

a− b = s2 − ψ(s2) ≤ t2 − ψ(t2) = a′ − b′.

Since G is convex and increasing, the map G(·+ x)−G(·) is also increasing for any

positive x. Taking x as a− b ≥ 0, we have

G(a) −G(b) = G(b+ (a− b)) −G(b)

≤ G(b′ + (a− b)) −G(b′)

(due to that b ≤ b′)

≤ G(a′) −G(b′).

(using that a− b ≤ a′ − b′)

When s2 ≥ t2, the argument is similar changing s into t and ψ into −ψ.

Case: t2 ≤ 0, s2 ≤ 0 It is completely similar to the preceding case.

Case: t2 ≥ 0, s2 ≤ 0 Since ψ(t2) ≤ t2, −ψ(s2) ≤ −s2, we have directly

1

2
G(t1 + ψ(t2)) +

1

2
G(s1 − ψ(s2)) ≤ 1

2
G(t1 + t2) +

1

2
G(s1 − s2). (50)

Case: t2 ≤ 0, s2 ≥ 0 Similar to the preceding case.

Now we turn back to the proof of Theorem 32.

Proof. It suffices to show that Aλn(F̂n) converges to A∗ almost surely since the state-

ment follows from Lemmas 34 and 35. Denote an element of MK that minimizes Aλn by

F̄n. Then, we have

Aλn(F̂n) − A∗ = Aλn(F̂n) −Aλn(F̄n) + Aλn(F̄n) − A∗

= {Aλn(F̂n) − Aλn(F̄n)} + inf
F∈MK

{Aλn(F̄n) − A∗}. (51)

90

The second term on the right-hand side converges to zero due to the assumption. Due to

lemma 8.2 of Devroye et al. (1996), the first term has an upperbound as follows:

Aλn(F̂n) − Aλn(F̄n) = Aλn(F̂n) −Aλn
D (F̂n) + Aλn

D (F̂n) − Aλn(F̄n)

≤ sup
F∈MK

∣∣Aλn(F) − Aλn
D (F)

∣∣+ {Aλn
D (F̄n) −Aλn(F̄n)}

≤ 2 sup
F∈MK

∣∣Aλn(F) −Aλn
D (F)

∣∣ . (52)

McDiarmid’s inequality (Theorem 8) implies that for any δ > 0

P (sup
F∈MK

∣∣Aλn(F) − Aλn
D (F)

∣∣−E sup
F∈MK

∣∣Aλn(F) −Aλn
D (F)

∣∣ > δ) ≤ exp

{
−nδ2

2(λnφ′(λn))2

}
.

Or equivalently, at least with probability 1 − δ,

sup
F∈MK

∣∣Aλn(F) −Aλn
D (F)

∣∣ ≤ E sup
F∈MK

∣∣Aλn(F) − Aλn
D (F)

∣∣+ λnφ
′(λn)

√
2 ln(1/δ)

n
. (53)

The first term on the right-hand side of Eq. (53) has an upperbound with respect to

Rademacher complexity of MK as follows.

Let D′ = {X ′
i, Y

′
i }n

i=1 be an independent copy of random variables {Xi, Yi}n
i=1. Due to

the standard symmetrization technique, we have

E sup
F∈MK

∣∣Aλn(F) −Aλn
D (F)

∣∣ = E sup
F∈MK

∣∣E[Aλn

D′(F)] − Aλn
D (F)

∣∣
≤ E sup

F∈MK

∣∣Aλn
D′(F) − Aλn

D (F)
∣∣

=
1

n
E sup

F∈MK

∣∣∣∣∣
n∑

i=1

φ(−λnY
′
i F (X ′

i)) − φ(−λnYiF (Xi))

∣∣∣∣∣
=

1

n
E sup

F∈MK

∣∣∣∣∣
n∑

i=1

σi{φ(−λnY
′
i F (X ′

i)) − φ(−λnYiF (Xi))}
∣∣∣∣∣

=
1

n
E sup

F∈MK

∣∣∣∣∣
n∑

i=1

σi{(φ(−λnY
′
i F (X ′

i)) − 1) − (φ(−λnYiF (Xi)) − 1)}
∣∣∣∣∣

≤ 2

n
E sup

F∈MK

∣∣∣∣∣
n∑

i=1

σi(φ(−λnYiF (Xi)) − 1)

∣∣∣∣∣
≤ 4

n
λnφ

′(λn)E sup
F∈MK

∣∣∣∣∣
n∑

i=1

σi(−YiF (Xi))

∣∣∣∣∣
=

4

n
λnφ

′(λn)E sup
F∈MK

∣∣∣∣∣
n∑

i=1

σiF (Xi)

∣∣∣∣∣
= 2λnφ

′(λn)Rn(MK). (54)

91

The inequality in the third-last line follows from Theorem 37. The second-last equality

follows because Zi = −σiYi is equal to σi. The last equality is obtained just by the

definition of Rademacher complexity. Define K ∗ C as

K ∗ C = {Kh(x, x�)fj(x) | x� ∈ K , fj ∈ C}.

Rademacher complexity of MK is equal to that of K ∗ C, which follows from

Rn(MK) =
2

n
E sup

F∈MK

∣∣∣∣∣
n∑

i=1

σiF (Xi)

∣∣∣∣∣
=

2

n
E sup

{θj�}

∣∣∣∣∣
n∑

i=1

σi
1

Nn

J∑
j=1

Nn∑
�=1

Kh(Xi, x�)θj�fj(Xi)

∣∣∣∣∣
=

2

n
E sup

{θj�}

∣∣∣∣∣
J∑

j=1

Nn∑
�=1

θj�

Nn

n∑
i=1

σiKh(Xi, x�)fj(Xi)

∣∣∣∣∣
=

2

n
E sup

x�∈K
sup
f∈C

∣∣∣∣∣
n∑

i=1

σiKh(Xi, x�)f(Xi)

∣∣∣∣∣
= Rn(K ∗ C).

The second-last equality follows because a convex combination takes its extremal value

(supremum or infimum) when only one coefficient takes the value of one and others are

zero.

Rademacher complexity of K∗C has an upperbound with respect to V as follows. Let

R̂n(K ∗ C) =
2

n
E

[
sup

F∈K∗C

∣∣∣∣∣
n∑

i=1

σiF (Xi)

∣∣∣∣∣ |X1, X2, · · · , Xn

]
.

Then, Rn(K ∗ C) can be written as Rn(K ∗ C) = ER̂n(K ∗ C). Define Hf as {x | f(x) =

1 , x ∈ X} for any f ∈ C and H as {Hf | f ∈ C}. Then, R̂n(K ∗ C) is written as

R̂n(K∗C) =
2

n
E

[
max
x�∈K

sup
Hf∈H

∣∣∣∣∣
n∑

i=1

σiKh(Xi, x�)(I(Xi ∈ Hf) − I(Xi /∈ Hf))

∣∣∣∣∣ |X1, X2, · · · , Xn

]
.

Then, we have

R̂n(K ∗ C) =
2

n
E

[
max
x�∈K

sup
Hf∈H

∣∣∣∣∣
n∑

i=1

σiKh(Xi, x�)(I(Xi ∈ Hf) − I(Xi /∈ Hf))

∣∣∣∣∣ |X1, X2, · · · , Xn

]

=
2

n
E

[
max
x�∈K

max
Hf∈Ĥ

∣∣∣∣∣
n∑

i=1

σiKh(Xi, x�)(I(Xi ∈ Hf) − I(Xi /∈ Hf))

∣∣∣∣∣ |X1, X2, · · · , Xn

]
,

92

where Ĥ denotes the subset of H in which any two elements in Ĥ have different intersec-

tions with {Xi}n
i=1. Lemma 4 implies that

E

[
exp(θ

n∑
i=1

σiKh(Xi, x�)(I(Xi ∈ Hf) − I(Xi /∈ Hf)))|X1, X2, · · · , Xn

]
≤ exp(nθ2/2)

Thus, by applying Lemma 6, we have

E

[
max
x�∈K

max
Hf∈Ĥ

∣∣∣∣∣
n∑

i=1

σiKh(Xi, x�)(I(Xi ∈ Hf) − I(Xi /∈ Hf))

∣∣∣∣∣ |X1, X2, · · · , Xn

]
≤
√

2n ln(2Nn|Ĥ|).

Let us denote the VC shatter coefficient of H by SH. By applying Proposition 13, we

have

R̂n(K ∗ C) ≤ 2

n

√
2n ln 2nβSH(n)

≤ 2

√
2n ln 2nβ(n+ 1)V

n

≤ 2

√
2 ln 2(n+ 1)V +β

n

≤ 2

√
2 ln(2(n+ 1))V +β

n

= 2

√
2(V + β) ln 2(n+ 1)

n
.

By taking expectations of both sides, we have

Rn(K ∗ C) ≤ 2

√
2(V + β) ln 2(n+ 1)

n
. (55)

Eqs. (52), (53), and (55) imply that the first term of Eq. (51) is bounded with at least

probability 1 − δ as

Aλn(F̂n) −Aλn(F̄n) ≤ 8λnφ
′(λn)

√
2(V + β) ln 2(n + 1)

n
+ 2λnφ

′(λn)

√
2 ln(1/δ)

n
. (56)

Inspection of the proof of Theorem 32 provides a useful viewpoint for comparison

between the usual boosting and the local boosting. The left-side of Eq. (51) is referred

to as risk bias. Risk bias can be decomposed into two parts as in Eq. (51). We write the

decomposition here again for convenience.

Aλn(F̂n) −A∗ = {Aλn(F̂n) − Aλn(F̄n)} + inf
F∈MK

{Aλn(F̄n) −A∗}.

93

The first term is referred to as estimation error and the second term is referred to as

approximation error. Clearly, both terms always take nonnegative values. First, we

should mention what this theorem indicates about the usual boosting. As described in

the previous section, the usual boosting can be regarded as the local boosting with h→ ∞
and K consisting of an arbitrary single point (N = 1). In this case, the assumption in

Eq. (48) about the approximation error reduces to

lim
λ→∞

inf
F∈M

Aλ(F) −A∗ = 0

and the upperbound of the estimation error reduces to

Aλn(F̂n) − Aλn(F̄n) ≤ 8λnφ
′(λn)

√
2V ln 2(n + 1)

n
+ 2λnφ

′(λn)

√
2 ln(1/δ)

n

because N ≡ 1 implies that β = 0. The usual boosting and the local boosting have

different characteristics in view of the estimation error and the approximation error.

The estimation error of the local boosting may be worse than that of the usual boosting

when the same base classifiers are used. The estimation error reflects the risk difference

between the minimizer of expected loss and empirical loss in model MK. If a model is more

complicated, the estimation error may be larger because the model may be more overfit

to the training data more. In fact, the estimation error relates to the model complexity

as was seen in Eq. (54). Inspection of Eq. (56) indicates that the estimation error of

both boosting methods approach zero as n → ∞ when C has a finite VC dimension.

The remarkable difference is the increase, β, in V , which depends on the number of kernel

center candidates. Therefore, the estimation error of the local boosting may be worse than

that of usual boosting in practical situations (n <∞). However, the extent of the increase

is not significant in general because β = lnNn/ lnn. Specifically, β = 1 when K = K∗,

which is defined in Eq. (47). If we use the usual boosting with more complicated base

classifiers instead of employing the local boosting, then the corresponding VC dimension,

V , itself increases. Compared to this case, β = 1 is the least increase.

The local boosting may improve the approximation error significantly compared to

the usual boosting. The approximation error reflects the model’s approximation ability.

As described above, the estimation errors of both boosting methods with appropriate C
are reduced to zero as n → ∞. Therefore, the Bayes risk consistency of both boosting

methods depends on whether or not their approximation error reduces to zero as n→ ∞,

i.e., the assumption in Eq. (48). The local boosting may have a considerably smaller

94

approximation error than that of the usual boosting. To see this simply, suppose that

φ = exp in the remainder of this section. As described in Section 2.5.2, Friedman et al.

(2000) shows that A∗ is attained by half log-odds denoted by F ∗, i.e.,

F ∗(x) =
1

2
ln

P (Y =1 | x)
P (Y =−1 | x) .

The approximation error is reduced to zero as n → ∞ if there exists F (x) ∈ lin(C) such

that F ∗(x) = F (x) where lin(C) denotes the set of all linear combinations of C. Note

that the sum of coefficients is not restricted to one here due to the fact that λn → ∞ as

n→ ∞ combined with the following proposition.

Proposition 39. Assume that F ∗(x) takes its values in the closed interval [−u, u],
and C is negation closed. If there exists a real number r > 0 and F (x) ∈ M such that

F ∗(x) = rF (x), then there necessarily exists F ′(x) ∈ M such that F ∗(x) = λF ′(x) for

any λ > r.

Proof. Because C is negation closed, it can necessarily be partitioned into two comple-

mentary sets: {f+
j (x)}J/2

j=1 and {f−
j (x)}J/2

j=1 such that f+
j = −f−

j for any j ∈ {1, 2, · · · , J/2}.
Without loss of generality, there exists a set of nonnegative coefficients {θ∗j}J

j=1 such that

F ∗(x) = r
∑J/2

j=1 θ
∗+
j f+

j (x) and
∑J/2

j=1 θ
∗+
j = 1. Now F ′(x) can be written as

F ′(x) =

J/2∑
j=1

λθ+
j f

+
j (x) +

J/2∑
j=1

λθ−j f
−
j (x).

It suffices to find nonnegative {θ+
j , θ

−
j }

J/2
j=1 such that

∑J/2
j=1 θ

+
j + θ−j = 1 and F ∗(x) =

λF ′(x). Let θ+
j = (1 − u)θ∗+j and θ−j = uθ∗+j for some 0 < u < 1. Clearly, these

{θ+
j , θ

−
j }

J/2
j=1 satisfy

∑J/2
j=1 θ

+
j +θ−j = 1. Due to the condition that λF ′(x) = F ∗(x), we have

the equations

rθ∗+j = λ{(1 − u)θ∗+j }

for any j. Because λ > r, this equation has a unique solution u = λ−r
2λ

. Then, taking

95

θ+
j = λ+r

2λ
θ∗+j and θ−j = λ−r

2λ
θ∗+j , we have

λF ′(x) = λ

J/2∑
j=1

θ+
j f

+
j (x) + λ

J/2∑
j=1

θ−j f
−
j (x)

= λ

J/2∑
j=1

(θ+
j − θ−j)f+

j (x)

= λ

J/2∑
j=1

r

λ
θ∗+j f+

j (x)

= r

J/2∑
j=1

θ∗+j f+
j (x)

= F ∗(x)

The fact that F (x) ∈ lin(C) is equivalent to the fact that the underlying distribution

P (Y =y | x) is included in the exponential model associated with M, which is defined as

P(M) =

{
exp(−(y + 1)

∑J
j=1 θjfj(x))

1 + exp(−2
∑J

j=1 θjfj(x))

∣∣∣∣ ∀j , θj ≥ 0

}
. (57)

In contrast, the approximation error of the local boosting is reduced to zero as n→ ∞ if

P (Y =y | x) is included in the local exponential model associated with C, which is defined

as

P(MK) =

{
exp(−(y + 1)

∑J
j=1 θ̄j(x)fj(x))

1 + exp(−2
∑J

j=1 θ̄j(x)fj(x))

∣∣∣∣ ∀j , θ̄j(x) =
1

Nn

Nn∑
�=1

Kh(x, x�)θj� , θj ≥ 0

}
.

(58)

Specifically, the following asymptotical local exponential model associated with MK re-

places Eq. (58) when K = K∗.

P(MK) =

{
exp(−(y + 1)

∑J
j=1 θ̄j(x)fj(x))

1 + exp(−2
∑J

j=1 θ̄j(x)fj(x))

∣∣∣∣ ∀j , θ̄j(x) = E[Kh(x,X
′)θj(X

′)] , θj(x) ≥ 0

}
(59)

There also exists no restriction on the sum of coefficients in models Eq. (58) and (59)

due to the same reason as that in the case of Eq. (57). Suppose now that P(M) is a

misspecified model, i.e., P (Y =y | x) /∈ P(M) (or equivalently, a single linear combination

of C cannot approximate F ∗). In this case, the approximation error of the usual boosting

96

does not vanish even in the asymptotical sense. The local boosting, however, may reduce

its approximation error to zero if P(M) is locally correct. To see this formally, let {Xq}Q
q=1

be a partition of X , i.e., X = ∪Q
q=1Xq and Xq ∩Xq′ = ϕ for any q �= q′ where ϕ denotes an

empty set. P(M) is locally correct means that there exist positive {θjq} such that, for a

partition {Xq},

P (Y =y | x) =

Q∑
q=1

I(x ∈ Xq)
exp(−(y + 1)Fq(x))

1 + exp(−2Fq(x))

where Fq(x) ∈ M for each q, or, equivalently,

F ∗(x) =

Q∑
q=1

I(x ∈ Xq)Fq(x). (60)

In this case, F ∗(x) can be approximated by the local boosting as follows. Let Γq =

{� | x� ∈ Xq} and Iq(x) = (1/N)
∑

�∈Γq
Kh(x, x�). Then, the local boosting may construct

a discriminant function such that

F (x) =

Q∑
q=1

Iq(x)Fq(x).

When K is distributed with sufficient density in each Xq, and an appropriate h is selected,

Iq(x) can approximate I(x ∈ Xq) to some extent. Therefore, this localized discriminant

function, F (x), can approximate F ∗(x) more accurately than discriminant functions in

lin(C). In particular, restricting our goal to decrease only approximation error, h should

be as small as possible. In fact, h → 0 enhances the approximation ability of P(MK) as

well as that of nonparametric models when n → ∞. To see this, assume that Kh(·, ·) is

a standard gaussian kernel and that K = K∗. Taking hn = (1/π)λ
−2/M
n as the bandwidth

of the kernel, we have

lim
n→∞

λnθ̄j(x) = lim
n→∞

λn

n

n∑
�=1

Khn(x,X�)θj�

= lim
n→∞

1

n

n∑
�=1

N (X�; x,
hn

2
IM)θj�

= E[N (X; x,
hn

2
IM)θj(X)]

= θj(x)P (x),

where N (μ,Σ) is a normal distribution with mean μ and covariance Σ. IM denotes an

97

M-dimensional identity matrix. Thus, P(MK) approaches the set{
exp(−(y + 1)

∑J
j=1 θ̃j(x)fj(x))

1 + exp(−2
∑J

j=1 θ̃j(x)fj(x))

∣∣∣∣ ∀j , θ̃j(x) ≥ 0

}
, (61)

where θ̃j(x) = θj(x)P (x). In this case, a discriminant function has the form F (x) =∑J
j=1 θ̃j(x)fj(x). Clearly, this model can approximate F ∗(x) with the form Eq. (60) with

any complicated or fine partition and then can decrease the approximation error to zero in

general. In practical situations, however, the local boosting with h → 0 performs poorly

due to the following reason. Recall the same notations defined in the previous section. If

h is smaller, Bε(K, h) is larger for fixed K. In Bε(K, h), the absolute value of F (x) is less

than ε. If h is too small, there may exist a large area such that

{x | λnε� F ∗(x)}.

Therefore, an excessively small h increases the approximation error in general unless K
is sufficiently dense such that Bε(K, h) covers supp(X). However, the enlargement of K
increases the upperbound of the estimation error as was seen above. Specifically, when

h → 0 the upperbound of the estimation error diverges to infinity because K is required

to be an infinite set. The localizing factor controls this trade-off between the estimation

error and the approximation error. In other words, the localizing factor connects the

parametric model, P(M), with the nonparametric model in Eq. (61) smoothly. A similar

interpretation is discussed by Eguchi et al. (2003) in the framework of the local likelihood.

Some references studied the optimal selection of bandwidth h in this framework (Fan and

Gijbels, 1995; Fan et al., 1998). Such studies may apply to the local boosting to select

the optimal localizing factor. We note that these observations may apply similarly to a

general function, φ, that satisfies Condition 18.

Case Bandwidth h Kernel Centers K Approximation Error Estimation Error
(a) small dense small large
(b) large sparse large if P (Y =y | x) /∈ P(M) small
(c) large dense large if P (Y =y | x) /∈ P(M) large
(d) small sparse surely large small

Table 7: Summary of trade-off between estimation error and approximation error.

As a result, the local boosting may have the Bayes risk consistency in wider situations

than those of the usual boosting when a localizing factor is appropriately set. The de-

pendence of the trade-off between the estimation error and the approximation error on a

98

localizing factor is summarized in Table 7. The selection of a localizing factor in Cases (c)

and (d) is undesirable, which, however, may sometimes occur in practical applications.

Case (d), i.e., selection of a small bandwidth, h, and a sparse K causes a large Bε(K, h).
Thus, the approximation error is significantly large unless F ∗(x) is almost zero for any

x ∈ Bε(K, h). Under the restriction that Bε(K, h) is small, if a bandwidth, h, is smaller,

K should be more dense. We assume that h and K pairs in Cases (a)-(c) are designed

to satisfy this restriction. Therefore, the approximation errors in Cases (b) and (c) are

small if P(M) is correct. In Case (c), however, the estimation error may be large because

K is dense. Case (c) is the worst case when P(M) is a misspecified model. Cases (a)

and (b) illustrate proper selections of localizing factors. The usual boosting is a special

case of Case (b). If P(M) is correct, Case (b) illustrates the best selection. However,

the approximation error is large when P(M) is not correct, even though the estimation

error is small. Here, Case (a) illustrates the best case. The localizing factor should be

selected such that h is as large as possible and K is as sparse as possible, unless the

approximation error increases. We recommend the use of K∗ as K. When K = K∗, the

upperbound of estimation error for the local boosting increases the least compared to the

use of more complicated base classifiers. In addition, K∗ with a proper bandwidth h may

also decrease the approximation error asymptotically due to the following reason. When

we use K∗ with a proper h, Bε(K, h) may be small since K∗ is distributed all over supp(X)

according to the underlying distribution. In particular, the local boosting with K∗ may

have the strongest approximation ability as n → ∞ since we can reduce the bandwidth

h to zero without increase of Bε(K, h). The use of K∗ will also be supported by several

simulations in the next section.

We illustrate the situation where P (Y =y | x) /∈ P(M) when decision stumps Cds (See

Section 2.4.1) are used as base classifiers. Suppose the following XOR situation where the

Bayes risk is not zero:

P (Y =1 | x) = (1 − ρ){I(x ∈ X1) + I(x ∈ X3)} + ρ{I(x ∈ X2) + I(x ∈ X4)}

P (Y =−1 | x) = ρ{I(x ∈ X1) + I(x ∈ X3)} + (1 − ρ){I(x ∈ X2) + I(x ∈ X4)}

where Xq (q = 1, 2, 3, 4) are those in Fig. 16 and 0 < ρ < 1/2. The half log-odds in this

case is easily calculated:

F ∗(x) =
1

2
ln

1 − ρ

ρ

4∑
q=1

(−1)q+1I(x ∈ Xq). (62)

99

The Bayes risk is also easily calculated as L∗ = ρ. Suppose that we use decision stumps as

base classifiers. Any discriminant function consisting of a linear combination of decision

stumps can be written with the form

F (x) =

M∑
m=1

Sm((x)m),

where Sm((x)m) is a score function defined in Eq. (35) However, F ∗ in Eq. (62) cannot

be written with such an additive form. Clearly, F ∗ /∈ lin(Cds) even though Cds is widely

used base classifiers. In fact, the best classifier in lin(Cds) is

F (x) =
1

4
ln

1 − ρ

ρ
(f s(x; 1,−1, 0) + f s(x; 2,−1, 0)),

in which L(sign(F)) = ρ + 1
4
(1 − 2ρ). MK may construct a discriminant function that

is closer to F ∗. Let K be a set of each center of Xq, i.e., {xq}4
q=1 in Fig. 16. We use a

rectangular kernel function (i.e., krec(z) and L1 norm) and the bandwidth h is set to v.

Denote f1(x) = f s(x; 2, 1, 0) and f2(x) = f s(x; 2,−1, 0). Set {θjq} as

θjq =

{
1
2
ln 1−ρ

ρ
{I(xq ∈ X1) + I(xq ∈ X4)} (j = 1)

1
2
ln 1−ρ

ρ
{I(xq ∈ X2) + I(xq ∈ X3)} (j = 2)

.

Then, we have

F ∗(x) =
2∑

j=1

4∑
q=1

Kv(x, xq)θjqfj(x).

Thus, the local boosting has the Bayes risk consistency. In practical cases, choosing such

an opportune K and h is difficult, particularly in high-dimensional cases. We, however,

expected that K∗ with a proper h performs well. In more detail, {θj�} is well estimated if

Bε(�, h) does not include the origin. Otherwise, the estimation may fail due to the same

reason as that in the case of lin(C). If h is small, the number of latter cases is reduced.

Thus, when a sufficiently large training data is given such that Bε(K∗, h) covers X , the

local boosting may construct the Bayes classifier.

100

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

XOR−type

x1

x 2

Χ1Χ2

Χ3 Χ4

x1x2

x3 x4

Figure 16: XOR problem where the Bayes risk is not zero is illustrated with v = 6. Positive

samples are distributed in shaded areas, X1 and X3, with probability 1 − ρ and

in other areas, X2 and X4, with probability ρ. Vice versa for negative samples.

4.2.3 Local least favorable error property

The local AdaBoost has the least favorable property of error rate, that is similar to

AdaBoost. The algorithm of AdaBoost is characterized in terms of the weighted error

rate. At each step, it holds that the current chosen classifier has always the worst weighted

error rate 1/2 at the next step, that is, εt(fj(t−1)) = 1/2. We may show that the local

AdaBoost has this property locally.

Proposition 40. fj(t−1) that is the locally best classifier when the kernel center is

x�(t−1) has necessarily the least favorable weighted error rate 1/2 at the earliest step when

the kernel center backs to x�(t−1) if either of the following cases occur:

Case (1) The kernel center does not move, that is, x�(t) = x�(t−1).

Case (2) The kernel center comes back to x�(t−1) at t+ 1 after moving to x�(t) such that

Bε(�(t− 1), h) ∩ Bε(�(t), h) = ϕ, where ϕ denotes an empty set.

Note that sufficiently small ε means that, for any x /∈ B�,h, we may treat Kh(x, x�) as

zero.

101

Proof. Case (1) αt−1 satisfies

1

n

n∑
i=1

φ′(−YiFt−1(Xi))(−YiKh(Xi, x�(t−1))fj(t−1)(Xi)) = 0. (63)

since αt−1 should be the solution of Eq. (39). Since x�(t) = x�(t−1), we have, by

replacing Kh(Xi, x�(t−1)) with Kh(Xi, x�(t)) for any i,

1

n

n∑
i=1

φ′(−YiFt−1(Xi))(−YiKh(Xi, x�(t))fj(t−1)(Xi)) = 0.

By dividing the both side of this equation by 1
n

∑n
i′=1 φ

′(−Yi′Ft−1(Xi′))Kh(Xi′, x�(t)),

we have
n∑

i=1

wt(i)(−Yifj(t−1)(Xi)) = 0.

This completes the proof since we can rewrite the left-hand side of this equation as

n∑
i=1

wt(i)(−Yifj(t−1)(Xi)) =

n∑
i=1

wt(i){I(Yi �= fj(t−1)(Xi)) − (1 − I(Yi �= fj(t−1)(Xi)))}

= 2εt(fj(t−1)) − 1.

Case (2) Eq. (63) also holds for this case. By assumption, we have, for any i ∈
{1, 2, · · · , n},

φ′(−YiFt(Xi))Kh(Xi, x�(t+1)) = φ′(−Yi(Ft−1(Xi) + αtKh(Xi, x�(t))fj(t)))Kh(Xi, x�(t−1))

=

{
0 (Xi /∈ Bε(�(t− 1), h))

φ′(−YiFt−1(Xi))Kh(Xi, x�(t−1)) (otherwise)

= φ′(−YiFt−1(Xi))Kh(Xi, x�(t−1))

Thus, it holds that

1

n

n∑
i=1

φ′(−YiFt(Xi))(−YiKh(Xi, x�(t+1))fj(t−1)(Xi)) = 0. (64)

Similarly to the Case (1), this completes the proof.

It is worth mentioning that the proof of the Case (2) implies that the local least

favorable property holds also when the kernel center comes backs to x�(t−1) after any

number of steps t′ such that Bε(�(t − 1), h) ∩ {Bε(�(t + 1), h) ∪ Bε(�(t + 2), h) ∪ · · · ∪
Bε(�(t+ t′), h)} = ϕ.

102

Case (1)

Case (2)

x�(t)

x�(t−1)

x�(t+1)

Bε(�(t− 1), h)

Bε(�(t), h)

Figure 17: Move of kernel center in Case (1) and (2) of Proposition 40.

4.3 Simulations

Several simulations demonstrate the performance of the local AdaBoost, compared to the

usual regularized AdaBoost. In simulations, we used decision stumps as base classifiers

for both methods in the manner as explained in Section 2.4.1. We also used K∗ and a

gaussian kernel (i.e., Kh with kgau). The optimization over the coefficient of the current

classifier in Eq. (39) was performed by a quasi-Newton method implemented in the func-

tion “optim” written in R language. The software code of the local boosting will appear in

http://www.ism.ac.jp/~eguchi/homepage/myhomepage.html. Through all simulations,

the underlying distribution of X is

P (x) =
1

4v2

4∑
q=1

I(x ∈ Xq),

where v = 6. The situation in which P (Y = y | x) ∈ P(M) is illustrated in Figs. 18 and

19. The difference between them is only the size of the training data, while test data of

both cases consist of 600 samples. The usual AdaBoost (Case (b) in Table 7) constructs

an accurate decision boundary consistently in both cases. The local AdaBoost with h = 3

(Case (a) in Table 7) performs poorly in Fig. 18 because the local AdaBoost constructs

a decision boundary that is too flexible and overfit to the training data. This reflects the

increase in the estimation error as was discussed in the previous section. Fig. 19, however,

indicates that the local boosting also performs well when the size of the training data is

sufficient.

103

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2
(b)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(c)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

Training error (AdaBoost)

Test error (AdaBoost)

Training error (Local AdaBoost)

Test error (local AdaBoost)

(d)

Figure 18: Squares data: positive samples are distributed inside squares, while negative

samples are distributed out side of squares. The panel (a) shows a training data

set with optimal decision boundary. The panel (b) shows a decision boundary

that was estimated by AdaBoost, while the panel (c) shows that of the local

AdaBoost. The panel (d) shows plots of error rates on training data and test

data against step. The training data set consists of 150 samples, while the test

data set consists of 600 samples.

104

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2
(b)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(c)

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

Training error (AdaBoost)

Test error (AdaBoost)

Training error (Local AdaBoost)

Test error (local AdaBoost)

(d)

Figure 19: Squares data: positive samples are distributed inside squares, while negative

samples are distributed out side of squares. The panel (a) shows a training data

set with optimal decision boundary. The panel (b) shows the decision boundary

that was estimated by AdaBoost, while the panel (c) shows that of the local

AdaBoost. The panel (d) shows plots of error rates on the training data set and

the test data set against step. Both data sets consist of 600 samples.

The XOR example, which was already introduced in the previous section, is illustrated

105

in Fig. 20. In our simulations, this is a unique example where the Bayes risk is not zero

but 0.1. The local AdaBoost improved the performance of the usual AdaBoost although

it is overfit to the training data to some extent. The test error (T = 400) of the local

AdaBoost for various h in the same problem is shown in Fig. 21. From Fig. 21, we see

that the performance of the local AdaBoost may be worse when h is large or too small.

When h is large, there are many kernel centers x� such that Bε(�, h) includes the origin

(Case (b) in Table 7). When h is too small, the local AdaBoost suffers from significant

overfitting (Case (d) in Table 7). These reflect the discussion in the previous section. In

contrast, the XOR example with the Bayes risk equal to zero is illustrated in Fig. 22. In

this case, local AdaBoost performs significantly better.

106

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2
(b)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(c)

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

Training error (AdaBoost)

Test error (AdaBoost)

Training error (Local AdaBoost)

Test error (local AdaBoost)

(d)

Figure 20: XOR data: Samples are generated in XOR setting with ρ = 0.1, which was

explained in Section 4.2.2 and Fig. 16. The panel (a) shows a training data

set with optimal decision boundary. The panel (b) shows the decision boundary

that was estimated by AdaBoost with the training data, while the panel (c)

shows that of the local AdaBoost. The panel (d) shows plots of error rates on

the training data set and the test data set against step. Both data sets consist

of 300 samples.

107

0 20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

bandwidth

te
st

 e
rr

or

Figure 21: Plot of test error of the local AdaBoost with K∗ at T = 400 for various bandwidth

h in XOR problem with ρ = 0.1 (Fig. 16).

108

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2
(b)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(c)

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

Training error (AdaBoost)

Test error (AdaBoost)

Training error (Local AdaBoost)

Test error (local AdaBoost)

(d)

Figure 22: XOR data: Samples are generated in XOR setting with ρ = 0, which was ex-

plained in Section 4.2.2 and Fig. 16. The panel (a) shows a training data set

with optimal decision boundary. The panel (b) shows the decision boundary

that was estimated by AdaBoost, while the panel (c) shows that of the local

AdaBoost. The panel (d) shows plots of error rates on the training data set and

the test data set against step. Both data sets consist of 300 samples.

A few more examples where P (Y = y | x) /∈ P(M) and the local AdaBoost improved

109

prediction performance (Case (a) in Table 7) are demonstrated in Figs. 23-25.

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(a)

−6 −4 −2 0 2 4 6
−

6
−

4
−

2
0

2
4

6

x1

x 2

(b)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(c)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

Training error (AdaBoost)

Test error (AdaBoost)

Training error (Local AdaBoost)

Test error (local AdaBoost)

(d)

Figure 23: Spiral data: positive samples are distributed inside a spiral tube, while negative

samples are distributed out side of the tube. The panel (a) shows a training data

set with optimal decision boundary. The panel (b) shows the decision boundary

that was estimated by AdaBoost, while the panel (c) shows that of the local

AdaBoost. The panel (d) shows plots of error rates on the training data set and

the test data set against step. Both data sets consist of 600 samples.

110

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2
(b)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(c)

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

Training error (AdaBoost)

Test error (AdaBoost)

Training error (Local AdaBoost)

Test error (local AdaBoost)

(d)

Figure 24: Island1 data: positive samples are distributed inside several diagrams, while

negative samples are distributed out side of them. The panel (a) shows a training

data set with optimal decision boundary. The panel (b) shows the decision

boundary that was estimated by AdaBoost, while the panel (c) shows that of

the local AdaBoost. The panel (d) shows plots of error rates on the training data

set and the test data set against step. Both data sets consist of 400 samples.

111

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2
(b)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(c)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

Training error (AdaBoost)

Test error (AdaBoost)

Training error (Local AdaBoost)

Test error (local AdaBoost)

(d)

Figure 25: Island2 data: positive samples are distributed inside several diagrams, while

negative samples are distributed out side of them. The panel (a) shows a training

data set with optimal decision boundary. The panel (b) shows the decision

boundary that was estimated by AdaBoost, while the panel (c) shows that of

the local AdaBoost. The panel (d) shows plots of error rates on the training data

set and the test data set against step. Both data sets consist of 1000 samples.

Finally, we demonstrate that the local AdaBoost.M2 also improves the performance

112

of AdaBoost.M2. A complicated multiclass classification problem is shown in Fig. 26.

We use decision stumps for multiclass case, as described in Section 2.4.1. It is also seen

in Fig. 26 that the local AdaBoost performs significantly better than AdaBoost.

113

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(a)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2
(b)

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x 2

(c)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step

er
ro

r
ra

te

Training error (AdaBoost)

Test error (AdaBoost)

Training error (Local AdaBoost)

Test error (local AdaBoost)

(d)

Figure 26: Check data: this figure illustrates a five-class classification problem. Each color

corresponds to each class. The panel (a) shows a training data set with optimal

decision boundary. The panel (b) shows the predicted class of each sample by

AdaBoost with the training data, while the panel (c) shows that by the the local

AdaBoost. The panel (d) shows plots of error rates on the training data set and

the test data set against step. Both data sets consist of 1000 samples.

114

4.4 Discussion

We proposed a boosting method for local learning based on an idea that is similar to

that of the local likelihood method. There are many cases where the usual boosting with

widely-used base classifiers performs poorly because of poor approximation ability. In

such cases, one of the simplest strategies is to use more complicated base classifiers that

have a possibly larger VC dimension. The use of such base classifiers increases not only

computational cost but also the probability of misclassification (generalization error). In

statistics, the local likelihood methods are known to improve the approximation ability of

a parametric model. However, the local likelihood methods have several difficulties. They

require high computational cost and do not construct a single discriminant function. We

proposed the local boosting by introducing kernel localization that is slightly different

from that of the conventional local likelihood method. The local boosting overcomes such

difficulties. Following the discussion in Lugosi and Vayatis (2004), we proved the theorem

stating that the local boosting has the Bayes risk consistency under several conditions.

Inspection of the proof of this theorem elucidates the property of the local boosting from

the view of the estimation error and the approximation error. Lugosi and Vayatis (2004)

derived the distribution-free, nonasymptotical, probabilistic upperbound of the estimation

error of the usual boosting with respect to V (VC dimension of class of base classifiers).

The estimation error of the local boosting has the same upperbound except the increase

β in V . The increase, β, depends on the number of kernel center candidates, N since

β = lnN/ lnn. One interpretation is that localization increases model complexity by β.

This is not a steep increase in V against N . If we use more complicated base classifiers,

V itself directly increases by an integer. Compared to this case, β = lnN/ lnn is a small

increase in general. In any case, the estimation errors of the usual boosting and the

local boosting decrease to zero in the asymptotical case (n → ∞) if the class of base

classifiers has a finite VC dimension. Thus, the Bayes risk consistency of both boosting

methods depends on whether their approximation errors decrease to zero or not. Even

if we have sufficient training data, the usual boosting with, for example, φ = exp has a

large approximation error if P(M) is a misspecified model. The local boosting may reduce

the approximation error at the cost of increasing the estimation error. Thus, the local

boosting may have the Bayes risk consistency in wider situations than those of the usual

boosting. In actual situations (n < ∞), however, the increase in the estimation error is

115

not a small issue in some cases. Specifically, the local boosting performs relatively poorly

in the situation where the approximation error of the usual boosting may decrease to

zero because of this increase. The discussion in Section 4.2.2 suggests that the localizing

factor (h, K) should be selected such that h is as large as possible and that K is as

sparse as possible under the restriction that P(MK) includes the underlying distribution

P (Y =y | x). However, in general, selecting a localizing factor satisfying such a restriction

without any prior knowledge is difficult. One practical selection of K is K∗. When n

approaches infinity, K∗ covers supp(X) densely, and then, we may select a small h for

decreasing the approximation error. In addition, β is equal to one in this case. It is the

least increase in the VC dimension compared to uses of other types of base classifiers.

Several simulations illustrate the advantage of the local boosting using K∗.

Parameter λ should be selected by cross validation or trial-and-error. The discussion in

Section 4.2.2 indicates that λ should satisfy the following three conditions. First, λ→ ∞
and λφ′(λ)

√
lnn/n → 0 as n → ∞. This condition is necessary for guaranteeing that

the upperbound of the estimation error decreases to zero as n → ∞. When φ = exp, a

candidate of {λn} satisfying this condition is lnnρ for any 0 < ρ < 1/2. Second, λ >

maxx∈X F ∗(x) is the necessary condition for reducing the approximation error. However,

satisfying this condition is difficult in general because F ∗ is unknown. Third, λ should

be as small as possible. This condition follows from the finding that large λ may increase

the estimation error as seen in Eq. (56). Finding the optimal λ satisfying all the above

conditions without any prior knowledge seems difficult. Therefore, we need to determine

λ by trial-and-error or cross validation in general.

5 Concluding remarks

We study two topics about booting method. First, we applied AdaBoost with decision

stumps to the shark bycatch data from the Eastern Pacific Ocean tuna purse-seine fishery.

Compared to the logistic GAM, which has been widely-used in fisheries data analysis, the

prediction performance of AdaBoost was stable. In addition, AdaBoost manages many

features without any preprocessing. We also presented a graphical tool, score plot, to

explore the relationship between label and each feature. We may obtain more stable

score plots from AdaBoost than from the logistic GAM.

One of the keys of these favorable properties of AdaBoost is the use of decision stumps.

116

not a small issue in some cases. Specifically, the local boosting performs relatively poorly

in the situation where the approximation error of the usual boosting may decrease to

zero because of this increase. The discussion in Section 4.2.2 suggests that the localizing

factor (h, K) should be selected such that h is as large as possible and that K is as

sparse as possible under the restriction that P(MK) includes the underlying distribution

P (Y =y | x). However, in general, selecting a localizing factor satisfying such a restriction

without any prior knowledge is difficult. One practical selection of K is K∗. When n

approaches infinity, K∗ covers supp(X) densely, and then, we may select a small h for

decreasing the approximation error. In addition, β is equal to one in this case. It is the

least increase in the VC dimension compared to uses of other types of base classifiers.

Several simulations illustrate the advantage of the local boosting using K∗.

Parameter λ should be selected by cross validation or trial-and-error. The discussion in

Section 4.2.2 indicates that λ should satisfy the following three conditions. First, λ→ ∞
and λφ′(λ)

√
lnn/n → 0 as n → ∞. This condition is necessary for guaranteeing that

the upperbound of the estimation error decreases to zero as n → ∞. When φ = exp, a

candidate of {λn} satisfying this condition is lnnρ for any 0 < ρ < 1/2. Second, λ >

maxx∈X F ∗(x) is the necessary condition for reducing the approximation error. However,

satisfying this condition is difficult in general because F ∗ is unknown. Third, λ should

be as small as possible. This condition follows from the finding that large λ may increase

the estimation error as seen in Eq. (56). Finding the optimal λ satisfying all the above

conditions without any prior knowledge seems difficult. Therefore, we need to determine

λ by trial-and-error or cross validation in general.

5 Concluding remarks

We study two topics about booting method. First, we applied AdaBoost with decision

stumps to the shark bycatch data from the Eastern Pacific Ocean tuna purse-seine fishery.

Compared to the logistic GAM, which has been widely-used in fisheries data analysis, the

prediction performance of AdaBoost was stable. In addition, AdaBoost manages many

features without any preprocessing. We also presented a graphical tool, score plot, to

explore the relationship between label and each feature. We may obtain more stable

score plots from AdaBoost than from the logistic GAM.

One of the keys of these favorable properties of AdaBoost is the use of decision stumps.

116

Note that Friedman et al. (2000) pointed out the close relationship between AdaBoost and

GAM. The important difference between them comes from their models. AdaBoost uses

the model consisting of linear combination of weak classifiers, while GAM uses smoothing

splines. Decision stumps are weak classifiers and also are stable (or hard) classifiers with

respect to its shape. Therefore, decision stumps obviously play an important role on the

stability of AdaBoost.

However, we found many examples where boosting method with decision stumps per-

forms poorly because of the shortage of approximation ability. We proposed a new boost-

ing method, local boosting, which attains the sufficient approximation ability even with

decision stumps. The local boosting was derived from an idea of the local likelihood

approach. The local boosting includes a simple device to overcome the computational

difficulties. We proved its Bayes risk consistency under certain conditions. Several the-

oretical inspections indicate that the local boosting improves the approximation error of

usual boosting at cost of the slight increase of the estimation error. Some simulations

supported the theoretical results.

Finally, we remark that the local AdaBoost did not improve the original AdaBoost

much with respect to test error in the shark bycatch problem. We applied the local

AdaBoost with decision stumps to the shark bycatch data. We apply the localization to

only ‘date’, ‘latitude’ and ‘longitude’. As a result, the test error of the local AdaBoost was

less than the results in Section 3.3 by approximately 1(%). Therefore, the reason why

AdaBoost or GAM test errors are not small may be less related to the approximation

ability.

Acknowledgement

I appreciate deeply Prof. S. Eguchi (ISM3) for supervising me in the whole process of

this research. I also thank C. E. Lennert-Cody (IATTC) and M. Minami (ISM) for many

advices and cooperations on the analysis of shark bycatch data. I thank the IATTC for

providing the shark bycatch data. I also appreciate Prof. S. Kuriki and H. Fujisawa for

supporting me. Prof. Ikeda gave me useful comments, which improved this thesis much.

I thank him. My family supported me through the whole process of the doctor course. I

could not complete this dissertation without their support. Members in the student room

3Institute of Statistical Mathematics

117

in ISM also supported me very much. I appreciate all of them. Finally, I thank myself.

He led me to this area, he did not give up this hard course and he helped me getting Ph.

D.

118

A Bayes classifier attains the minimum probability

of misclassification

Proposition 41. Let g∗(x) = argmaxy∈Y P (Y =y | x) be the Bayes classifier. Then,

inf
g∈G

L(g) = L(g∗).

Proof. The proof appears separately for binary and multiclass case.

Binary case Let g : X → {1,−1} be an arbitrary classifier.

L(g) = P (g(X) �= Y) = E[I(g(X) �= Y)]

= E[η(X)I(g(X �= 1)) + (1 − η(X))I(g(X) �= −1)]

= E[η(X)(1 − I(g(X = 1))) + (1 − η(X))I(g(X) = 1)]

= E[η(X) + I(g(X) = 1)(1 − 2η(X))]

= P (Y = 1) + E[I(g(X) = 1)(1 − 2η(X))]

The first term in the last equality is not dependent on g. The second term in the

last equality is minimized when

g(x) =

{
1 if (1 − 2η(x) <= 0)
−1 otherwise

This directly implies that g(x) is the Bayes classifier g∗(x).

Multiclass case Let Y be {1, 2, · · · , G} and g : X → Y be an arbitrary classifier.

L(g) = P (g(X) �= Y) = E[I(g(X) �= Y)]

= E
[G∑

y=1

I(g(X) �= y)P (Y = y|x)
]

= E
[G∑

y=1

(1 − I(g(X) = y))P (Y = y|x)
]

= 1 − E
[G∑

y=1

I(g(X) = y))P (Y = y|x)
]

Thus, argming L(g) = argmaxg E[
∑G

y=1 I(g(X) = y)P (Y = y|x)]. Clearly, g(x) =

argmaxy∈Y P (Y = y|x) minimizes L and is just the Bayes classifier.

119

B Center limit theorem

Restricted to this section, we denote an imaginary unit by j, i.e., j2 = −1.

Theorem 42 (Center limit theorem). Let {Xi}n
i=1 be a sequence of i.i.d. M-

dimensional random variable with mean μ and covariance Σ. Define Sn = 1
n

∑n
j=1

√
nΣ−1/2(Xi−

μ). Then, as n→ ∞,

P (Sn ≤ x) → 1√
2π

∫ x

−∞
e−

t2

2 dt.

Proof. Let Zi =
√
nΣ−1/2(Xi − μ). Then, Sn = 1√

n
Zi. Let θ be an arbitrary M-

dimensional vector. Considering that E[Zi] = 0 and E(ZiZ
T
i) = IM for any i, the

characteristic function of Sn is obtained as follows.

E[exp(jθTSn)] = Πn
i=1E[exp(jθTZi/

√
n)]

= {E[exp(jθTX/
√
n)]}n

=

{
E

[
1 +

iθTZ√
n

− θTZZT θ

2n
+ o

(
‖θ‖2

√
n

)]}n

=

{
1 − ‖θ‖2

2n
+ o

(
‖θ‖2

√
n

)}n

where Z is an independent copy of Zi. Due to the property of exponential function exp,

this converses to exp(−‖θ‖2/2) as n → ∞ for any fixed t. The statement follows from

the Levy’s continuous theorem.

C An equality on exponential function

Lemma 43. Let n = 1, 2, · · · , ∞ and x be a real positive variable. For any n,(
1 +

x

n

)n

≥ ex.

Proof. By Taylor-expansion, we have

ex − (1 +
x

n
)n =

∞∑
k=0

xk

k!
−

n∑
k=0

(
n
k

)(x
n

)k

=
∞∑

k=0

xk

k!
−

n∑
k=0

n!

nkk!(n− k)!
xk

120

For each k ≤ n,

xk

k!
− n!xk

nkk!(n− k)!
=

xk

k!

(
1 − n!

nk(n− k!)

)
=

xk

k!

(
1 − n

n
· n− 1

n
· · · · n− k + 1

n
· n− k

n− k
· n− k − 1

n− k − 1
· · · 2

2
· 1

1

)
=

xk

k!

(
1 − n

n
· n− 1

n
· · · · n− k + 1

n

)
≥ 0.

References

Bartlett, P. L., I., J. M., McAuliffe, J. D., 2003. Convexity, classification, and risk bounds.

http://stst-www.berkeley.edu/tech-reports/638.pdf.

Bartlett, P. L., Mendelson, S., 2002. Rademacher and gaussian complexities: Risk bounds

and structural results. Journal of Machine Learning Research 3, 463–482.

Bayliff, W. H., 2001. Organization, functions and achievements of the inter-american

tropical tuna commission. Special Report 13. IATTC, La Jolla, CA, pp. 122.

Bigelow, K., Boggs, C., He, X., 1999. Environmental effects on swordfish and blue shark

catch rates in the us north pacific longline fishery. Fisheries Oceanography 8, 178–198.

Breiman, L., 1996a. Bagging predictors. Machine Learning 26, 123–140.

Breiman, L., 1996b. The heuristics of instability in model selection. Annals of Statistics

24, 2350–2383.

Breiman, L., 1998. Arcing classifiers. Annals of Statistics 26 (3), 801–849.

Breiman, L., 1999. Prediction games and arcing algorithms. Neural Computation 11 (7),

1493–1518.

Breiman, L., 2001. Random forests. Machine Learning 45 (1), 5–32.

Breiman, L., Friedman, J., Olshen, R., Stone, C., 1984. Classification and Regression

Trees. Wadsworth, Belmont.

121

Chernoff, H., 1952. A measure of asymptotic efficiency of test of a hypothesis based on

the sum of observations. Annals of mathematical statistics 23, 493–507.

Collins, M., Schapire, R., Singer, Y., 2002. Logistic regression, adaboost and bregman

distances. In Machine Learning, 253–285.

Devroye, L., Györfi, L., Lugosi, G., 1996. A probabilistic theory of pattern recognition.

Springer-Verlag, New York.

Devroye, L., Lugosi, G., 2001. Combinatorial Methods in Density Estimation. Springer-

Verlag, New York.

Efron, B., Tibshirani, R., 1993. An introduction to the Bootstrap. Chapman & Hall, New

York.

Eguchi, S., Copas, J., 1998. A class of local likelihood methods and near-parametric

asymptotics. Journal of Royal Statistical Society B 60, 709–724.

Eguchi, S., Kim, T.-Y., Park, B. U., 2003. Local likelihood method and theory for a bridge

between parametric and nonparametric regression. Journal of Nonparametric Statistics

15, 665–683.

Fan, J., Farmen, M., Gijbels, I., 1998. Local maximum likelihood estimation and inference.

Journal of Royal Statistical Society B.

Fan, J., Gijbels, I., 1995. Data-driven bandwidth selection in local polynomial fitting:

variable bandwidth and spatial adaption. Journal of Royal Statistical Society B 57,

371–394.

Fan, J., Gijbels, I., 1996. Local polynomial modelling and its applications. Chapman &

Hall, London.

Freund, Y., Schapire, R. E., 1997. A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences 55 (1),

119–139.

Friedman, J., 1997. On bias, variance, 0/1-loss, and the curse of dimensionality. Journal

of knowledge discovery and data mining 1, 55–77.

122

Friedman, J. H., Hastie, T., Tibshirani, R., 2000. Additive logistic regression: A statistical

view of boosting. Annals of Statistics 28, 337–407.

Hastie, T., Tibshirani, R., Friedman, J., 2001. The elements of statistical learning: Data

mining, inference and prediction. Springer-Verlag.

Hastie, T. J., Tibshirani, R. J., 1990. Generalized Additive Models. Chapman & Hall,

London.

Hjort, N. L., Jones, M. C., 1996. Locally parametric nonparametric density estimation.

Annals of Statistics 24 (4), 1619–1647.

Hoeffding, W., 1963. Probability inequalities for sums of bounded random variables. Jour-

nal of the american statistical association 58, 13–30.

Höffgen, K. U., Simon, H. U., van Horn, K. S., 1995. Robust trainability of single neurons.

Journal of Computer and System Sciences 50, 114–125.

IATTC, 2004. Annual report of the inter-american tropical tuna commission, 2002. Inter-

American Tropical Tuna Commission, La Jolla, CA.

Jiang, W., 2004. Process consistency for adaboost. Annals of Statistics 32, 13–29.

Kawakita, M., Cleridy, E., Minami, M., Eguchi, S., 2005. An introduction to the predic-

tive technique adaboost with a comparison to generalizaed additive models. Fishries

Research 73, 328–343.

Kawakita, M., Eguchi, S., 2005. Boosting method for local learning in statistical pattern

recognition. In revision.

Kearns, M., Valiant, L. G., 1988. Learning boolean formulae or finite automata is as

hard as factoring. Technical Report TR-14-88, Harvard University Aiken Computation

Laboratory.

Kohavi, R., Wolpert, D. H., 1996. Bias plus variance decomposition for zero-one loss

functions. In Machine Learning: Proceedings of the Thirteenth International Conference

(L. Saitta, ed.) Morgan Kaufmann, San Francisco, 275–283.

123

Koltchinskii, V., Panchenko, D., 2002. Empirical margin distributions and bounding the

generalization error of combined classifiers. Annals of Statistics 30 (1), 1–30.

Kong, E., Dietterich, T. G., 1995. Error-correcting output coding corrects bias and

variance. In proceeding of the Twelfth International Conference on Machine Learning

(A.Prieditis and S. Russell, eds.) Morgan Kaufmann, San Francisco, 313–321.

Lebanon, G., Lafferty, J., 2002. Boosting and maximum likelihood for exponential models.

Advances in Neural Information Processing Systems 14.

Ledoux, M., Talagrand, M., 1991. Probability in Banach Spaces: isoperimetry and pro-

cesses. Springer-Verlag, New York.

Lo, N. C., Jacobson, L. D., Squire, J. L., 1992. Indices of relative abundance from fish spot-

ter data based on delta-lognormal models. Canadian Journal of Fisheries and Aquatic

Sciences 49, 2515–2526.

Lugosi, G., Vayatis, N., 2004. On the Bayes-risk consistency of regularized boosting meth-

ods. Annals of Statistics 32, 30–55.

Mason, L., Baxter, J., Bartlett, P. L., Frean, M., 1999. Functional gradient techniques for

combining hypotheses. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans

editors, Advances in Large Margin Classifiers, MIT Press, Cambridge, MA, 221–247.

McCullagh, P., Nelder, J. A., 1989. Generalized Linear Models. Chapman & Hall.

McDiarmid, C., 1989. On the method of bounded differences. In Surveys in Combinatorics.

Cambridge University Press.

Morgan, N. N., Sonquist, J. A., 1963. Problems in the analysis of survey data, and a

proposal. Journal of the american statistical association, 415–434.

Murata, N., Takenouchi, T., Kanamori, T., Eguchi, S., 2004. Information geometry of

U-Boost and Bregman divergence. Neural Computation 16, 1437–1481.

Okamoto, M., 1958. Some inequalities relating to the partial sum of binomial probabilities.

Annals of the Institute of Statistical Mathematics 10, 29–35.

124

Oshitani, S., Nakauo, H., Tanaka, S., 2003. Age and growth of the silky shark carcharhinus

falciformis from the pacific ocean. Fisheries Science 69, 456–464.

Punt, A., Walker, T., Taylor, B., Pribac, F., 2000. Standardization of catch and effort

data in a spatially-structured shark fishery. Fisheries Research 45, 129–145.

Quinlan, R., 1993. C4.5: Programs for machine learning. Morgan Kaufmann, San Mateo.

Roweis, S., Saul, L., 2000. Nonlinear dimensionality reduction by locally linear embedding.

Science 290 (5500), 2323–2326.

Ryan, T. P., 1997. Modern Regression Methods. Wiley Inter-Science.

Sauer, N., 1972. On the density of families of sets. Journal of combinatorial theory Series

A 13, 145–147.

Schapire, R., 1990. The strength of the weak learnability. Machine Learning 5, 197–227.

Schapire, R. E., Freund, Y., Bartlett, P., Lee, W. S., 1998. Boosting the margin: a new

explantion for the effectiveness of voting methods. Annals of Statistics 26, 1651–1686.

Swartzman, G., Huang, C., Kaluzny, S., 1992. Spatial analysis of bering sea ground-

fish survey data using generalized additive models. Canadian Journal of Fisheries and

Aquatic Sciences 49, 1366–1378.

Taquet, M., Gaertner, J.-C., Bertrand, J., 1997. Typologie de la flottille chalutière de sète:

formalisation par une méthode de segmentation. Aquatic Living Resources 10, 137–148.

Tibshirani, R., 1996. Bias, variance, and prediction error for classification rules. Technical

Report, Dept. Statistics, Univ. Toronto.

Tserpes, G., Peristeraki, P., Potamias, G., Tsimenides, N., 1999. Species distribution

in the southern aegean sea based on bottom-trawl surveys. Aquatic Living Resources

12 (3), 167–175.

van der Vaart, A. W., Wellner, J. A., 1996. Weak convergence and Empirical processes.

With Applications to Statistics. Springer-Verlag, New York.

Vapnik, V. N., 1982. Estimation of dependences based on empirical data. Springer-Verlag,

New York.

125

Vincent, P., Bengio, Y., 2003. Locally weighted full covariance gaussian density estima-

tion. Technical report 1240.

Viola, P., Jones, M., December 2001. Fast and robust classification using asymmetric

adaboost and a detector cascade. Neural Information Processing Systems 14.

Walsh, W., Kleiber, P., 2001. Generalized additive models and regression tree analyses

of blue shark (prionace glauca) catch rates by the hawaii-based commercial longline

fishery. Fisheries Research 53, 115–131.

Walsh, W. A., Kleiber, P., McCracken, W., 2002. Comparison of logbook reports of

incidental blue shark catch rates by hawaii-based longline vessels to fishery observer

data by application of a generalized additive model. Fisheries Research 58, 79–94.

Watters, G. M., 1999. Geographical distributions of effort and catches of tunas by purse-

seine vessels in the eastern pacific ocean during 1965-1998. IATTC data Report 10.

IATTC, La Jolla, CA.

Wood, S. N., 2000. Modelling and smoothing parameter estimation with multiple

quadratic penalties. Journal of the Royal Statistical Society: Series B 62, 413–428.

Wood, S. N., 2003. Thin plate regression splines. Journal of the Royal Statistical Society:

Series B 65 (1), 95–114.

Wood, S. N., 2004. Stable and efficient multiple smoothing parameter estimation for

generalized additive models. Journal of the American Statistical Association 99 (467),

673–686.

Zhang, T., Yu, B., 2005. Boosting with early stopping: Convergence and consistency.

Annals of statistics 33, 1538–1579.

126

