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Abstract

This thesis summarizes statistical analysis of some multivariate heteroscedastic
time series data, including 2 sets of data from physiological experiments and
2 sets of EEG data about anaesthesia and coma.

The aim of this thesis is to provide a statistical tool for analyzing multi-
variate data which contains non-stationary and heteroscedastic characteristics.

The main contribution of this thesis is that we combine the linear state
space model and GARCH model to develop a state space-GARCH model.
The state space-GARCH model can describe the non-stationary characteristics
of the system noise variance. In particular we adopt a special structure of
the linear state space model to decompose a data into components by their
frequencies. Combining a heteroscedasticity model and a state space model
is carried out by fully utilizing the information of innovations and expected
values from the �ltering process.

Another contribution of the thesis is that we extend Akaike's NCR from
constant noise variance to heterogeneous noise variance in order to study time-
varying causality. By applying heteroscedasticity models, the phenomenon of
an evolving causality relationship can be depicted.

All these methods are illustrated by their application to EEG data including
the study of consciousness under anaesthesia and coma, and also to a physical
data of head and �nger movement.

Keywords:
multivariate time series, state space model, Kalman �lter, frequency decom-
position, autoregressive conditional heteroscedasticity, heterogeneity of vari-
ance, compartment-GARCH model, noise contribution ratio, spectral causal-
ity, EEG, anaesthesia, coma, bimanual coherence, handedness score.





Chapter 1

Introduction

This thesis focuses on two problems in modelling multivariate time series of
neuroscience. The �rst is how can the non-stationarity of the data be described
by means of statistical time series model in order to explain the non-stationary
activities inside the brain. The second problem is what the functional role of
statistical time series model is in explaining causality and feedback. These two
problems in neuroscience research are important but often neglected.

The frequency approach is widely adopted in EEG study. In the scope of
time series analysis in neuroscience application, the earliest work was John
et al. (1977), who advocated the Broad Band Spectral Model, smoothing the
FFT spectrum and looking at the power intensity of the �ve major frequency
bands, which is considered as a pioneering work. Pascual-Marqui et al. (1988)
characterized EEG spectra by the ξα model, which is a mixture function in the
frequency domain containing a few parameters associated with spectral peaks.
This model is based on the theoretical assumption that there are di�erent un-
observed generations for each spectral peaks. Later, Valdés-Sosa et al. (1990)
proposed the Narrow Band Spectral Model which is more �exible than the
Broad Band Spectral Model and the ξα Model. All the three models describe
the EEG data in frequency domain and especially characterize the activities
in terms of frequency bands. Frequency, number of oscillation in a second of
time, characterizes di�erent neural activities induced by neuron transmission
at di�erent rate, which is caused by and resulted in respective phenomena.

On the other hand, multivariate autoregressive model have been used for
EEG data analysis (see Rappelsberger & Petsche, 1975; Gersch & Yonemoto,
1977; Franaszczuk et al., 1985). A multivariate AR model can be easily esti-
mated by an iterative matrix calculation of successive AR coe�cients by the
Whittle (1963) algorithm. Despite a fast computation it can be interpreted
in the time domain in addition to the frequency domain. A smooth spec-
trum can be drawn based on the AR coe�cients and the noise variance of
the model. Power intensity of several frequency bands can be seen apparently.
However, because of the assumption of stationarity of the signal, this approach
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is useful in clinical application to characterize the EEG of only homogeneous
pattern. In real application, an EEG data of homogeneous pattern is ful�lled
only by a subjective selection of piece of data by medical doctors and neuro-
scientists. We are trying to propose models which automatically captures the
non-homogeneous pattern.

In most real situations, brain activity gives complicated EEG data measure-
ment which does not show a homogeneous pattern. Either the data changes
between di�erent levels, gives a non-stationary mean, or �uctuates in di�erent
amplitude size, shows inhomogeneity of variance.

The basic idea of heterogeneity of variance is that in a stationary process
the variance of input noise to the model is not constant in time. In the case
of frequency approach of non-stationary EEG analysis, it is possible to split
a EEG data into many segments, and �t a model to each segments. Each
model corresponding to a segment takes the characteristics of the segment, so
that the change of power intensity can be seen by comparing the estimated
power intensity of frequency bands. This method of splitting a data into
segments requires an assumption of stationarity within each segment. If the
assumption does not hold, these spectral model are not reliable. Although the
length of the segments can be shortened so as to obtain locally stationary data,
such approach would have the disadvantage of reduced resolution in frequency
domain. Improved resolution in time domain, desirable in order to pick out
distinctive temporal characteristics in the data, has to be paid by reduced
resolution in frequency domain, and vice versa. Therefore, using the spectral
model to analyze a non-stationary data is unsuitable.

On the other hand, multivariate AR model is also useful to solve the prob-
lem of heterogeneity of variance, when it is applied together with volatility
models such as GARCH model, jump model or stochastic volatility model,
multivariate AR model. In terms of model estimation, volatility models can-
not reduce the magnitude of innovation, but adjust the innovation variance
to adapt to the size of innovation, leading to an increase of likelihood for a
better model. Consequently, volatility models cannot further improve point
prediction beyond the AR model, but they are important to predicting inter-
val estimates and volatility prediction. This would be the reason why they
have been widely used in risk management in �nance.

We use the class of state space model to formulate the multivariate AR
model. In general a linear multivariate AR model and a linear state space
model are equivalent, which can be transformed from one to another one.
We choose state space model over the other because state space model can
reconstruct the hidden unobservable state behind the data and it is capable
to di�erentiate the observation noise out of the system noise. With a special
structure of the transitional matrix of the state space model, we divide the
EEG data into various components (like the ξα model mentioned above, each
of which are oscillating at a speci�ed frequency and driven by an independent
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noise. We name this model a compartment model.
Then we apply the GARCH model inside the state space model to build

up the state-space GARCH model. The GARCH model adjusts variance of
noise driving each decomposed component. Adaptively adjusting the system
noise variance, we are modifying the innovation variance so as to improve the
likelihood, and as a result we get a better model.

By a compartment model we can clearly see the decomposition of data over
a time axis, by the same token of a model spectrum showing the power intensity
over a frequency axis as the spectral models do. The time-varying variance
provides us good information of the changes of power of driving noise. State
space-GARCH model is useful for investigating the principles that underlie the
non-stationary neuroscience time series data, which will be shown step by step
in this thesis.

Another important element of this thesis concerns with causal relations in
multivariate time series, in particular, in the context of noise contribution ratio
introduced by Akaike (1968). Causal relations, or causality, is a vague term
since it has a slightly di�erent meaning in di�erent literatures. Intuitively, the
study of causality is to relate the �cause� and the �result�, and to conclude
any �the cause precedes the result� phenomenon. For noise contribution ratio,
based on a multivariate time series model, any random noise is the �cause� and
the time series is the �result�. We are interested in how time series cause each
other, or equivalently, how the driving noises cause the time series.

Noise contribution ratio, in contrast to a yes or a no from Granger's causal-
ity (see Granger, 1969), gives the level of causality quantitatively in a 0 to
100% scale. The level of causality is shown by the contribution ratio of a noise
variance to an observation variable. Looking at the ratio and the spectral
density, we can conclude the signi�cance of each contributing noise to each
time series. This is an important tool when we want to compare the level of
two way causality, ie feedback, among several time series, especially when the
causal relations is biased. In this thesis, we have two development on the topic
of NCR. First, we generalize the NCR from multivariate AR model to mul-
tivariate ARMA model and further to linear state space model. Second, we
advocate time varying NCR, when the variance is varying or when the model
is changing over the time.

There is a huge library of study on the causal relations of EEG data and
fMRI data, for example, see Friston et al. (1995); McIntosh (2000); Yamashita
et al. (2005). Knowing the causality between the time series, we can know
better the mechanism of the brain activity on the causal relations issue. We
will apply the NCR method to two physical data also in order to show the new
development of NCR, and some conclusions which is related to neuroscience
study.

Notwithstanding a broad contents of this thesis, the materials of state
space-GARCH model, the new NCR causality theory and several real appli-
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cations on neuroscience are integrated and allocated into three chapters of
theoretical issues and four chapters of applications.

In chapter 2, we introduce the compartment model, which is capable to
decompose a time series into several components. To do so we �rst review the
linear ARMA model and its relation with the state space model. We will see
that by multiplying a non-singular transformation matrix, we can preserved
the same model structure even though the state vector and transition matrix
are projected onto another space. This is useful to explain why we can have
good result using the compartment model even though the parameters have
so strong restriction.

In chapter 3, we study the new development of NCR in multivariate time
series analysis, especially the NCR of a multivariate ARMA model or a state
space model, and the time varying occasion. We start from deriving the matrix
spectral density of a multivariate ARMA model and of a state space model,
then move on to the NCR and causality.

In chapter 4, we discuss how the GARCH model is combined with a state
space model. We use a chi-square statistics to show the importance of imple-
menting heteroscedasticity model together to model non-stationary data. The
chi-square statistics is also a new method of diagnostic checking of innova-
tion, as well as a quantity for feeding the GARCH model in state space model.
Then we demonstrate how we calculate a conditional expectation for an under-
determined system residual so as to put into the GARCH equation. At the
end of the chapter we bring out the idea of smoothing by moving average so
that we can better operate the GARCH model.

Chapters 5 to 8 serve to give the analysis of 4 data sets. All data are related
to neuroscience. In particular they are multivariate time series and possessing
a lot of interesting phenomena of non-stationarity.

In chapter 5, we will analyze an EEG data during the onset of anaesthesia.
A common practice of analyzing an EEG data is cutting out segment of data
with a subjective judgement of a medical doctor before a spectral analysis.
Such analysis requires the assumption of stationarity of variance, which is not
always conceivable. Therefore, during a surgery, we could expect the spectral
density of the EEG data changes over the time, thus we need a model of het-
eroscedastic property so as to explain the variation of variance across the time.
The changes of variance directly a�ects the power intensity of the spectrum
shape, and consequently gives an information of the onset of anaesthesia to
help monitoring the level of consciousness.

In chapter 6, we follow the topic of consciousness in chapter 5 to analyze
an EEG data of a coma patient, who became unawaken after a tra�c accident.
The data was measured when the patient was receiving verbal stimuli, that a
medical doctor told him to think of a favorite song, to recall his programmer
job and so on. The stimuli led to some variations in the EEG. With the
compartment-GARCHmodel we can calculate the power intensity of each main
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frequency domain at di�erent time. This is useful to show medical doctors the
real time response of the coma patient to stimulus.

In chapter 7, we analyze a head movement data and study the non-stationary
causal relations by NCR based on a bi-variate AR-GARCH model. Two sub-
jects are sitting face to face and their head movement was measured. One
subject observed and followed another subject turning his head to look at an
object placed at a meter away from them. The same motion was repeated for
several times. The data possesses a strong causal relations as a result. It is
a one-way causal relation because there is only one subject following another
subject's movement but not the opposite way. Using the Granger's causality
theory one may conclude from the non-zero AR coe�cients that there is a
two-way feedback between two time series. We, instead, show that there is
only a one-way causality when we interpret with the NCR theory. In addition
to the bi-variate AR model with a stationary variance assumption we apply
the GARCH model to the residual and capture the causal relations through
di�erent size of variance at di�erent time, which on one hand provides a bet-
ter pattern of residuals and on the other hand assures our conclusion on the
causality through NCR. The time varying NCR causality is important to the
study of attention and attraction. The tool can be applied to data of head
movement from experiments such as attention of infants and mothers, atten-
tion of students and teachers in a classroom and so on. The functioning of
a human body in responding to any attraction is interesting to psychologists
and physio-scientists. These psychological and physical theory may also be
bene�cial to neuroscience study to give any intuitive idea of the unnecessary
head movement motion during data measurement.

In chapter 8, we further analyze a bimanual movement of index �ngers with
the NCR method. In contrast to the classical NCR on multivariate AR models
proposed by Akaike (1968) and the generalization by Tanokura & Kitagawa
(2003) we consider NCR of multivariate ARMA models and state space mod-
els. Taking the advantage of estimating state variables of di�erent dynamics
in state space model, we break the three-parameter covariance matrix of a bi-
variate AR model into three variances of three independent noises in the state
equation. We let one of the three noises drive a state variable which becomes
a common driving force to the two time series. We will explain the NCR based
on the state space model, that the causality of the motion of the �ngers after
removing a signi�cant common driving force.





Chapter 2

Compartment Model

In this chapter, explanations will be given of some statistical concepts and
methods that are essential for understanding the discussion in the following
chapters. First, some basic concepts of time series model which play funda-
mental roles in building a statistical model will be discussed. Second, idea and
details of compartment model will be elucidated. In the end of the chapter,
some extensions of the compartment model will be mentioned.

Compartment model is a special case of a state space model which we will
use throughout the whole thesis. The compartment model was introduced
by Ozaki (2003) and was applied to an EEG data by Wong et al. (2006).
It is designed for a given time series to be decomposed into a set of noise
driven processes, each corresponding to a unique frequency oscillation. The
compartment model makes use of the unimodal property of AR(2) spectrum
to reconstruct the spectral density structure of a given time series.

2.1 Prerequisite

2.1.1 ARMA Model

ARMA model is a basic starting time series model in many time series text-
books: Box & Jenkins (1970); Brockwell & Davis (1991, 1996); Wei (1990,
2006). An ARMA model comprises 2 parts, namely the autoregressive part
and the moving average part. The AR part contains a weighted sum of the lags
of the previous data, automatically �tted into the model as regressors at every
consecutive time point. The MA part contains a current noise plus a weighted
sum of the previous noise and acts as an average of driving noise. We will use
equation 2.1 to represent a univariate ARMA(p, q) process and equation 2.2
to represent a multivariate ARMA(p, q) process in the whole thesis.

Let y be a univariate time series. φ is AR coe�cients and θ is MA coe�-
cients. p is the AR order and q is the MA order of the model. η is Gaussian
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noise with zero mean and a constant variance σ2.

yt − φ1yt−1 − · · · − φpyt−p = θ0ηt + θ1ηt−1 + · · · + θqηt−q (2.1)

In most literatures, it is assumed that θ0 = 1. In this thesis, we will also
assume θ0 = 1 for any univariate AR model unless it is speci�ed.

Analogously, in the multivariate case, we let y be an observation vector
storing the `-variate data. Φ is an `× ` matrix which is the AR coe�cient for
the model. Again, p is the AR order and q is the MA order of the model. η is
a noise vector of size n × 1 and Θ is the MA coe�cient of size ` × n. Σ is the
variance of η of size n × n, so that η ∼ N (0, Σ). A multivariate AR model
can be expressed in equation 2.2.

yt − Φ1yt−1 − · · · − Φpyt−p = Θ0ηt + Θ1ηt−1 + · · · + Θqηt−q (2.2)

Note that when Θ0 is `× ` identity matrix and the other Θ are zero, equation
2.2 becomes a multivariate AR model, which is used in most literature on
multivariate time series analysis. In this thesis, we are aiming to have a general
case for the multivariate time series modelling, by not only allowing the MA
part involved, but also considering a more complicated situation when the
noise vector is not as the same size as the observation vector. By using the
compartment model which will be discussed later, we can obtain a sensible
meaning for every element of the noise vector even though it is longer than the
observation vector.

2.1.2 State Space Model

On the other hand, state space model is another useful time series model in
many real application. Let xt be the state vector at time t of size m × 1,
y be the observation vector at time t of size ` × 1. F is an m × m matrix
representing the transition matrix of the state vector, G is an m × k matrix
and H is an observation matrix of size ` × m. We formulate the state space
model in equation 2.3. {

xt = Fxt−1 + Gwt

yt = Hxt + εt

(2.3)

The two equations above are commonly known as system equation and
observation equation. In the system equation the state xt is �ltered by F
and driven by a system noise wt. xt is projected onto an observation space
by the observation matrix H and further driven by an observation noise εt to
form yt, where wt is assumed to follow a multivariate Gaussian distribution
wt ∼ N (0, Q) and εt follows a univariate Gaussian distribution εt ∼ N (0, R).

Throughout the thesis we assume both Q and R are diagonal, ie Q =

diag
(
τ (1)2, τ (2)2, . . . , τ (k)2

)
and R = diag

(
σ(1)2, σ(2)2, . . . , σ(`)2

)
.
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2.1.3 Kalman Filter

Kalman (1960) introduced a �ltering technique for state space models which
can e�ciently calculate the conditional prediction and the conditional �ltered
estimation of unobserved states. A comprehensive introduction to state space
models and Kalman �ltering has been provided by Kalman (1960); Harrison &
Stevens (1976); Harvey (1989); Grewal & Andrews (2001); Durbin & Koopman
(2001).

Kalman �lter is an algorithm of computing the conditional expectation
and variance in a state space model. The Kalman �lter algorithm consists of
a prediction step and a �ltering step.

Prediction

{
xt|t−1 = Fxt−1|t−1

Vt|t−1 = FVt−1|t−1F
′ + GQtG

′ , (2.4)

Filter



ιt = yt − Hxt|t−1

Ωt =
(
HVt|t−1H

′ + R
)−1

Kt = Vt|t−1H
′Ωt

xt|t = xt|t−1 + Ktιt

Vt|t = (I − KtH) Vt|t−1

. (2.5)

where xt|s = E (xt|y1, · · · ,ys) and Vt|s = Var (xt|y1, · · · ,ys) are the expec-
tation and the variance of xt conditional on the observations y1, · · · , ys and
conditional on the state space model. ιt and Ωt are respectively the innovation
and the innovation variance inverse. By iterating between the prediction step
and the �ltering step at each time point t = 1, · · · , N , we could obtain the
�lter xt|t. The �lter estimate is known to be the optimal estimate of xt based
on the observations up to current under the assumption of Gaussian noise.

2.1.4 Analogy of ARMA and State Space

It is always possible to transform an ARMA model 2.2 to a state space model
2.3 and vice versa (see Akaike, 1968; Aoki, 1987; Ozaki, 2003; Gilbert, 1993).
On one hand, there are many ways to convert an ARMA model to a state space
model, which is comprehensively explained in Akaike's literatures (see Akaike,
1968). In example 2.1 we will show how a univariate ARMA(2,1) model is
transformed into a state space model. This example is a necessary building
block for the compartment model in the latter sections.

Example 2.1 (ARMA(2,1) to state space) Let yt be a univariate time
series following ARMA(2,1) model.

yt = φ1yt−1 + φ2yt−2 + wt + θ1wt−1
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The equivalent state space model is[
x

(1)
t

x
(2)
t

]
=

[
φ1 1

φ2 0

][
x

(1)
t−1

x
(2)
t−1

]
+

[
1

θ1

]
wt

yt =
[

1 0
] [

x
(1)
t

x
(2)
t

]
.

It is easy to verify that the models are equivalent.

x
(1)
t = φ1x

(1)
t−1 + x

(2)
t−1 + wt

x
(2)
t = φ2x

(1)
t−1 + θ1wt

x
(1)
t = φ1x

(1)
t−1 + φ2x

(2)
t−1 + wt

= φ1x
(1)
t−1 + φ2x

(1)
t−2 + wt + θ1wt−1

yt = φ1yt−1 + φ2yt−2 + wt + θ1wt−1

¤

When we have any higher order ARMA model, we can use the same tech-
nique to formulate a state space model. Let m = max (p, q + 1), the state
vector x will be an m×1 column vector. F will be an m×m matrix, in which
the �rst column contains the AR coe�cients of the ARMA model, and upper
diagonal entries are all 1 and other entries are all 0. G will be an m×1 column
vector, in which the �rst element is 1 and the other entries are placed with
the MA coe�cients of the ARMA model. H will be an m × 1 row vector in
which the �rst element is 1 and the other elements are all 0. Both in the state
space model and the ARMA model w are equivalent, so both of them follow a
normal distribution with zero mean and a common variance. In example 2.2,
we will show the formulation from a state space model to a general ARMA
model.

Example 2.2 (State Space to ARMA) Suppose we have a state state model
2.3. We assume the eigenvalues λ of the m × m transitional matrix F satisfy
a characteristic equation 2.6.

λm − φ1λ
m−1 − φ2λ

m−2 − · · · − φm−1λ − φm = 0 (2.6)

Then, by Cayley Hamilton Theorem, we have equation 2.7.

Fm − φ1F
m−1 − φ2F

m−2 − · · · − φm−1F − φmI = 0 (2.7)

We can rewrite the state equation into ARMA(m,m − 1) model using the
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Cayley-Hamilton Theorem.

xt − φ1xt−1 − φ2xt−2 − · · · − φkxt−m

= (Fxt−1 + Gwt) − φ1xt−1 − φ2xt−2 − · · · − φmxt−m

= (F − φ1I) xt−1 − φ2xt−2 − · · · − φmxt−m + Gwt

= (F − φ1I) (Fxt−2 + Gwt−1) − φ2xt−2 − · · · − φmxt−m + Gwt

=
(
F 2 − φ1F − φ2I

)
xt−2 − · · · − φmxt−m + Gwt + (F − φ1I) Gwt−1

= . . . . . .

=
(
Fm − φ1F

m−1 − · · · − φm−1F − φmI
)
xt−m

+ Gwt + (F − φ1I) Gwt−1 +
(
F 2 − φ1F − φ2I

)
Gwt−2 + . . .

+
(
Fm−1 − φ1F

m−2 − · · · − φm−2F − φm−1I
)
Gwt−m+1

= Gwt + (F − φ1I) Gwt−1 +
(
F 2 − φ1F − φ2I

)
Gwt−2 + . . .

+
(
Fm−1 − φ1F

m−2 − · · · − φm−2F − φm−1I
)
Gwt−m+1

And we can also rewrite the observation equation,

yt − φ1yt−1 − φ2yt−2 − · · · − φmyt−m

= (Hxt + εt) − φ1 (Hxt−1 + εt−1) − · · · − φk (Hxt−m + εt−m)

= H
[
Gwt + (F − φ1I) Gwt−1 +

(
F 2 − φ1F − φ2I

)
Gwt−2 + . . .

+
(
Fm−1 − φ1F

m−2 − · · · − φm−2F − φm−1I
)
Gwt−m+1

]
+ [εt − φ1εt−1 − φ2εt−2 − · · · − φmεt−m]

= [HGwt + εt] + [H (F − φ1I) Gwt−1 − φ1εt−1]

+
[
H

(
F 2 − φ1F − φ2I

)
Gwt−2 − φ2εt−2

]
+ . . .

+
[
H

(
Fm−1 − φ1F

m−2 − · · · − φm−2F − φm−1I
)
Gwt−m+1 − φm−1εt−m+1

]
−φmεt−m

≡ Θ0ηt + Θ1ηt−1 + Θ2ηt−2 + · · · + Θm−1ηt−m+1 + Θmηt−m

where Θ are block matrices of size ` × (k + `),

Θ0 =
(

HG I
)

Θ1 =
(

H (F − φ1I) G −φ1I
)

Θ2 =
(

H (F 2 − φ1F − φ2I) G −φ2I
)

...

Θm−1 =
(

H (Fm−1 − φ1F
m−2 − · · · − φm−2F − φm−1I) G −φm−1I

)
Θm =

(
0 −φmI

)
ηt−j =

(
wt−j

εt−j

)
∼ N

(
0,

(
Q 0

0 R

))
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Each Θ contains two matrix blocks of sizes ` × k and ` × `. η are (k + l)
column vectors of the state noise and the observation noise stacked vertically.
We write Φj = φjI then the state space model is of the same form as model
2.2. This completes the conversion. ¤

In the state space model framework, the state equation is a multivariate
AR(1) model, on the other hand, it can be expressed in a form of multivari-
ate ARMA(m,m − 1) model. In the form of multivariate ARMA, the AR
coe�cients are all identity matrices multiplied by scalars. This form implies
that the elements of the state vector are �ltered by the same AR process to
become di�erent moving average of the system noise. We can see that the AR
coe�cients in this ARMA(m,m−1) model is characterized solely by the tran-
sitional matrix F . In many real applications, AR coe�cients play the main
role of picking out spikes in a spectrum. In other words, F is the core of the
model describing the dynamics of the state.

2.2 Transformation of State Space Model

Suppose F̃ is similar to F , then there exists a non-singular matrix S, so that
F̃ = SFS−1. The state equation and the observation equation can be trans-
formed as follow.

Sxt = S (Fxt−1 + Gwt) = SFS−1Sxt−1 + SGwt

x̃t = F̃ x̃t−1 + G̃wt

yt = Hxt + εt = HS−1Sxt + εt

= H̃x̃t + εt

where

F̃ = SFS−1, G̃ = SG, H̃ = HS−1, x̃t = Sxt.

The transformed model is also a state space model. The transformation does
not a�ect the observation y, the noises w and ε. Therefore, the same state
space model can be characterized by di�erent combination of F , G and H.
There is an invariant property of the state noise and observation noise once
the state space model is identi�ed. It is equivalent to say that the state space
model can be rotated to allow a state vector and be viewed in any angle without
a�ecting the transitional process.

Example 2.3 (Companion to Rotation) Suppose we have a state space
model as in example 2.1, where

F =

[
φ1 1

φ2 0

]
, G =

[
1

θ1

]
, H =

[
1 0

]
.
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Suppose F has a pair of complex conjugate roots. Then we can express the
roots in a + bi and a − bi, where a and b are positive real numbers. φ1 and
−φ2 represent the sum of roots and the product of roots, so φ1 = 2a and
−φ2 = a2 + b2. There exists a non-singular S and F̃ such that F̃ = SFS−1,
where

F =

[
2a 1

− (a2 + b2) 0

]
, F̃ =

[
a b

−b a

]
, S =

 a2+b2√
b(a2+b2)

a√
b(a2+b2)

0 b√
b(a2+b2)

 .

G̃ and H̃ are given by

G̃ = SG

=

 a2+b2√
b(a2+b2)

a√
b(a2+b2)

0 b√
b(a2+b2)

[
1

θ1

]
=

 a2+b2+θ1a√
b(a2+b2)

θ1b√
b(a2+b2)

 ,

H̃ = HS−1

=
[

1 0
]  b√

b(a2+b2)

−a√
b(a2+b2)

0 a2+b2√
b(a2+b2)

 =
[

b√
b(a2+b2)

−a√
b(a2+b2)

]
.

¤

The transformation can be done only under the assumption that F and
F̃ are similar to each other, ie F̃ = SFS−1, for some non-singular S. If
two matrices are similar, then they have the same set of eigenvalues, but the
converse may not be true. It is possible that F̃ has the same set of eigenvalues
as F but it is not similar to F . Then there is no way to transform between
the two models.

It is common that even F and F̃ contain real entries, S can be complex.
In such a case, the transformed counterparts x̃t, G̃ and H̃ become complex,
which is not a desirable situation if we want to make use of the state estimates
for any purposes.

However, we can take the real part of G̃ and H̃ as G̃ and H̃ to obtain a
`realistic' state space model. In real practice by doing this there is only a slight
di�erence. The main part of a state space model is the transition matrix F or
equivalently its eigenvalues λ.

If the characteristic equation has r conjugate pairs of complex roots,
λ1, λ̄1, λ2, λ̄2, · · · , λr, λ̄r and s real roots, λr+1, · · · , λr+s, a square matrix whose
diagonal entries are λ is similar to F , ie diag

(
λ1, λ̄1, · · · , λr+s

)
= SFS−1. It

is obvious that S is a composition of r + s non-zero eigenvectors of F . This is
known as spectral decomposition.
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2.3 Compartment Model

We have discussed in chapter 1 about the literature of modelling EEG data, in-
cluding the Broad Band Spectral Model by John et al. (1977), the ξα model by
Pascual-Marqui et al. (1988), and the Broad Band Spectral Model by Valdés-
Sosa et al. (1990). The common point of these models is the analysis of spectral
power in frequency domain. The major frequency bands are thought to charac-
terize neural activity of a brain. For example, John (2002a) stated that during
visual processing, gamma frequency range (25-50Hz) evolves from visual cor-
tex region; during multimodal semantic processing, lower beta frequency range
(12-18Hz) evolves from neighboring temporal region and parietal cortical re-
gion; and during tasks of mental imagery, alpha frequency range (8-12Hz) and
theta frequency range (4-8Hz) evolves from fronto-parietal region.

Compartment model is proposed by Ozaki (2003) for characterizing dynam-
ics of major frequency bands of EEG data and can be �tted in a state space
framework. It is a modi�cation of the parallel seasonal model Ozaki (1997a,b)
which is based on the idea from Ameen & Harrison (1985) and Harvey (1985);
at the same period di�erent state space models with similar model structure
were proposed, for example, cyclical component model by West (1995), indi-
vidual AR component model by Kitagawa & Gersch (1996) and quasi-periodic
oscillation model by Higuchi (1999). The compartment model assembles a
weighted sum of state components to reconstruct the multivariate time series
data, each observed variable of which shares common noise driven periodic
dynamics of di�erent absorption in terms of magnitude and phase lag.

2.3.1 Companion Form

For any state space model F is de�ned by its eigenvalues. The eigenvalues
are either real numbers or pairs of complex conjugate numbers. Therefore, the
characteristic polynomial of F can be factorized into �rst order polynomials for
the real roots and second order polynomials for each conjugate pair of complex
roots. Let λ be the eigenvalues of F .

φ (λ) = (λ − λ1)
(
λ − λ̄1

)
(λ − λ2)

(
λ − λ̄2

)
. . . (λ − λr)

(
λ − λ̄r

)
× (λ − λr+1) (λ − λr+2) . . . (λ − λr+s)

=
(
λ2 − φ

(1)
1 λ − φ

(1)
2

)(
λ2 − φ

(2)
1 λ − φ

(2)
2

)
. . .

(
λ2 − φ

(r)
1 λ − φ

(r)
2

)
×

(
λ − φ

(r+1)
1

)(
λ − φ

(r+2)
1

)
. . .

(
λ − φ

(r+s)
1

)
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Under this factorization, we re-write the transition matrix F̆ as follow.

F̆ =



φ
(1)
1 1

φ
(1)
2 0

φ
(2)
1 1

φ
(2)
2 0

. . .

φ
(r)
1 1

φ
(r)
2 0

φ
(r+1)
1

φ
(r+2)
1

. . .

φ
(r+s)
1


F̆ is a (2r + s)× (2r + s) matrix. For each of the r second order factors there
is a 2×2 block and for rest of the s �rst order factors there is an s×s diagonal
block on the diagonal of F̆ , and all other elements of F̆ are zero. Each 2 × 2
block contains two parameters, which takes φ1 and φ2 of the corresponding
second order factor, at the same time the s× s block contains the φ1 of all the
�rst order factors.

In section 2.2 we showed that when we have a suitable transformation ma-
trix S then we can have the same state space model with di�erent combinations
of F , G and H. Therefore we are going to have Ğ in a special form as follow.

Ğ =



1

θ
(1)
1

. . .

1

θ
(r)
1

1
. . .

1


(2.8)

The matrix Ğ is composed of r 2× 1 blocks and s 1× 1 blocks allocated along
the diagonal, and all other elements are zero. Each 2 × 1 block contains a
parameter θ1. Therefore, when F̆ and Ğ are substituted into the state equation
of model 2.3, together with a diagonal noise variance Q, we obtain a model
with independent r ARMA(2,1) models and s AR(1) models. We will name
the state space model under this model structure a compartment model.
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It is possible to �ll in non-zero values into the o�-diagonal blocks in Ğ.
This will allow the driving noises to be coupled before going into the states,
which gives an interaction between state components. When Ğ is a full matrix
then the model is of no di�erence from a general state space model, which is
out of scope of this thesis but will be saved as a future research. In this thesis
we would concentrate on the class of independent compartment model.

When we have a univariate observation vector y then we choose H̆ =
(1, 0, . . . , 1, 0︸ ︷︷ ︸

2r elements

, 1, . . . , 1︸ ︷︷ ︸
s elements

). This gives a meaning that we decompose the obser-

vation into ARMA(2) and AR(1) components described in the state equation,
and we resemble the components to predict the data.

On the other hand, when we have multivariate data, the observation matrix
H̆ contains di�erent weights of states for each variable. The �rst row of H̆ is
�xed to (1, 0, . . . , 1, 0, 1, . . . , 1) so that the �rst element of the observation
vector is a simple of states which is not necessary in general, but here we have
this setting in order to avoid parameter redundancy.

H̆ =


1 0 · · · 1 0 1 · · · 1

h(21) h(22) · · · h(2 2r−1) h(2 2r) h(2 2r+1) · · · h(2 2r+s)

h(31) h(32) · · · h(3 2r−1) h(3 2r) h(3 2r+1) · · · h(3 2r+s)

...
...

...
...

...
...

...
...

h(` 1) h(` 2) · · · h(` 2r−1) h(` 2r) h(` 2r+1) · · · h(` 2r+s)


The compartment model allows every single time series to pick up a weighted

combination of components of its own special. The pairs
(
h(21), h(22)

)
, for in-

stance, acts an interpolation coe�cients of �rst two state elements. This is an
approximation to remedy the phase lag between time series. Therefore, it is
good to have time series in phase or constant phase lag.

Moreover, those decomposed components must be mutual components to
all variables. If two observed variables have same characteristics at a frequency
but driven by two di�erent noise, the model would be unsuitable unless we add
another component.

Example 2.4 EEG data contains some high frequency, such as delta, theta,
alpha, beta and gamma frequency. They appear signi�cantly in the sample
spectrum and brain scientists believe they are source to the brain's dynamics. In
this case, 4 compartments are used for theta, alpha, beta and gamma frequency,
and the remaining root is for the delta frequency.

Figure 2.1 shows how the decomposition was resulted. The data, on the top
left hand corner, is decomposed into 4 components, illustrated with four colors
in the bottom left hand corner, of which each is characterized by a pair of
conjugate complex roots in the Argand plane in the bottom right hand corner.
Each decomposed component contributes to a peak in the power spectrum. The
four spectra constitutes a model spectrum for the data. ¤
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Figure 2.1: Top left: data; bottom left: decomposed components with data; top right:
spectrum of individual decomposed components and their sum; bottom right: characteristic
roots of decomposed components.

2.3.2 Rotation Form

In section 2.2 we studied the invariant property of linear state space models.
Any linear state space model projecting onto another space does not a�ect its
statistical properties. We can transform a state space model in order to view
the state in another angle.

Following to the previous subsection let λ be the eigenvalues of a transition
matrix F . Let the complex λj = aj + bji for j = 1, · · · , r and the real λj = aj

for j = r + 1, · · · , r + s. Without any loss of generality we can assume bj

are the non-zero positive real numbers for j = 1, · · · , r and zero for j =
r+1, · · · , r+s, so as to ensure the real eigenvalues and the complex eigenvalues
are well separated. We can have the following matrix F̂ .

F̂ is a diagonal block matrix of r 2 × 2 rotation matrices for r pairs of
conjugate complex eigenvalues and s 1 × 1 matrices of the real eigenvalues.

In example 2.3, we showed that the transition matrix in companion form
F̆ and in rotation form F̂ are similar to each other. It is true in general when
we have the following transformation matrix.
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F̂ =



a1 b1

−b1 a1

a2 b2

−b2 a2

. . .

ar br

−br ar

ar+1

ar+2

. . .

ar+s



S =



a2
1+b21q

b1(a2
1+b21)

a1q
b1(a2

1+b21)

0 b1q
b1(a2

1+b21)
. . .

a2
r+b2r√

br(a2
r+b2r)

ar√
br(a2

r+b2r)

0 br√
br(a2

r+b2r)

1
. . .

1



Therefore, we can have a duality between the companion form and the
rotation form. In such a case, Ĝ has the same number of parameters as Ğ of
the companion form.



2.4 Log-likelihood Function and Akaike Information Criterion 19

Ĝ =



a2
1+b21+θ

(1)
1 a1q

b1(a2
1+b21)

θ
(r)
1 b1q

b1(a2
1+b21)

. . .
a2

r+b2r+θ
(r)
1 ar√

br(a2
r+b2r)

θ
(r)
1 br√

br(a2
r+b2r)

1
. . .

1



2.4 Log-likelihood Function and Akaike Infor-

mation Criterion

In modelling ARMA model or state space model we choose a model with a
maximum log-likelihood.

L = log p (y1, · · · , yN) = log p (ι1, · · · , ιN)

=
1

2

{
−N log 2π +

N∑
t=1

log |Ωt| +
N∑

t=1

ι′tΩtιt

}
(2.9)

The model parameters in equation 2.3 is estimated from given data by
the maximum-likelihood method. Given a set of parameters, computation
of the likelihood from the errors of the data prediction through application
of the Kalman �lter is straightforward. The log-likelihood function L for the
compartment model is given in equation 2.9. The innovation ι and its variance
inverse Ω can be calculated in Kalman �lter. See Mehra (1971); Åström &
Kallstrom (1973); Valdés-Sosa et al. (1999) for reference.

Since we do not have any restriction on the order of the compartment
model, there are inde�nite number of suitable �tted model from di�erent model
order. In this case, model selection is done by minimizing AIC, which is a
value of trade-o� between a pro�t in log-likelihood and a loss in number of
parameters Np. In equation 2.10 AIC which is proportional to the di�erence
of N − p and log-likelihood is de�ned. We always choose the least AIC for the
optimal model (Akaike, 1973, 1974).

AIC = −2L + 2Np (2.10)
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2.5 Appendix

2.5.1 Transformation Matrices

We list out the transformation matrices in table 2.1.

F S F̃ = SFS−1[
2a 1

− (a2 + b2) 0

]  a2+b2√
b(a2+b2)

a√
b(a2+b2)

0 b√
b(a2+b2)

 [
a b

−b a

]
[

a b

−b a

]  b√
b(a2+b2)

−a√
b(a2+b2)

0 a2+b2√
b(a2+b2)

 [
2a 1

− (a2 + b2) 0

]
[

a b

−b a

]  a2+b2√
−b(a2+b2)

0

a√
−b(a2+b2)

−b√
−b(a2+b2)

 [
2a − (a2 + b2)

1 0

]
[

2a − (a2 + b2)

1 0

]  −b√
−b(a2+b2)

0

−a√
−b(a2+b2)

a2+b2√
−b(a2+b2)

 [
a b

−b a

]
[

a + bi 0

0 a − bi

] [
1√
2

i√
2

i√
2

1√
2

] [
a b

−b a

]

Table 2.1: A list of transformation matrices

2.5.2 AR Compartment Model

In this subsection we give another form of compartment model used in Wong
et al. (2006). This compartment model is a special case of the companion form
of compartment model in section 2.3.1 when the ARMA(2,1) compartments
become AR(2) compartments, equivalently when θ are all zero. Since this
special case restricts the MA part of compartments that would reduce the
�exibility of model �tting, we leave this model in this appendix.

φ (B) = (1 − λ1B)
(
1 − λ̄1B

)
(1 − λ2B)

(
1 − λ̄2B

)
. . . (1 − λrB)

(
1 − λ̄rB

)
× (1 − λr+1B) (1 − λr+2B) . . . (1 − λr+sB)

=
(
1 − φ

(1)
1 B − φ

(1)
2 B2

)(
1 − φ

(2)
1 B − φ

(2)
2 B2

)
. . .

(
1 − φ

(r)
1 B − φ

(r)
2 B2

)
×

(
1 − φ

(r+1)
1 B

)(
1 − φ

(r+2)
1 B

)
. . .

(
1 − φ

(r+s)
1 B

)
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F̆ =



φ
(1)
1 φ

(1)
2 0 · · · · · · · · · · · · · · · · · · · · · 0

1 0 0
. . .

...

0 0 φ
(2)
1 φ

(2)
2

. . .
...

...
. . . 1 0 0

. . .
...

...
. . . 0

. . . . . . . . .
...

...
. . . . . . φ

(r)
1 φ

(r)
2

. . .
...

...
. . . 1 0 0

. . .
...

...
. . . 0 φ

(r+1)
1 0

. . .
...

...
. . . 0 φ

(r+2)
1

. . . 0
...

. . . . . . . . . 0

0 · · · · · · · · · · · · · · · · · · · · · 0 0 φ
(r+s)
1



G =



1

0
. . .

1

0

1
. . .

1


(2.11)

H =


1 0 · · · 1 0 1 · · · 1

h(21) h(22) · · · h(2 2r−1) h(2 2r) h(2 2r+1) · · · h(2 2r+s)

h(31) h(32) · · · h(3 2r−1) h(3 2r) h(3 2r+1) · · · h(3 2r+s)

...
...

...
...

...
...

...
...

h(l1) h(l2) · · · h(l 2r−1) h(l 2r) h(l 2r+1) · · · h(l 2r+s)







Chapter 3

Spectrum and Causality in State

Space

In view of the wide use of state space model in this thesis, discussing the theory
in chapter 2 and showing the result in the latter chapters, we shall discuss the
spectral properties of the linear state space model. Through spectral density
we can discuss causality by the theory of NCR proposed by Akaike (1968).
NCR is commonly applied on multivariate AR model while it will be applied
to a more general multivariate ARMA model or a linear state space model. At
the end of the chapter we will brie�y discuss the time varying causality which
leads us to the topic of heteroscedasticity in chapter 4.

3.1 Spectrum

Spectrum is power intensity against frequency. It is a smooth function showing
the characteristic of a time process. It is also a polygon curve, approximating
the true spectrum of a time series data, which can be produced by Fourier
transformation of auto-covariances or fast Fourier transformation of the data.

There are several ways to smooth the sample spectrum from a zigzag poly-
gon curve. Examples include averaging spectrum windows (Brinllinger, 1981;
Priestley, 1981; Harvey, 1989) and approximating spectral density by a mixture
of quadratic functions (Pascual-Marqui et al., 1988). Instead of applying any
smoothing technique directly to spectrum in the frequency domain, we can �t
an AR model to the data and plot the AR model spectrum.

It is also fast and easy to estimate AR model �rst from zero order to a
reasonably high order, choose one of them with minimum AIC over the others
and then plot out the spectrum, which will be called best AR spectrum in the
rest of this thesis. It is also wise to take windows of data and draw the spectral
density of each window on a time axis. It helps to see how the spectrum shape
changing in the progression of time. We will use the symbol Pf to denote the
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spectral density at frequency f . We shall plot the log spectrum in decibel
scale, ie 10 × log10 Pf , for easy visualization.

3.1.1 Multivariate ARMA Spectral Density

Let f be the frequency ranged from 0 to 0.5, i be the unit imaginary number
and π be the ratio of circumference to diameter of a circle. The spectral density
of a univariate ARMA model 2.1 is formulated in equation 3.1.

Pf =
σ2

2π

∣∣θ0 + θ1e
−2iπf + · · · + θqe

−2qiπf
∣∣2

|1 − φ1e−2iπf − · · · − φpe−2piπf |2
(3.1)

The spectrum Pf is an averaged variance multiplied by a coe�cient depend-
ing on frequency f . This coe�cient is obtained by Fourier transformation of
the ARMA coe�cients. The Fourier transformation expands the ARMA coef-
�cients to a sum of sine functions and cosine functions. By putting di�erent
value between 0 to 0.5 into f , we get the amplitude of each ARMA coe�-
cient of f . The amplitude constitutes the power contributing to the observed
variable.

The spectral density of a multivariate ARMA model can be calculated
analogously by using a matrix manner. First we need to calculate the Fourier
transformation of the AR and MA coe�cients in model 2.2 on page 8 by
equation 3.2.

Af = Ff (Φ)−1 Ff (Θ)

=

[
I −

p∑
j=1

Φje
−2jiπf

]−1 [
q∑

j=0

Θje
−2jiπf

]
(3.2)

=


a

(11)
f a

(12)
f · · · a

(1n)
f

a
(21)
f a

(22)
f · · · a

(2n)
f

...
...

. . .
...

a
(` 1)
f a

(` 2)
f · · · a

(` n)
f


The power spectral density matrix Pf is given by equation 3.3.

Pf =
1

2π
AfΣAH

f

=
1

2π

[
Ff (Φ)−1 Ff (Θ)

]
Σ

[
Ff (Φ)−1 Ff (Θ)

]H
(3.3)

Example 3.1 Suppose we have a multivariate AR(p) model as equation 3.4.
The data y and the noise η are 3-variate vector.

yt − Φ1yt−1 − Φ2yt−2 − · · · − Φpyt−p = ηt (3.4)

ηt ∼ N (0, Σ)
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yt =

 y
(1)
t

y
(2)
t

y
(3)
t

 ηt =

 η
(1)
t

η
(2)
t

η
(3)
t

 Σ =

 σ(1)2 σ(12) σ(13)

σ(12) σ(2)2 σ(23)

σ(13) σ(23) σ(3)2


Af can be obtained by equation 3.2 with Θ0 = I. Then we can calculate the
Spectral density function Pf .

Pf =
1

2π
AfΣAH

f

=
1

2π

 a
(11)
f a

(12)
f a

(13)
f

a
(21)
f a

(22)
f a

(23)
f

a
(31)
f a

(32)
f a

(33)
f


 σ(1)2 σ(12) σ(13)

σ(12) σ(2)2 σ(23)

σ(13) σ(23) σ(3)2


 ā

(11)
f ā

(21)
f ā

(31)
f

ā
(12)
f ā

(22)
f ā

(32)
f

ā
(13)
f ā

(23)
f ā

(33)
f


=

 P
(11)
f P

(12)
f P

(13)
f

P
(21)
f P

(22)
f P

(23)
f

P
(31)
f P

(32)
f P

(33)
f


The �rst element is

P
(11)
f =

1

2π

[(
a

(11)
f σ(1)2 + a

(12)
f σ(12) + a

(13)
f σ(13)

)
ā

(11)
f

+
(
a

(11)
f σ(12) + a

(12)
f σ(2)2 + a

(13)
f σ(23)

)
ā

(12)
f

+
(
a

(11)
f σ(13) + a

(12)
f σ(23) + a

(13)
f σ(3)2

)
ā

(13)
f

]
,

and in general for all elements, i = 1, 2, 3; j = 1, 2, 3,

P
(ij)
f =

1

2π

[(
a

(i1)
f σ(1)2 + a

(i2)
f σ(12) + a

(i3)
f σ(13)

)
ā

(j1)
f

+
(
a

(i1)
f σ(12) + a

(i2)
f σ(2)2 + a

(i3)
f σ(23)

)
ā

(j2)
f

+
(
a

(i1)
f σ(13) + a

(i2)
f σ(23) + a

(i3)
f σ(3)2

)
ā

(j3)
f

]
.

P
(11)
f is the spectral density function of y

(1)
t based on the AR(3) model 3.4.

With this function we can draw the model spectrum, a plot of power intensity
against frequency. Similarly other diagonal elements of Pf give the spectral
density of other variables. ¤

3.1.2 State Space Spectral Density

The state space model contains a system noise and an observation noise so its
model structure is more complicated than a general ARMA model. It is possi-
ble to draw the spectrum of a state space model but not in a straightforward
way. To calculate the spectrum, one should �rst transform the state space
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model to an ARMA model representation to retrieve the model coe�cients
and the noise covariance from the state space model as shown in example 2.2.
Then we can put these Φ, Θ and Σ into equation 3.3 to obtain the spectrum
for the general state space model 2.3.

While we have a linear state space model, we can easily calculate the AR
and MA coe�cients and then substitute into these calculation to obtain the
spectrum. In example 3.2 we illustrate such calculation with a simple case of
compartment model.

Example 3.2 Suppose we have a compartment model in companion form (sec-
tion 2.3.1) of r = 1 and s = 1. Let y be a bivariate data. We assume both the
system noise variance Q and the observation noise variance R to be diagonal.{

xt = Fxt−1 + Gwt

yt = Hxt + εt

wt ∼ N (0, Qt) , εt ∼ N (0, R)

F =

 φ
(1)
1 1

φ
(1)
2 0

φ
(2)
1

 , G =

 1

θ
(1)
1

1

 ,

H =

(
1 0 1

h(21) h(22) h(23)

)
, Q =

(
τ (1)2 0

0 τ (2)2

)
, R =

(
σ(1)2 0

0 σ(2)2

)
.

The characteristic polynomial of F is the product of an AR(2) factor and an
AR(1) factor. We can expand the product of the factors to get a characteristic
polynomial of F .

φ (λ) =
(
λ2 − φ

(1)
1 λ − φ

(1)
2

)(
λ − φ

(2)
1

)
= λ3 −

(
φ

(1)
1 + φ

(2)
1

)
λ −

(
−φ

(1)
1 φ

(2)
1 + φ

(1)
2

)
λ −

(
−φ

(2)
1 φ

(1)
2

)
≡ λ3 − φ1λ

2 − φ2λ − φ3

Next we can use the formula in example 2.2 to obtain the ARMA coe�cients.

Φ1 = φ1I =

(
φ

(1)
1 + φ

(2)
1 0

0 φ
(1)
1 + φ

(2)
1

)

Φ2 = φ2I =

(
−φ

(1)
1 φ

(2)
1 + φ

(1)
2 0

0 −φ
(1)
1 φ

(2)
1 + φ

(1)
2

)

Φ3 = φ3I =

(
−φ

(2)
1 φ

(1)
2 0

0 −φ
(2)
1 φ

(1)
2

)
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Θ0 =
(

HG I
)

=

(
1 1 1 0

h(21) + h(22)θ
(1)
1 h(23) 0 1

)
Θ1 =

(
H (F − φ1I) G −φ1I

)
=

 −φ
(2)
1 + θ

(1)
1 −φ

(1)
1 −φ

(1)
1 − φ

(2)
1 0{

h(21)
�
−φ

(2)
1 +θ

(1)
1

�
+

h(22)
h
φ

(1)
2 −

�
φ

(1)
1 +φ

(2)
1

�
θ
(1)
1

i
}

−h(23)φ
(1)
1 0 −φ

(1)
1 − φ

(2)
1


Θ2 =

(
H (F 2 − φ1F − φ2I) G −φ2I

)
=

 −φ
(2)
1 θ

(1)
1 −φ

(1)
2 φ

(1)
1 φ

(2)
1 − φ

(1)
2 0{

−h(21)φ
(2)
1 θ

(1)
1 −

h(22)
�
φ

(2)
1 φ

(1)
2 −φ

(1)
1 φ

(2)
1 θ

(1)
1

�
}

−h(23)φ
(1)
2 0 φ

(1)
1 φ

(2)
1 − φ

(1)
2


Θ3 =

(
0 −φ3I

)
=

(
0 0 φ

(2)
1 φ

(1)
2 0

0 0 0 φ
(2)
1 φ

(1)
2

)

Σ =

(
Q 0

0 R

)
=


τ (1)2 0

0 τ (2)2

σ(1)2 0

0 σ(2)2


We can write the explicit expression only up to this step. Next step we put Φ,
Θ and Σ into equation 3.2 and equation 3.3 to get Pf .

Af = Ff (Φ)−1 Ff (Θ) =

(
a

(11)
f a

(12)
f a

(13)
f 0

a
(21)
f a

(22)
f 0 a

(24)
f

)

Pf =
1

2π
AfΣAH

f =

(
P

(11)
f P

(12)
f

P
(21)
f P

(22)
f

)

Then the power spectral density of y
(1)
t and y

(2)
t are

P
(11)
f =

1

2π

(∣∣∣a(11)
f

∣∣∣2 τ (1)2 +
∣∣∣a(12)

f

∣∣∣2 τ (2)2 +
∣∣∣a(13)

f

∣∣∣2 σ(1)2
)

P
(22)
f =

1

2π

(∣∣∣a(21)
f

∣∣∣2 τ (1)2 +
∣∣∣a(22)

f

∣∣∣2 τ (2)2 +
∣∣∣a(24)

f

∣∣∣2 σ(2)2
)

and the cross spectrum is

P
(12)
f = P̄

(21)
f =

1

2π

(
a

(11)
f ā

(21)
f τ (1)2 + a

(12)
f ā

(22)
f τ (2)2

)
In general for all elements, i = 1, 2; j = 1, 2,

P
(ij)
f =

1

2π

(
a

(i1)
f ā

(j1)
f τ (1)2 + a

(i2)
f ā

(j2)
f τ (2)2 + a

(i3)
f ā

(j3)
f σ(1)2 + a

(i4)
f ā

(j4)
f σ(2)2

)
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where a
(14)
f = a

(23)
f = 0. ¤

3.2 Noise Contribution Ratio Causality

Causality is a vague term since it has a slightly di�erent meaning in di�erent
literatures. Intuitively, the study of causality is to relate the cause and the re-
sult, and is to conclude a �the cause precedes the result� phenomenon. A broad
meaning of causality includes the cause of a random noise to an observation
(Brockwell & Davis, 1996), in other words, a linear AR model is an example of
causality. A narrow meaning of causality is the pairwise relationship between
time series. One way to explain causality is to look at the causal relation from
one time series to another (Granger, 1969). Another way, that exhibits the
marrow of statistical modelling, ie transforming data to white noise, is to look
at the causal relation from noise to observed data (Akaike, 1968).

The literature of causality can be traced back to Wiener (1956), in a part of
his book chapter he discussed the causality based on prediction in the language
of Lebesgue measure and integration theory. Granger (1963) and Granger
(1969) proposed a de�nition of causality based on multivariate time series. This
evolves the popularity of Granger's causality which bases on the predictability
of some series for the others, that the coe�cients of a multivariate time series
model is a signal of causality was interpreted. The weakness of Granger's
approach is the negligence of an important element in statistical time series
model: the noise variance. Akaike (1968) proposed his own measure in view of
causality, using the NCR theory. Spectrum based on multivariate AR model
was considered. A spectrum, when the noise are uncorrelated, becomes a
simple weighted sum of the noise variance. Other than the work of Akaike and
Granger, di�erent measures and tests of causality were proposed (Geweke,
1982, 1984; Hosoya, 1991; Kaminski et al., 2001).

Akaike (1968) began the concept of NCR in order to interpret the causality
of multivariate AR models. Calculation of NCR is easy once we have the
multivariate spectral density function. NCR is a measure of the proportion
of power dedicating to a spectral density from independent noise variance. In
explicit words, when the noise variance covariance matrix Σ is and only is
diagonal, the spectral density function of each variable is a weighted sum of
noise variance. The ratio of part of the weighted sum to the total weighted
sum is NCR.

NCR
(
σ2, yt

)
=

spectral power intensity of yt contributed by σ2

total spectral power intensity of yt

Example 3.3 We will continue from example 3.1, except that we let Σ be
diagonal, ie σ(12) = σ(13) = σ(23) = 0. The power spectral density of y

(1)
t is
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given by

P
(11)
f =

1

2π

[(
a

(11)
f σ(1)2

)
ā

(11)
f +

(
a

(12)
f σ(2)2

)
ā

(12)
f +

(
a

(13)
f σ(3)2

)
ā

(13)
f

]
=

1

2π

[∣∣∣a(11)
f

∣∣∣2 σ(1)2 +
∣∣∣a(12)

f

∣∣∣2 σ(2)2 +
∣∣∣a(13)

f

∣∣∣2 σ(3)2
]

,

and therefore, for instance, the noise contribution from σ(3)2 to y
(1)
t is

NCR
(
σ(3)2, y

(1)
t

)
=

1
2π

∣∣∣a(13)
f

∣∣∣2 σ(3)2

P
(11)
f

.

In general,

NCR
(
σ(j)2, y

(i)
t

)
=

1
2π

∣∣∣a(ij)
f

∣∣∣2 σ(j)2

P
(ii)
f

.

¤

Only when the noise variance covariance matrix Σ being diagonal, each
element of the noise vector ηt is the only residual of the corresponding element
in yt, ie each observed variable can drain its unexplained residual into its
corresponding noise but not any other one. It makes the spectral density of
each variables be a weighted sum of the diagonal entries of the noise variance
matrix.

For a graphical representation, the cumulative power spectrum and the
cumulative NCR will be used.

Example 3.4 Suppose we have the following multivariate AR(2) model. y
(1)
t

y
(2)
t

y
(3)
t

 =

 1.6 0.2 0.3
0.4 0.9 0.1
0.3 0.1 1.2


 y

(1)
t−1

y
(2)
t−1

y
(3)
t−1

 +

 −0.81 0.10 0.42
−0.10 −0.81 0.24

0.22 0.38 −0.96


 y

(1)
t−2

y
(2)
t−2

y
(3)
t−2

 +

 η
(1)
t

η
(2)
t

η
(3)
t


 η

(1)
t

η
(2)
t

η
(3)
t

 ∼ N


 0

0
0

 ,

 1 0 0
0 1 0
0 0 1




In �gure 3.1 we show the model spectrum of three observed variables on the left
hand side and their corresponding NCR on the right hand side. The horizontal
axes are all in frequency, ranging from 0 to the Nyquist frequency, ie half of
the sampling rate.
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Figure 3.1: Model spectrum and NCR

The three plots on the left hand side show the power intensity of each of
the three variables. The color under them is the proportion of contribution of
the noise variances. In this example, the blue, green and red colors respec-
tively stand for η

(1)
t , η

(2)
t and η

(3)
t . Therefore, η

(2)
t , represented by green color,

contributes the most to all three observed variables.
The three plots on the right hand side are the corresponding NCR. They are

obtained as if each value on the spectral density curve is stretched or squeezed
to �t the rectangular box of 100%. In each 100% box we still have 3 colors, and
a black curve crossing on the colors of each box is the log spectrum. The NCR
helps to see the causality among variables at various frequencies, especially
around the low frequency range and the high frequency range as their power is
less intense than the range in between.

One important note is that we should pay more attention to the main char-
acteristics of the model. In other words, we should look at the colors around
the region having relatively higher spectral values. ¤

The causality on a frequency domain can be drawn by distinguishing the
contribution ratio of the noises of which each is uniquely revealing the dynamics
of its corresponding observed variable. In this situation the interpretation of
causality is di�erent from Granger's causality because we use both the AR
coe�cients and noise variance of the model for computing the spectral power
density.

Moreover, non-zero AR coe�cients do not directly imply an absolute causal
e�ect between variables. It is better to look at the coe�cients jointly instead
of individually. An example on this issue will be given in chapter 7.

As we know that the NCR is a weighted sum of noise variances, we can
tell how important role do the size of the variances play. However it is the
same argument to say that causality should be described by not only the noise
variance but the product with Fourier transformation of the coe�cients.

A de�ciency of NCR for causality analysis is the assumption of diagonal
structure in the noise covariance matrix. If the o�-diagonal entries in the noise
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covariance is non-zero, ie the noise is correlated, then the power spectrum
becomes a weighted sum of individual noise variances and also covariances.

Although a model with a diagonal noise variance matrix is often worse,
in terms of likelihood, than a model without restriction, in practice the two
models have slightly changes in the coe�cients, and a same shape of spectral
density. Therefore, it is not a problem when we use the former model to
describe the causality.

3.2.1 Multivariate ARMA Model NCR Causality

Until presently, NCR has not been applied to any models except multivariate
AR models. Di�culty in identifying a multivariate ARMA model would be the
most probable reason. Our generalization would not be a big surprise to those
who know the multivariate AR models very well. But in essence, we have an
innovative assumption for the multivariate ARMA models that the dimension
of the observed data and the dimension of driving noise are unequal. This
assumption is essential when we carry on to the next section, in explaining the
NCR causality of a linear state space model.

We preserve Akaike (1968)'s approach to keep the noise variance matrix
diagonal. By equation 3.2 we get matrix Af . In general, if we have a `-variate
AR(p) model,

NCR
(
σ(j)2, y

(i)
t

)
=

1
2π

∣∣∣a(ij)
f

∣∣∣2 σ(j)2

P
(ii)
f

(3.5)

for i = 1, 2, . . . , ` and j = 1, 2, . . . , `.

3.2.2 State Space Model NCR Causality

We have studied in section 2.1.4, that any state space model can be written as a
general multivariate ARMA model. So we can also interpret the contribution
of every individual noise to each observed variable in a state space model.
Calculation of NCR under state space model is easy, if we can assume all the
noises are independent to each other.

The example below shows the formula of the NCR for a simple case of
compartment model.

Example 3.5 Continuing from example 3.2, the power spectral density of y
(1)
t ,
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t

)
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1
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f
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,

NCR
(
σ(1)2, y

(1)
t

)
=

1
2π

∣∣∣a(13)
f

∣∣∣2 σ(1)2

P
(11)
f

, NCR
(
σ(2)2, y

(1)
t

)
= 0.

¤

The state space NCR causality will be applied to the �nger rotation data in
chapter 8. A hidden variable driven by an independent noise acts as a common
component on two observed time series. The common

Tanokura & Kitagawa (2003) explained the contribution ratio from the co-
variances, and called this an extended power contribution. They claimed that
this extended power contribution is useful for any multivariate AR model, if
the row sum of absolute correlation coe�cients is less than 2. This brings the
queries of the generality of the method, especially when the multiple correla-
tion among 3 or more variables is inclusive in some pairwise correlation. We
shall leave the comparison of Tanokura & Kitagawa (2003) approach and our
approach as future work.

3.2.3 Time varying NCR Causality

In a recent paper of Yamashita et al. (2005), NCR was applied to a multivari-
ate AR model in which a delay parameter switches the AR coe�cients. The
delay parameter comes from a known stimulation in BOLD signals data, so
that connectivity of two visual cortex region against time is depicted. Their
threshold type AR model, as well as any other time (coe�cient) varying AR
models, modi�es the Af matrix in equation 3.2.

In the case of heteroscedasticity the noise variance changes in time, causes
the model spectrum varying over time. At the same time, the NCR will fol-
low the changes of the spectrum and therefore it varies over time also. The
spectrum of a linear time series model is de�ned by the time varying spectrum
can be easily extended by either making the ARMA coe�cients changing over
time, or making the driving noise variance changing over time.

Therefore, to obtain a time vary spectrum and a time varying NCR is
equivalent to allow the two components, Af and Σ, of the spectrum vary over
time.

Example 3.6 In �gure 3.2 we show the result of the compartment-GARCH
model on this bivariate data. Although it is more suitable to have a higher
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Figure 3.2: Estimated states, state variance, original data and NCR of the bivariate EEG
data at 4 s

order of compartment model, we choose to keep a 4 compartment state space
structure. We see that the compartment-GARCH model identi�es 4 frequency
at 1.9Hz, 2.3Hz, 11.7Hz and 13.4Hz and their estimated decomposition are
on the top left corner of the �gure. On the top right corner of the �gure we
see the variance corresponding to 2.3Hz shows a signi�cant rise but that of
another low frequency 1.9Hz shows a relative dimmer upward change.

To explain the NCR result, in addition to �gure 3.2, we show the NCR of
compartment-GARCH model at 4 di�erent time points in �gure 3.3. At 4 s, T4
electrode is mainly explained by the driving noise from 1.9Hz and 11.7Hz com-
ponents because the corresponding colors in the rectangular box have a greater
proportion of area. The C4 electrode is mainly explained by the driving noise
from 11.7Hz and 13.4Hz components when the low frequency activity is not
so active. At 8 s the 2.3Hz starts showing activity in C4, and increases grad-
ually until the end of the data. The blue and purple colors correspond to the
observation noise of the 2 channels, when they were only contributing the less
important high frequency activities in the data. ¤

In this thesis we apply the same technique to the two physical data. In
our approach we use the technique of inhomogeneity of variance, for instance
the GARCH model in chapter 4, on the noise variance so that the NCR is
changing over time.
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Figure 3.3: Decomposition, noise variance and NCR of compartment-GARCH model at 4
instants.



Chapter 4

Heteroscedasticity in State Space

When a model is established, we may want to investigate the normality as-
sumption of the residuals. Although the residuals appear to be normal and
uncorrelated, the square of residuals may be correlated. This suggests that
the second moment, ie variance, is not constant. `Non-stationary in variance',
`heterogeneity of variance' or `heteroscedasticity' are always used to describe
this situation.

In this chapter, the technique of modelling non-stationarity and heteroscedas-
ticity will be �rst discussed. Then, the way how to implement non-stationarity
and heteroscedasticity to state space model will come after. An important trick
for making the GARCH model working in the space space model framework
will be introduced in details. Last but not least, several alternative methods
including jump detection, exogenous input variables and chi-square statistics
of innovations will be presented along with examples.

4.1 Chi-square Statistics based on Innovations

The innovations, or prediction error, always provide us a good information
about the goodness of the model, since we choose to use a maximum likelihood
to decide parameter estimate, and likelihood function basically depends on the
innovation. In the state space model, innovation is a collection of prediction
error coming from system noise and observation noise. If there is a moment
when innovation goes up to a large value, we may suspect that there is a
sudden event happened in the data, and we may need to modify our model
accordingly.

During the process of Kalman �lter, in the prediction step and the �lter-
ing step at every time point, an innovation and its conditional variance are
generated in order to produce state �lter estimate and state variance �ltered
estimate. A large value in the innovation can push the �lter estimate away
from the predictor estimate. At this point, the innovation variance plays a
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key role to adjust the conditional expectation and the Kalman gain to help
innovation to do its job well.

By assumption, when the state space model is speci�ed correctly, innova-
tion ought to be identically independently normally distributed, and would
not show any pattern. Otherwise, we may see some pattern in the innovations.
The pattern can be seen in many ways; one way is summing all the squared
normalized innovations to form a chi-square statistic. This chi-square statistic,
C2, follows a chi-square distribution under the normal assumption.

C2
t−1 =

u∑
j=1

ιt−jΩt−jι
′
t−j ∼ χ2 (u)

When any changes happens, the innovation become large and the innovation
variance may not be able to react immediately. In this situation the normal-
ized innovation becomes very large and pull the chi-square statistic up to a
large value. Also, when the system noise variance or observation noise variance
are over-estimated, innovation variance is retained at an excessive value, giv-
ing a small value of chi-square statistic. Therefore, comparing the chi-square
statistic with a chi-square distribution can help to �nd out insu�ciency of the
model.

The choice of u depends on data characteristics. If u is chosen to be small,
chi-square statistic is sensible to an instantaneous outlier in the innovation; if
u is chosen to be large, chi-square would be more conservative and showing
changes when there is consecutive improper values of normalized innovations.

For example, if we observe the chi-square statistic of the sum of 50 squared
normalized innovations, ie q = 50, then the 95% con�dence region for χ2 (50)
distribution is [χ2 (.025, 50) , χ2 (.975, 50)] = [32.36, 71.42], and has a probabil-
ity of 0.975 to cover the chi-square statistics.

Example 4.1 We apply a compartment model to an EEG data of a coma
patient. We use 4 AR(2) compartments and 2 AR(1) compartments for our
compartment modelling. In �gure 4.1(a), we show the state decomposition in
the �rst 6 panels and the data in the bottom panel. We can see that there is
a sudden pulse between 4s to 4.5s, which is captured by a 0Hz AR(1) com-
partment. In �gure 4.1(c) we show the compartment driving noise variance in
the �rst 6 panels and the normalized innovation in the bottom panel. We can
clearly see that the normalized innovation is not white around that moment.

In this case we apply the same compartment model to the same data again
with an exogenous input on the noise variance as in equation 4.10. In �gure
4.1(b) we show the decomposition of 6 compartments and the data although
we can only see a tiny di�erence between this model and the previous model.
In �gure 4.1(d) we show the state noise variance in the �rst 6 panels and the
normalized innovation in the bottom panel. We can see that the exogenous
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input raises the variance up in the �rst panel, and the spike around the 4.5 s
region disappears in the normalized innovation in the bottom panel.
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Figure 4.1: Chi-square statistics of compartment model with and without exogenous input
of noise variance

In �gures 4.1(e) and 4.1(f) we respectively show the exponential smoother
Chi-square statistics as de�ned in equation 4.9, q = 50. The cyan dotted lines
are 95% con�dence region for χ2 (50) distribution, ie [χ2 (.025, 50) , χ2 (.975, 50)]
= [32.36, 71.42]. We can clearly see that after applying an exogenous input to
the noise variance the chi-square statistics does not rise up beyond the upper
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threshold. We change the intensity of the state driving noise variance and it
consequently changes the innovation variance and improves likelihood. Except
the region between 4 s and 4.5 s, both the chi-square statistics show similar
shape, ie a large value around 1s and small values around 6 s to 7 s and 9.5 s
to 10 s. This implies that the chi-square statistics is adaptive to the change of
state noise variance, such that a sudden change in the dynamics in the state
can be re�ected immediately to the innovation. ¤

The chi-square statistics is not only a tool for diagnostic checking, but also
a clue for predicting the variance size next step. A large chi-square statistic
implies that the variance is not large enough and a small chi-square statistic
implies that the variance is too large. Using the chi-square statistics, or equiv-
alently using the square of innovations to predict variance is the core idea of
the GARCH type model which will be explained in the following section.

4.2 State Space GARCH Model

There were studies of combining the use of GARCH model and the state space
model, by making the variance of the noise be the state of the state space
model. Although this approach takes the bene�t of state space model that
the state, ie conditional variance, is unobserved, it also consumes the space of
system equation from modelling the dynamics of the data.

The concept of employing the GARCH model within a state space has
been introduced by Galka et al. (2004) in a study on the estimation of inverse
solutions from EEG time series; for simulated data they obtained improved
the reconstruction of true states by this technique.

In this thesis we will have the GARCH model applied on the driving noise
variance of the system equation. This driving noise variance will become time
dependent and also predictable. The time varying driving noise variance gives
a conclusion of how the intensity of the driving noise changes in time. We will
study how we can implement the GARCH model to the system noise of the
state space model, with (1) an additional step in the Kalman �lter algorithm
and (2) a simple substitution of the conditional expected driving noise square.

4.2.1 GARCH Type Models

GARCHmodel stands for the generalized autoregressive conditional heteroscedas-
ticity model. The idea of conditional heteroscedasticity is �rst introduced
by Engle (1982) as the ARCH model that a noise variance which is non-
homogeneous from time to time can be modelled by regressing it on the past
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heteroscedastic noises.

ηt = σtνt, νt ∼ N (0, 1)

σ2
t = α0 +

p∑
i=1

αiη
2
t−i (4.1)

Bollerslev (1986) made a trivial additional step to give a generalized ARCH
model, which allows the variance regressing not only past noises but also past
variances. In this way we may be able to reduce the number of parameters in
order to replace a high order of ARCH model. A typical GARCH model can
be written as equation 4.2.

ηt = σtνt, νt ∼ N (0, 1)

σ2
t = α0 +

u∑
i=1

αiη
2
t−i +

v∑
j=1

βjσ
2
t−j (4.2)

σ2
t is regressed on its past values like an AR part of the GARCH model and the

past squared noises η2
t like an AR part of another component of a multivariate

model. α is usually called ARCH coe�cient and β is usually called GARCH
coe�cient. The ARCH model is a special case of GARCH model when the
GARCH coe�cients are all zeros.

Nelson (1991) observed that in �nancial time series conditional heteroscedas-
ticity has unequal e�ect from positive innovation and negative innovation, so
he put an asymmetric weighted innovation into the GARCH model in addition
to taking logarithm of the conditional variance for his EGARCH model.

νt = σtηt

ηt ∼ N (0, 1)

log σ2
t = α0 +

u∑
i=1

αig
(
ν2

t−i

)
+

v∑
j=1

βj log σ2
t−j (4.3)

where g
(
ν2

t−i

)
is a function in ν, such a function can be de�ned in many

di�erent ways, see Nelson (1991); Tsay (2005). We choose a simple case where
g

(
ν2

t−i

)
= log ν2

t−i. In essence, only taking the logarithm of σ and ν is so useful
to avoid a negative value of σ next time steps.

Note that if α1 = 1 and all other α and all β are zeros, the variance at each
time is taking the same value as the previous time, which means that there is
no GARCH e�ect on the noise variance. This is true for ARCH, GARCH and
EGARCH models.

GARCH model is not a stochastic model because it has no randomness.
All the input variables and parameters are speci�ed at each time step. And
the conditional variance follows the residuals to change and has no impact on
the residuals to give better prediction next step.
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4.2.2 Compartment GARCH model formulation

We apply a GARCH type model to the system noise variance of the state space
model. The general state space GARCH model can be written as{

xt = Fxt−1 + Gwt

yt = Hxt + εt

wt ∼ N (0, Qt)

Qt denotes the variance matrix of the dynamical noise wt.

Qt =



τ
(1)
t

2
0 · · · · · · · · · · · · 0

0 τ
(2)
t

2 . . .
...

...
. . . . . . . . .

...
...

. . . τ
(r)
t

2 . . .
...

...
. . . τ

(r+1)
t

2 . . .
...

...
. . . . . . 0

0 · · · · · · · · · · · · 0 τ
(r+s)
t

2


.

The variance of the dynamical noise are obtained from the diagonal elements of
Q. We write τ

(k)
t

2
for the variance of the dynamical noise of k-th compartment.

The nonzero elements τ
(k)
t

2
are time-dependent; according to the GARCH

approach in its general form, they are modelled by

log τ
(k)
t

2
= α

(k)
0 +

u∑
i=1

α
(k)
i log w

(k)
t−i

2
+

v∑
j=1

β
(k)
j log τ

(k)
t−j

2
. (4.4)

The �rst term on the right-hand side of this equation, α0 represents a
constant term. The �rst sum represents an ARCH part of order u for the
logarithm of the noise square, while the second sum corresponds to a GARCH
part of order v of the noise variance. Using EGARCH model has the bene�cial
e�ect of preventing the variance from becoming negative.

In the original EGARCH model 4.3 the ARCH part g
(
ν2

t−j

)
would be given

by previous values of the prediction error of the data, but in the state space
approach the state prediction errors are not directly accessible, therefore we
estimate it by applying a trick in next section.

4.2.3 Substitution of Unobservable Noise

As we started the idea of combining a GARCH model and a state space model,
the residual of the state equation, w, is not calculated in the Kalman �lter
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algorithm. There is no direct access to this noise, and at this point we have
no way to make use of the GARCH model.

However, in Kalman �ltering the conditional expected value of the state
and the conditional expected covariance matrix of the state are calculated at
each time point. We adopt the idea of conditional expectation, a measure
which is based on the observation up to the current time point. The ARCH
part of equation 4.4 requires a square of the noise, therefore we replace it by
the expected square of state dynamic noise conditional to the observations up
to the current time point.

E
(
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′ |yt−j

)
= E
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)
E
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)′
+ Var
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Gwt−j|yt−j

)
= E
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Gwt−j|yt−j

)
E

(
Gwt−j|yt−j

)′
+ Var
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= E
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Gwt−j|yt−j

)
E
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Gwt−j|yt−j

)′
+

[
Var

(
Gwt−j|yt−j−1

)
−Cov

(
Gwt−j, ιt−j|yt−j−1

)
Var (ιt−j)

−1 Cov
(
Gwt−j, ιt−j|yt−j−1

)′]
= Kt−jιt−jι

′
t−jK

′
t−j + GQt−jG

′ − GQt−jG
′H ′Ωt−jHGQt−jG

′

Therefore, we have an estimate for w2 in equation 4.4 by forming the matrix
E

(
Gwt−j (Gwt−j)

′ |yt−j

)
and extract from its diagonal the �rst element for

log τ
(1)
t

2
, the third element for log τ

(2)
t

2
up to the (2r − 1)th for the r-th AR(2)

compartment, and the (2r + 1)th element for log τ
(r+1)
t

2
and so on for the other

AR(1) compartment.
It is obvious to see that the GARCH model is applied to system noise

variance, so it is a business in the system noise space. To obtain a conditional
expectation of system noise we require the information of innovation, resulting
we can only get the conditional expectation of system noise on the state space.
As a result we have only taken out values from E

(
Gwt−j (Gwt−j)

′ |yt−j

)
and

sacri�ced some information in it. The above estimate is of the size m×m, but
only k out of m × m (k < m = k + r) elements are used.

If we have the system error estimate then it is perfect. Since we do not
have it so projecting the innovation onto the system noise space is the ideal
way. Mathematically if we can construct a k×m pseudo-inverse G− for G, we
obtain a simpli�ed estimate E

(
wt−jw

′
t−j|yt−j

)
, which is of size k × k. Then

each diagonal value is an estimate for w2.

E
(
wt−jw

′
t−j|yt−j

)
= G−Kt−jιt−jι

′
t−jK

′
t−jG

−′
+ Qt−j − Qt−jG

′H ′Ωt−jHGQt−j

The properties and the way of calculation of pseudo-inverse can be found in
many textbooks, for example Goldberg (1991); Golub & Loan (1996).

For example, in the companion form of compartment model, when the MA
coe�cients of every compartment are all zero, ie G is de�ned as equation 2.11
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or equation 2.8,

G− =



1 0
. . .

1 0

1
. . .

1


(4.5)

4.3 Smoothing Technique

In this section we will discuss two methods to obtain a higher order of GARCH
model using only a few number of parameters, in order to reduce some un-
wanted �uctuation of the GARCH variance caused by any momentarily signif-
icant error estimates. This will result in giving a smoother predictable condi-
tional variance and at the same time allows a parsimonious GARCH model of
higher order.

4.3.1 Simple Moving Average

In section 4.1 we introduced a chi-square statistic in terms of the sum of
squares of normalized innovation, based on an assumption of normality of
innovation. This is an example of simple moving average method. It gives
us an intuitive idea to apply on GARCH variables so as to achieve a higher
order of GARCH model parsimoniously, consequently to obtain a smoother
conditional heteroscedasticity.

Applying simple moving average method is to make all ARCH coe�cients
in equation 4.4 taking the same value.

α
(k)
1 = α

(k)
2 = · · · = α(k)

u

The corresponding GARCH model will become

log τ
(k)
t

2
= α

(k)
0 + α

(k)
1

u∑
i=1

log w
(k)
t−i

2
+

v∑
j=1

β
(k)
j log τ

(k)
t−j

2
. (4.6)

The ARCH part of the GARCH model is now taking only two parameters.
A common ARCH coe�cient and ARCH order will be estimated. In fact,
simple moving average is known as `moving average' in �nance, however, in
statistics, that `moving average' is meaning a weighted moving average. The
name `simple moving average' is aiming to distinguish from a weighted moving
average.
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4.3.2 Exponential Moving Average

When we use the simple moving average method, we have to store u ARCH
variable w for the GARCH model next time step. In order to reduce stor-
age and to compute GARCH variance faster, we use the idea of exponential
smoother in Engle (2002).

α
(k)
1 = µ−1α

(k)
2 = · · · = µ−uα

(k)
u+1 = . . .

Equation 4.6 will become

log τ
(k)
t

2
= α

(k)
0 + α

(k)
1

t−1∑
i=1

µi−1 log w
(k)
t−i

2
+

v∑
j=1

β
(k)
j log τ

(k)
t−j

2
. (4.7)

Or equivalently it can be written as

log τ
(k)
t

2
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(k)
0 + α

(k)
1 log w̄

(k)
t−1

2
+

v∑
j=1

β
(k)
j log τ

(k)
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2
(4.8)

log w̄
(k)
t−1

2
= log w

(k)
t−1

2
+ µ log w̄

(k)
t−2

2

µ is a factor between 0 and 1. If we let µ = u−1
u

for some positive integers u,

then an exponential moving average log w̄
(k)
t−1

2
has a value of approximately u

times log w
(k)
t−1

2
. Every step the exponential moving average is discounted by

the factor µ and remedied by the current error estimate. The method gives a
low consumption of storing error estimates and allows a faster computation.

We can also compute an exponential moving average of a chi-square sta-
tistics introduced previously. This exponential smoother chi-square statistic is
approximately following a χ2 (u) distribution.{

C2
0 = q

C2
t = q−1

q
C2

t−1 + ιt−1Ωt−1ι
′
t−1

C2
t−1 =

q∑
j=1

(
q − 1

q

)j−1

ιt−jΩt−jι
′
t−j (4.9)

In this case we need not store q innovations but only one weighted sum. It
provides a smoothing function to the basic version of chi-square statistics if we
choose q to be small to detect quick but short changes.

4.4 Exogenous Variables

A straightforward and easy way to deal with a heteroscedastic data is to add an
exogenous variable to the noise variance. When we have a prior knowledge of



44 Heteroscedasticity in State Space

any external stimulation, or when we observe that there is any obvious changes
in the driving noise variance, we can apply this exogenous variable method.
To apply the method we need a indicating variable ξ, storing 0 and 1 values.
Let σ2

c be the homogeneous noise variance and σd be an adjustment term.

σ2
t = (σc + ξtσd)

2 (4.10)

In example 4.1 we had applied the method of exogenous variables by switch-
ing the variance between a large and a small value. We assumed there is a
change in the strength of a driving noise from 4 s to 4.5 s. We added a constant
to the driving noise variance of one of the compartments.

This method is easy to apply because we just need to add an adjustment
term to a homogeneous value. The meaning of the model is natural while we
can see the variance is switching between values clearly.

However, this method depends on the indicating variable, therefore in the
real time situation, we can apply it only when we have a prior knowledge.

4.5 Appendix

4.5.1 Derivation of Conditional Expectation of Square of

System Noise

We will give the derivation of E
(
Gwt−j (Gwt−j)

′ |yt−j

)
, i.e. the estimator of

the noise term w
(k)
t−j

2
in equation 4.4.

Since the state prediction error wt−j is not directly accessible, we derive a
estimator with similar meaning. This estimator is chosen as the expectation
of the product wt−jw

′
t−j, conditional on the data up to time t − j.

Let Kt−j, ιt−j and Ωt−j denote the Kalman gain, innovations and inverse
covariance matrix of innovations, respectively, at time t − j. These quantities
are obtained naturally through the application of the Kalman �lter (for details
see Harvey (1989)). Then we have equation 4.11.

E
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)
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)
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)
E

(
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)′
(4.11)

The expectation E
(
Gwt−j|yt−j

)
is equal toKt−jιt−j. The term Var

(
Gwt−j|yt−j

)
represents the conditional variance of the system noise, which can be expressed
as equation 4.12
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In equation 4.13, we substitute E
(
ιt−j|yt−j−1

)
= 0 in the second line; in

the �fth line E
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line E
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substituting equations 4.12 and 4.13 into equation 4.11, we get equation 4.14.
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Chapter 5

Application 1 - Detection of

Consciousness in Surgery

5.1 Introduction

When an open surgery is carried out, di�erent kinds of anaesthesia may be
needed to bu�er the pain of invasive operations. Anaesthesia has many bene�ts
beside its side e�ect. Modern surgery could not move forward if anaesthesia
were not applied. Although anaesthetic mishap happens rarely nowadays,
they still occur sometimes. The damages su�ered by medical doctors and
hospitals can be very costly. Also, on the patients' side, death can result
from malpractice of anesthesia. Therefore anaesthesia should be applied with
absolutely no error.

In the operating room, anesthesiologists have to be professional to make
correct decision, but they can easily make a mistake in many ways in that
complicated environment. By quantifying the level of consciousness during
surgical anaesthesia with an FDA-approved monitor, John (2002b) found that
an increase in absolute power of the low frequency band occurs invariably
when patients lose consciousness. Through observing the change at the low
frequency band it is helpful to ensure adequate surgical anaesthesia.

The method underlying the monitors of depth of anaesthesia is based on
frequency spectrum. We reviewed in the introduction chapter that various
spectral models were used because of an eagerness of explaining the EEG data
in the frequency domain. A frequency spectrum can be done by parametric or
nonparametric methods. Applying FFT, a well-known nonparametric method,
to a time series data we can immediately obtain the intensity of the power at
di�erent frequency bands (Priestley, 1981), while �tting of autoregressive (AR)
models is a prominent example of a parametric method (Box & Jenkins, 1970;
Gersch, 1970).

However, in the case of the presence of pronounced non-stationarity in
the EEG, such as time-dependent changes of the power in di�erent frequency
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bands, direct application of the FFT to the data would be inappropriate.
Although in this case it is still possible to apply the FFT to a window moving
over the data, such approach would have the disadvantage of reduced resolution
either in time or in frequency domain; improved resolution in time domain,
desirable in order to pick out distinctive temporal characteristics in the data,
has to be paid by reduced resolution in frequency domain, and vice versa.

In contrast, parametric spectral estimation by AR models o�ers various
advantages over the FFT, since it represents a more general and �exible frame-
work for parsimonious dynamical modelling of time series data, which can be
readily employed for purposes such as prediction, classi�cation or causality
analysis of time series (Shumway, 2000); in the case of non-stationarity, para-
metric spectral estimation may also be applied to a moving window (Ozaki
& Tong, 1975), but there is an alternative approach for this situation which
avoids the introduction of a moving window. This alternative approach is to
introduce a volatility model to the noise, in order to allow a time varying noise
variance. The volatility model, or speci�cally, the GARCH model, has been
introduced in chapter 4. In this chapter we will study the topic of loss of con-
sciousness by anaesthesia, and to con�rm the previous result by a parametric
approach.

5.2 Data

The EEG time series which we will study in this chapter was retained from a re-
cent study of John et al. (2001) and John (2002a) who have studied the change
of spectral content of clinical EEG accompanying the loss and subsequent re-
covery of consciousness due to initiation and termination of anaesthesia during
surgery.

We select from their data a segment of 2048 samples, sampled at 100Hz,
such that the segment extends over about 20 seconds. It was measured at 19
electrodes �xed to the scalp according to the international 10/20 System. This
data set covers the transition from awake conscious state to anaesthesia. The
detailed experimental procedures have been described in John et al. (2001) or
Prichep et al. (2004).

In �gure 5.1 we show the raw data, while in �gure 5.2 we show the trans-
formed data (versus average reference), on which we are mainly working. In
the �gure we can see the data is mainly split into two halves. Especially in the
second half, there is a surge of a low frequency activity, at about 4 oscillations
in 2 seconds. Channels in the frontal-parietal (Fp), the temporal (T) and the
parietal (P) regions show high frequency activities before the transition. Alpha
oscillation can be seen in the whole period of the data.

In �gure 5.3 we show the best AR model periodogram of the raw EEG data.
It is an overlay plot of periodograms of the 20 channels. Each periodogram is



5.2 Data 49

0 2 4 6 8 10 12 14 16 18 20

O2 
O1 
Pz 
P4 
P3 
T6 
T5 
Cz 
C4 
C3 
T4 
T3 
Fz 
F4 
F3 
F8 
F7 
Fpz
Fp2
Fp1

EEG Data (raw), Patient 58012, Record c01

time/seconds

Figure 5.1: Time series plot of a raw EEG data, patient 58012, condition c01.
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Figure 5.2: Time series plot of a transformed EEG data, patient 58012, condition
c01.
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Figure 5.3: Best AR order periodogram of the raw EEG data

obtained from an AR model of data of a single channel. The best AR model for
each channel is one of the AR model of 1 to order 30 which has the minimum
AIC over the others. From the plot, we can see that all the 20 channels provide
an information about the strong alpha frequency (10Hz, 0.2π) and a strong
low frequency (∼2Hz, 0.04π), which are those what we have seen from the
data plot.

5.3 Analysis

5.3.1 Segmented Data Analysis

We select the T4 electrode for a segment-wise data analysis. We will look at
segments of this univariate time series. We split into 15 segments which are
1 s to 256 s, 129 s to 384 s, 257 s to 512 s, ..., 1793 s to 2048 s.

(a)

0

0.1

0.2

0.3

0.4

0.5 0

5

10

15

−4

−2

0

2

4

6

Segmentwise AR(9) Spectrum, Patient 58012, Record c01, Channel 10 T4 , Length 256

Figure 5.4: Segmentwise AR(9) spec-
trum, patient 58012, condition c01.
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Figure 5.5: Segmentwise compart-
ment(4,0) spectrum, patient 58012, con-
dition c01, �xed frequencies.

In �gure 5.4 we show a 3 dimensional segmentwise AR(9) spectrum. The
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vertical axis represents the power intensity of the spectrum. Each contour line
is the spectrum of a �tted AR(9) model for a moving window of data of 256
points. Putting the lines in the sequence of time we see the changes of the
spectrum with respect to time.

The low frequency shows a rise from the middle of the data. The 10Hz(0.1)
frequency is persistently at a constant level of power, and so as 20Hz(0.2) and
high frequency range (0.3-0.5). All these peaks are blurred out with the up-
wards shifting of the whole spectrum in the second half, when the low frequency
appears. The AR(9) spectrum is trying to capture the signi�cance of the low
frequency but could not show the 2Hz peak in the spectrum, due to a lim-
ited number of data of moving window that consequently reduces frequency
resolution.

Therefore we show a segmentwise compartment spectrum in �gure 5.5.
The transition matrix of compartment model is �xed to be the same in each
segment, therefore the peaks stay at the same frequencies in the �gure. Figure
5.5 clearly shows that the low frequency is going up in the second half. The
alpha frequency rises in the �rst half but not showing the dropping in the
second half.

5.3.2 Compartment Modelling

We choose the C3 electrode in this modelling analysis. We aim at decomposing
the data into a set of source components, we choose a special structure for
the state space model, such that pairs of elements within the state vector xt

represents AR(2) models, as we have discuss in chapter 2. Each AR(2) model
is capable of describing one main frequency found in the data.

This channel 11 (C3) is similar to channel 10 (T4), that the amplitude of
data rises up in the second half. The surge of low frequency oscillation can be
seen clearly in both data and segmentwise spectra in �gure 5.6.

In table 5.1 we show the summary of compartment model (2,1), ie, 2 AR(2)
compartments and 1 AR(1) compartment.

Compartment(2,1) Model
phi 1 phi 2 magnitude frequency s.d

Compartment 1 1.8959 -0.91178 0.95487 1.91741 0.47007
Compartment 2 1.0559 -0.54686 0.7395 12.3453 4.0997
Compartment 3 0.0171 0 0.0171 0 0.0

Q = I3, R = 0.01, -2 log-likelihood = 12035.3793,
number of parameter = 8, AIC = 12051.3793

Table 5.1: Compartment (2,1) Model
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Figure 5.6: (top) An EEG data from the T4 electrode (versus average reference) of about
20 seconds, covers the transition from awake conscious state to anaesthesia. (bottom) A
moving window spectral estimation of AR(8) models �tted to 15 segments of data, each of
length 256.

It means

xt = Fxt−1 + Gwt

yt = Hxt + εt
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 H =
[
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]

wt ∼ N (0, Q), εt ∼ N (0, R), Q = diag(0.472, 4.102, 0.002), R = 0.01.
In table 5.2 we show the �tted compartment models of di�erent model

order. The AR(1) compartment does not seem to be necessary as we see that
all the compartment (2,1), (3,1) and (4,1) models choose a zero weight for the
AR(1) compartment. Among these models AR(4,0) is the suitable model.
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Compartment(3,0) Model
phi 1 phi 2 magnitude frequency s.d

Compartment 1 1.8796 -0.89687 0.94703 1.96594 0.53795
Compartment 2 1.3087 -0.70181 0.83774 10.7336 2.6018
Compartment 3 0.49447 -0.60964 0.7808 19.8722 2.3118

Q = I3, R = 0.01, -2 log-likelihood = 11973.1552,
number of parameter = 9, AIC = 11991.1552

Compartment(3,1) Model
phi 1 phi 2 magnitude frequency s.d

Compartment 1 1.8796 -0.89687 0.94703 1.96594 0.53795
Compartment 2 1.3087 -0.70181 0.83774 10.7336 2.6018
Compartment 3 0.49447 -0.60964 0.7808 19.8722 2.3118
Compartment 4 0.85923 0 0.85923 0 0.0

Q = I4, R = 0.01, -2 log-likelihood = 11973.1552,
number of parameter = 11, AIC = 11995.1552

Compartment(4,0) Model
phi 1 phi 2 magnitude frequency s.d

Compartment 1 1.8769 -0.89435 0.9457 1.97258 0.54913
Compartment 2 1.3318 -0.71426 0.84514 10.5578 2.4823
Compartment 3 0.79103 -0.75646 0.86974 17.4864 1.453
Compartment 4 0.12307 -0.64117 0.80073 23.7757 1.5183

Q = I5, R = 0.01, -2 log-likelihood = 11953.9385,
number of parameter = 12, AIC = 11977.9385

Compartment(4,1) Model
phi 1 phi 2 magnitude frequency s.d

Compartment 1 1.8769 -0.89435 0.9457 1.97258 0.54913
Compartment 2 1.3318 -0.71426 0.84514 10.5578 2.4823
Compartment 3 0.79103 -0.75646 0.86974 17.4864 1.453
Compartment 4 0.12307 -0.64117 0.80073 23.7757 1.5183
Compartment 5 0 0 0 0 0

Q = I4, R = 0.01, -2 log-likelihood = 11953.9385,
number of parameter = 14, AIC = 12981.9385

Table 5.2: Summary of the parameters of �tted compartment (3,0), (3,1), (4,0), (4,1).
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5.3.3 GARCH Modelling

We choose to employ a state space model consisting of r = 4 AR(2) models,
such that 4 major frequency bands can be described. By �tting the model to
the data shown in Figure 5.6 these delta (2.4Hz), alpha (10.3Hz), mid-range
beta (17.6Hz) and low-range gamma (24.5Hz) frequencies are found.

We �nd that the GARCH parameters β
(k)
i in Equation 4.4 do not di�er

signi�cantly from zero, therefore we set the GARCH order to zero, ie v = 0,
which helps to reduce the number of parameters to be �tted. We also impose
the simple moving average to the ARCH parameters, ie α

(k)
1 = · · · = α

(k)
u =:

α(k), such that the variances can change smoothly, and we have a further
reduction of the number of parameters. Since the likelihood does not improve
signi�cantly for ARCH order u larger than 2, we set u = 2. The resulting
model estimate is

xt = Fxt−1 + Gwt

yt = Hxt + εt
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Figure 5.7: (top 4) Estimated source components of 4 di�erent frequencies, scaled to the
data space. (bottom) Data.

In Figure 5.7 we show the estimated components x
(k)
t , k = 1, 3, 5, 7; these

components, each corresponding to one of the four frequencies, represent a
decomposition of the original data (shown again in the bottom panel of the
�gure), such that by summing up these components the original data is repro-
duced. Note that a pronounced increase of amplitude occurs for the 2.4Hz-
component at about 10 seconds; this e�ect is solely obtained as a result of the
maximum-likelihood model �t, without any input of prior knowledge concern-
ing the change of the spectral composition of the data.

In Figure 5.8 we show explicitly the variances log
(
τ

(k)
t

)2

of the compo-
nents as functions of time, according to the �tted GARCH models. It can be
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Figure 5.8: (top 4) Variance of prediction error of the 4 source components.

seen that for the 2.4Hz-component the variance increases at about 8 seconds
to a considerably larger value than before, and maintains that larger value
within the second half of the data set. The variances of the other components
do not display signi�cant changes. This result can be readily interpreted by
stating that the loss of consciousness at onset of anaesthesia is re�ected almost
exclusively by an increase of power in the delta band.

5.3.4 Simulation Study

In this subsection we do a simulation study. We simulate data with the com-
partment model from the result of the anaesthesia data in the previous sub-
section. The state space model is de�ned by the characteristic roots, and the
variance of 2.4Hz is one-step up function, looks like the variance shown in
�gure 5.8. We show one set of simulated states and observation in �gure 5.9.

By �tting a compartment GARCH model to a simulated data, we obtain
one set of parameter estimates. The simulation and the model �tting were done
200 times, and the summary of the true parameters and their mean estimates
and standard error are shown in table 5.3. We also show the histogram plot of
the estimates in �gure 5.10. The result shows that the compartment-GARCH
model can capture the parameters of the true model well. It guarantees the
suitability of our model in this kind of data.
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Figure 5.9: Simulated states and observation

parameter true value mean estimation std errors

|λ1| 0.8990 0.8991 0.0003
|λ2| 0.8638 0.8638 0.0001
|λ3| 0.8505 0.8505 0.0003
|λ4| 0.8202 0.8202 0.0003

arg (λ1) 0.1501 0.1501 0.0001
arg (λ2) 1.1058 1.1055 0.0138
arg (λ3) 0.6452 0.6442 0.0060
arg (λ4) 1.5378 1.5388 0.0139

Table 5.3: Mean and standard error of parameter estimates
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Figure 5.10: Histogram of parameter estimates
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5.4 Discussions

We have introduced a model for decomposition of a given single-channel EEG
time series into components de�ned by their main frequency, and we have
shown how the variances of the dynamical noises driving these components can
be made time-dependent by generalizing the concept of GARCH modelling to
the situation of state-space modelling. As a result, changes of the distribution
of power over the main spectral bands of the EEG can be traced over time.

Note that by choosing the GARCH approach for describing non-stationarity
of variance we obtain a method which remains suitable for real-time monitor-
ing, in contrast to approaches which describe non-stationarity retrospectively
by �tting explicitly time-dependent functions to the non-stationary parame-
ters; the GARCH model is fully compatible with predictive modelling, since it
requires only information from the past.

Once a suitable model structure has been identi�ed (with respect to the
number of components in state space and the GARCH model orders u and v)
and a corresponding set of appropriate parameters has been identi�ed through
maximum-likelihood, the Kalman �lter can be applied very e�ciently to new
data without the need of any further time-demanding computations. This
enables the application of this technique to real-time monitoring of patients
during surgery, e.g. it would be possible to monitor the depth of anaesthesia
quantitatively by the time-varying set of variances of the relevant frequency
bands. Also applications to other kinds of data arising in the neuroscience are
conceivable.



Chapter 6

Application 2 - Neural Activity of

a Coma Patient

6.1 Introduction

Coma is an extended period of unconsciousness from which a person cannot be
aroused with painful stimuli. It can be caused by severe head injury, seizure
or metabolic problem. The outcome of a coma ranges from full recovery to
death. Coma patients may remain in a persistent vegetative state, in which
breathing, normal blood pressure, digesting and eliminating foods continues
without the patient's awareness. The vegetative state can last for years or
decades. Whether a patient dies, or recovers to moderate disability or full
recovery, depends upon the cause of the coma and the type and extent of the
brain damage.

A person in a coma does not experience reactivity or perceptivity (Young
et al., 1997), where reactivity refers to the inborn functions of the brain and
perceptivity refers to responses of the nervous system to learned stimuli. There
is completely no clue to know a coma patient's condition from his physical
appearance. Heartbeat is one clue to know the metabolic condition of the
patient, but neuroscience data, such as EEG data, can give some hints to
know more about the coma patient.

We apply the same technique used in chapter 5, in which we have a linear
state space model, the compartment model, with a GARCH driving noise to
decompose the EEG data into several components according to their frequency
bands, allow the driving noise having a non-homogeneous variance. We use
this model to depict how is the EEG changing in responding to stimuli. When
we apply the model on-site we can be able to conclude whether the stimuli are
e�ective and how strong the response it makes. This is a useful information
to the medical doctors so that they would know on which kind of stimuli they
should focus.
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6.2 Data

The EEG data of the coma patient was obtained from Dr Roy John and Dr
Leslie Prichep of New York University. The size of the data set is 135,168 time
points by 24 channels. The sampling rate is 200Hz and therefore the data
covers 675.84 s, about 11 minutes continuously.

The data is measured when the patient was receiving verbal stimulation.
The stimulation, for example, telling him about his own history, asking him to
think of a favorite song, or asking him to try moving his �nger, is applied at
a random sequence. Under these stimuli, the EEG data shows non-stationary
pattern. Although we are not ready to identify to which non-stationary pattern
what the stimulus was, we are able to show that the data is a useful medium
for the coma patient to communicate with the medical doctors.

We choose from their data the �rst channel (Fp1) and the �rst 20,200 points
for analysis. The data covers about 100 s. In �gure 6.1 (a) we show the time
series data and the segmentwise FFT spectrum at the side view. The time
series data is plotted on the time in seconds. On the bottom right panel, it is
a top view of the spectrum, of which the vertical axis is frequency axis in Hz
and the horizontal axis is time axis in second. On the bottom left panel it is
a side view of the spectrum which provide an image of the varying in time.

We see there is a strong low frequency in the data, especially we �nd there
is an oscillation in every 4 s. Also we see a trough at around 40Hz which shows
some strong phenomenon in our statistical analysis.

(a) (b)

Figure 6.1: Time series plot of data, and time varying FFT spectrum of side view and top
view.

The data is showing a signi�cant low oscillation at a period of about 3 s or
4 s. This oscillation cause a sharp peak at the low frequency region in the time
varying spectrum. Other than the low frequency oscillation, there is a strong
activity between 15Hz to 35Hz, the so-called beta frequency, and another
activity between 50Hz to 80Hz, the gamma frequency.

Within the 100 seconds of data selected, there are 4 signi�cant changes
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occurred at around 15 s, 26 s, 36 s and 58 s. We see a similar spectrum shape
in 0-15 s and 26-36 s, and we see that both the beta frequency and the gamma
frequency drops in intervals 15-26 s and 36-58 s. Also, after 58 s the spectrum
tends to rise up at the 20-30Hz, and a high gamma frequency range (50-70Hz)
evolves.

(a) (b)

Figure 6.2: Time series plot of data, and time varying best AR spectrum of side view and
top view.

In �gure 6.2 we show again the time series plot of the data. Instead of
an FFT spectrum we show a segment-wise best AR spectrum, of which the
side view on the bottom left panel and the top view on the bottom right
panel. As we have de�ned in chapter 3, the segment-wise best AR spectrum
is constructed by �tting an AR model for each segment of 200 data points,
and plot the theoretical spectral density of each AR model and put them
altogether. We can see the spectrum is smoother than the former counterpart.
A beta frequency range (15-30Hz) after 58 s is more clearly seen. The best
AR spectrum even shows sharper peaks at the low frequency around 0Hz.

6.3 Analysis

We try modelling this data by compartment-GARCH model. From �gure 6.2
we �nd 5 major peaks in the spectrum, they are 0Hz, 15Hz, 30Hz, 55Hz and
70Hz. One reasonable guess would be a compartment (4,1) model, with 2
AR(2) components going into the alpha-and-beta region and another 2 AR(2)
components going into the gamma region, and an AR(1) component for cap-
turing the low frequency oscillation.

Using the optimization procedure, we obtain the compartment-GARCH
model consisted of 5 components, speci�ed by 0Hz, 11Hz, 30Hz, 58Hz and
74Hz.

In �gure 6.3, on the left hand side we show the state decomposition of the
data; on the right hand side we show the corresponding driving noise variance.
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Figure 6.3: State decomposition and its corresponding driving noise variance.

We can see that a low frequency oscillation, about 3 s of period, goes into
the 0Hz component which has the widest amplitude. Other than this 3 s-
period oscillation there are several spikes in the data and they go into the
0Hz component and the 11Hz component. and the remaining oscillation are
decomposed into the other components. We can see that the 0Hz, 30Hz and
57.7Hz components have the up and down transitional pattern as shown in
the FFT time vary spectrum and the best AR spectrum, while the 11.4Hz and
the 73.6Hz have relatively homogeneous movement.

In �gure 6.4 we show the time series plot of the data and the time varying
state space GARCH spectrum of top view on the bottom right panel. And in
�gure 6.5 we make the same plot by taking the 0 Hz component away. We can
see the spectrum of the �tted model imitates the spectrum of the data with
sharp peak at the 0Hz frequency, some sharp peaks around the beta region
and around the gamma region, and a pass around 40Hz from 0 s to 62 s.

In �gure 6.6 we show the best AR spectrum of innovations (or residuals)
and in �gure 6.7 we show the best AR spectrum of normalized innovations.
Since we assume the variance is time varying so the innovations is good to
compare with the original data while the normalized innovations is better for
diagnostic checking.

The innovations is inhomogeneous and showing especially a low power
around 40Hz in the �rst 60 s and a high power around 20Hz and 80Hz af-
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(a) (b)

Figure 6.4: Time series plot of data, and time varying state space GARCH spectrum of
side view and top view.

(a) (b)

Figure 6.5: Time series plot of data, and time varying de-trended state space GARCH
spectrum of side view and top view.

(a) (b)

Figure 6.6: Time series plot of innovations, and time varying best AR spectrum of side
view and top view.
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(a) (b)

Figure 6.7: Time series plot of normalized innovations, and time varying best AR spectrum
of side view and top view.

ter 70 s. These phenomenon are something which could not be managed by
a compartment model solely. By applying the compartment-GARCH model
and normalized the innovation, the spectrum of normalized innovations is ob-
tained. The spectrum is �at which means that the normalized innovation is
white. However, there is still a trough remaining around 40Hz in the begin-
ning 60 s which could not be handled by the compartment model with only
AR(1) and AR(2) compartment. In this issue we need to have a generalized
compartment model with Akaike's transposed transitional matrix to allow an
MA(2) or even a higher MA component in the model.

6.4 Discussions

We have proposed a new tool for quantitative description of non-stationarity
in EEG time series. We have analyzed the single channel of an EEG data of
a coma patient. We applied the compartment model again for decomposing
the selected time series into components. We also applied the compartment-
GARCH model to the system noise variance, and able to see how the variance
changes in the same way as the spectrum of data in each segment.

EEG time series are usually recorded not from just one electrode, but from
a set of electrodes covering the whole scalp; in principle, the method could be
applied to one or two channels of the data, but it would be desirable to have a
modelling approach capable of building a single common model from all avail-
able channels simultaneously; thereby also the spatial information contained
in the positions of electrodes could be incorporated. The generalization of the
method to this case will be the subject of future work.



Chapter 7

Application 3 - Causality in

Human Head Movement

7.1 Introduction

In this chapter, we are interested in: �Who is the leader in a discussion?�
Two persons were sitting face to face. Each person was wearing a cap on
which sensors are placed. Their head movement is immediately recoded by
the detectors surrounding them. Our target is to study the causal e�ect of the
two persons by applying statistical analysis to the head movement data. A
multivariate autoregressive model is used to model the data, and a GARCH
model is used to model the heteroscedastic residuals. We construct an NCR
plot using the formula in chapter 3 and see the time varying causality.

7.2 Data

In �gure 7.1 we show photos of the set up of the experiment. Two subjects
are sitting face to face. Sensors were put on their caps in order to locate the
position of their heads. Eight tripods around them containing detectors record
the position of the caps and inscribed into a computer. The head movement
is immediately visualized on a computer screen as shown in the bottom right
panel of the �gure.

In the experiment, the two subjects were looking at each other in the be-
ginning. A commander standing outside is giving command. The �rst subject
is listening to the commander to turn his head to look at the blue object. The
second subject was watching and noticing the �rst subject, and turned his
head to look at the object also to acted as he was following the �rst subject on
a sudden distraction. After a short while the commander gave another com-
mand and then the two subjects turned their heads to the original position to
look at each other again. This procedure was performed several times. The
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Figure 7.1: A photo for illustrating the set up of the experiment.

time interval between commands are di�erent.
On each cap, a set of 5 sensors locates head position of one subject in a

three-dimensional space, as well as estimates angular movement (pitch, roll
and yaw) in the three-dimensional space. So, there are six variables per cap,
including three variables measuring the position, and three variables measuring
the angular movement.

The data was sampled at a rate of 60Hz. In our analysis, we choose
2000 points (751 to 2750) from the data, covering about 33 s for our analysis.
In �gure 7.2 we show the data of the two subjects and the object. In each
plot there are 3 time series which are the angular movements, pitch(blue),
roll(green) and yaw(red) records of each of the two subjects and the object.
We put concentration on the causality of yawing movement of the subjects.
We plot the yawing of the two subjects in �gure 7.3. The blue line belongs to
the subject who listens to command and the green line belongs to the subject
who follows the �rst subject. Note that the blue line starts to change before
the green line.

7.3 Analysis

We start our analysis from spectral analysis. In �gure 7.4, we show power
spectral density of the 2 time series of �gure 7.3. As we can see the time series



7.3 Analysis 67

800 1000 1200 1400 1600 1800 2000 2200 2400 2600

−50

0

50

050115 Sadato 3 RPY

800 1000 1200 1400 1600 1800 2000 2200 2400 2600

−50

0

50

050115 Itakura 3 RPY

800 1000 1200 1400 1600 1800 2000 2200 2400 2600

−50

0

50

050115 Cap 3 RPY

Figure 7.2: Time series of the angular movement of 2 subject and the object.
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Figure 7.3: Time series of yawing of the 2 subjects
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are non-stationary, there is a peak at the 0Hz frequency.
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Figure 7.4: Spectrum of the time series of yawing of the 2 subjects.

We �t a bivariate AR model, equation 3.4 of di�erent order to this data.
We let x

(1)
t be the time series of subject 1 and x

(2)
t be the time series of subject

2. By applying Akaike's NCR introduced in chapter 3, we can see the causality
of these 2 time series.
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Figure 7.5: AR(5) model spectrum and NCR

In �gure 7.5 we show the spectrum and NCR of the 2 time series of AR(5)
model. The 2 plots on the left column are respectively the power spectrum of
x

(1)
t (blue) and x

(2)
t (green). In these 2 plots the horizontal axis is the frequency
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axis and the vertical axis is power. Since the sampling rate is 60Hz, the 0.5
on the frequency axis corresponds to 30Hz. The 2 plots on the right column
are NCR. Again the horizontal axis is the frequency axis and the vertical axis
is the ratio in percentage. The full blue-color on the top right panel means
that the noise contributes from subject 1 to himself is almost 100%, while
on the bottom right panel the blue color is occupying the region around 0Hz
meaning that the noise from subject 1 contributes some e�ect to subject 2,
which is equivalent to say there is a causality from subject 1 to subject 2.

0 0.1 0.2 0.3 0.4 0.5

−5

0

5

Power Spectral Density of Variable 1

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1
Power shared by Variable 1

0 0.1 0.2 0.3 0.4 0.5

−5

0

5

Power Spectral Density of Variable 2

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1
Power shared by Variable 2

Figure 7.6: AR(8) model spectrum and NCR

In �gure 7.6 we show the result when we use an AR(8) model. We can
see that the result is almost the same as �gure 7.5. It again shows that the
subject 2 receives e�ects from subject 1 but not gives out any e�ect.

In �gure 7.7 we show the result for another 4 higher order AR models.
The result are coherent. We summarize the log likelihood and AIC of di�er-
ent model order in table 7.1. From the table we �nd that AR(36) gives the
minimum AIC value.

It is ambiguous whether causality is con�rmed upon looking at the coe�-
cients in the AR model only. We see that by using Akaike's NCR approach,
when the coe�cients which correspond from one variable to another variable
are zero, then there is no causal e�ect, however, the converse is not true, and
is usually misunderstood. For example, we give here the numerical result of
AR(8) model. We see that the coe�cient from x

(2)
t−1 to x

(1)
t is -0.0071, which
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Figure 7.7: AR model spectrum and NCR of order 13, 21, 34 and 55

order log-lik AIC order log-lik AIC order log-lik AIC

1 703.6622 -1403.3243 16 8453.9826 -16843.9651 31 8496.1998 -16868.3996

2 6934.1117 -13860.2233 17 8460.4907 -16852.9814 32 8496.9381 -16865.8762

3 8207.4137 -16402.8274 18 8462.0264 -16852.0527 33 8500.6662 -16869.3325

4 8281.3433 -16546.6865 19 8466.0744 -16856.1488 34 8507.1949 -16878.3898

5 8341.9771 -16663.9541 20 8472.7998 -16865.5996 35 8508.6964 -16877.3928

6 8390.8306 -16757.6612 21 8475.3344 -16866.6687 36 8511.6727 -16879.3455

7 8398.3175 -16768.6349 22 8479.1146 -16870.2292 37 8513.4012 -16878.8025

8 8422.9423 -16813.8845 23 8479.6546 -16867.3092 38 8514.9970 -16877.9940

9 8424.7884 -16813.5767 24 8482.3779 -16868.7558 39 8515.3474 -16874.6948

10 8425.6215 -16811.2430 25 8483.0701 -16866.1403 40 8517.1184 -16874.2369

11 8429.9512 -16815.9024 26 8483.3192 -16862.6384 41 8518.0974 -16872.1947

12 8431.8095 -16815.6191 27 8486.3217 -16864.6434 42 8520.3459 -16872.6918

13 8439.8924 -16827.7849 28 8488.5101 -16865.0201 43 8522.7393 -16873.4786

14 8441.4036 -16826.8072 29 8489.9786 -16863.9572 44 8523.9461 -16871.8921

15 8450.9957 -16841.9915 30 8492.9160 -16865.8319 45 8524.3740 -16868.7480

Table 7.1: AIC of �tted multivariate AR models of di�erent orders.
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may be insigni�cantly di�erent from zero, but still it does not surely imply that
there is a causal e�ect. However when we make use of the NCR technique, we
can tell there is no causal e�ect for sure.
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Figure 7.8: AR(8) model residual
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In �gure 7.8 we show the residual from a �tted AR(8) model. We can
see the noise is driven by non-homogeneous variance under this AR model
assumption. In the experiment, the 2 subjects are turning their heads to look
at the object. At the moments when their heads starting to turn or stopping,
the noises are especially larger.

We then apply a GARCH to the residuals. For each series of residual we
�t a GARCH model. The normalized residuals after applying GARCH models
is shown in the subplot on the top left corner of �gure 7.9, showing the noise
is further whiten.(
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Figure 7.9: Time varying NCR at 4 di�erent time points.

In �gure 7.9 we show 16 subplots in 4 blocks. The 4 subplots in each block
are GARCH residuals (top left), GARCH variances (top right), data (bottom
left) and NCR (bottom right). When we apply the GARCH model to the
residual, the noise variance becomes time varying. The time varying variance
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changes the NCR at di�erent time. Therefore, each block shows the same
GARCH residual, the same GARCH variances and same data but di�erent
NCR.

We found that base on the AR(8)+GARCH(1,1) model there is a persistent
causal e�ect coming from the �rst subject to the second subject at the 0Hz
oscillation. In the second block of �gure 7.9 when the noise variance of the
second subject is large, the NCR from the second subject to the �rst subject
is negligibly small, but that from the �rst subject to the second subject is still
large at the 0Hz frequency. In the last block of the �gure we can see even a
larger proportion of NCR going from the �rst subject to the second subject.
It is when the noise variance of the �rst subject is of the largest value.

7.4 Discussions

In this chapter we make use a very simple physical simulated data to look
into the causality. We �rst applied multivariate AR model, a handy and fast
modelling method. With di�erent order of multivariate AR models we had
the same causality conclusion. Based on the NCR causality theory, the �rst
subject, who turned his head without noticing the second subject, has a strong
causal e�ect on the second subject, who was distracted by the �rst subject.
The NCR causality shows that causality happened at 0Hz frequency but not
any other frequency. Since this data does not contain any characteristics of
frequency motion, the NCR causality is mainly explained in the low frequency
region.

Moreover, this example strongly proved that non-zero coe�cients do not
imply causality when AR model is higher than order one. Nonetheless we
choose NCR causality over Granger's causality because NCR causality takes
the noise variance into consideration.

Due to the non-stationary variance of residuals we enforce the AR model
with a GARCH model. The GARCH model allows the noise variance time-
varying freedom to �x the heteroscedasticity. Time varying variance conse-
quently brings NCR changing over time. A time varying NCR causality plot
would be the only suitable way to explain any heteroscedastic time series data.





Chapter 8

Application 4 - Study of

Synchronous Rotation of Fingers

8.1 Introduction

We will continue to study causality in this chapter with a data set concerning
synchronous rotation of �ngers. In this experiment, we investigate the causal
relations of the two index �ngers when they are both in a motion of drawing
circles in the horizontal plane.

Continuous circle drawing task has been used extensively to study bimanual
coordination. Finding the the mechanisms of coordination of bimanual motion,
we can learn how the hands interact while coordinate to move independently.
In this paper, we perform statistical modelling and apply the Akaike NCR
theory to explain causality of the hands interaction.

In the continuous circle drawing experiment, drawing circle in a symmetri-
cal mode is easy no matter how high the speed is, but parallel mode is easy only
when the speed is under a threshold (Kelso, 1984). When the speed increases
the parallel mode of circle drawing may change into the symmetrical mode
involuntarily (Kelso, 1984; Semjen et al., 1995). Moving the hands in mirror
symmetry is a spontaneous tendency due to perceptual and spatial symmetry
but not homologous muscles co-activation (Mechsner et al., 1971).

Various models were established in literature. Haken et al. (1985) use a
second order di�erential equation model to capture the varying phase delay,
which was modi�ed by Bingham (2004) and turned to his phase driven model.
Cattaert et al. (1999) advocated their neural cross-talk model assuming that
bimanual circular motion are generated from two orthogonal oscillations cou-
pled with a phase delay, with a proportion of force command sent to one hand
dispatched to the other hand as a mirror image, and this theory was advocated
by Viviani et al. (1998). A common characteristics of the models is their focus
on the phase delay. The phase delay can be interpreted as the directed coher-
ence or causal e�ect between the variables. In other words, a variable causes
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other variables at a scale di�erent to it was caused by the other variables.
A multivariate AR model can explain the temporal and the spatial charac-

teristics of the data, however, it may not be suitable to explain the phase delay
changing over time unless we make the AR coe�cients as functions in time.
Instead of multivariate AR model, we apply a linear state space model. We
shall compare a result using a state space model with switching observation
matrix to the AR model, and discuss how the state space model in explaining
NCR causality.

8.2 Data

This data contains measurement of the bimanual movement of index �ngers
of a healthy subject in listening to an audio signal of 1Hz, at the same time
his index �ngers are performing circle drawing at a frequency of 1Hz in the
horizontal plane. The subject cannot see his �ngers during the experiment.
We choose from the data a segment of 20 s, when the right-handed subject was
performing a symmetrical rotation: the left index �nger is rotating anticlock-
wise and the right index �nger is rotating clockwise. In �gure 8.1 we show
the raw data plotting on an axis of angular displacement in radian against
the time in second. In 20 s each of the �ngers drew 20 circles. The green line
represents the left index �nger while the red line represents the other one. In
this experiment the sampling rate is 1000Hz and the measurement resolution
is 1 degree.

8.2.1 Data Preprocessing

There are two problems in the data. The �rst problem is monotonicity. When
we do time series analysis, especially when we use linear time series models,
the data should ful�ll the �rst order stationarity assumption, ie data need to
�uctuate around a mean value. The characteristics of non-stationarity in mean
is easily re�ected in a heavy tail-o� in ACF and a sharp spike at the 0Hz in
spectrum. In this situation, the overwhelming tail-o� or spike may blind us
from seeing other characteristics of the data, at the same time, no time series
model requiring the assumption of stationarity would be suitable. To solve
the problem we need a suitable pre-processing before we apply our statistical
modelling. There are several possibility, including di�erencing, detrending and
so on. Di�erencing can be easily done by subtracting pairs of consecutive data.
For this data, we try the �rst order and the second order di�erencing method
to look for the solution to monotonicity. However, it leads us to the second
problem.

In �gure 8.2 we show four subplots including two di�erenced time series
and two FFT spectrum of another segments from the same data set. Subplot
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Figure 8.1: Finger rotation data

(a) is the �rst order di�erenced time series and subplot (c) is the second order
di�erenced data. The time series plot show very strange pattern as we can see
that the �rst order di�erenced time series in subplot (a) takes exactly eight
values only, and the second order di�erenced time series gives completely no
information about the dynamics of the data.

So, the second problem is poor measurement resolution in the data. The
problem comes from an unsuitable setting of experiment, for instance, when a
meter is set or is just capable to measure at a limited signi�cant digits, then a
large rounding o� error in the measurement. To solve the problem, one have
to increase the level of accuracy of measurement.

However, we will solve the problem using another method, say, by reducing
the time resolution of the data. In �gure 8.2(b) and (d) we show respectively
an FFT spectrum of the �rst and the second di�erenced time series, in which
the vertical axis is the log of absolute power and the horizontal axis is frequency
ranged from 0Hz to 500Hz. Both spectra have a concave shape and a higher
power at the high frequency. Unfortunately, these spectra are not useful,
without the need of investigate the implication from the shape of the spectra.
Since the data is recording bimanual rotation activity at an angular speed of
1Hz, we are more interested in the dynamics related in the neighborhood of
1Hz. In other words, we should study this time series on a 0.1Hz to 10Hz
domain but not 100Hz or 500Hz, such a speed is almost meaningless in the
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Figure 8.2: First and second di�erence �nger rotation data and their FFT spec-
trum

physical motion of a human limb.
In our analysis since the �ngers are bimanual rotation in a frequency of

1Hz, we choose to reduce the time resolution of the data in order to analyze it.
We perform a sub-sampling procedure on the data at 3 di�erent sub-sampling
rates.

In �gure 8.3 the 12 plots are the �rst and the second order di�erence data
and their FFT spectra of a sub-sampled data. In subplots (a)-(d), we have
�rst and second order di�erenced data and their FFT spectra of 1/10 sub-
sampling. In subplots (e)-(h) and in subplots (i)-(l) we have those of 1/20
and 1/50 respectively. The plots diminish into smaller size in order to ease
comparison. In subplots (a), (e) and (i), we show the di�erenced data at three
di�erent sub-sampling rate. We can see how they are all so much di�erent
from �gure 8.2(a). In subplots (c), (g) and (k) we can see the progressive
improvement of resolution.

We can see the FFT spectrum of the processed data magni�es the low
frequency part of the spectra in the subplot (b) from 8.2(b). Note that in
subplot (j), we show the spectrum over the frequency domain of 0Hz to 50Hz,
which is equivalently showing 1-�fth of subplot (b) and 2-�fth of subplot(f).
When we further reduce the time resolution the di�erence time series are get-
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Figure 8.3: Matrix plot of time series and FFT spectra at 3 di�erent sub-sampling rate
and 2 di�erent di�erencing order of �nger rotation data

ting smoother and 2 signi�cant peaks come out in the spectrum. In subplot
(j) and (l), we can see clearly 2 peaks at 1Hz and 2Hz, which are the main
characteristics of the time series.

Doing the sub-sampling, we do not lose the information in the data. In-
stead, we can enlarge the information at the low frequency region to look close
into it. As shown in the spectrum of the �rst order di�erence and second order
di�erence of the original data, Nyquist frequency is 500Hz and we can hardly
see the 1Hz angular rotation. When the sub-sampling increase from 1/10 to
1/20 and further 1/50, the 1Hz frequency can be clearly seen.

The di�erencing technique is not restricted to be applied one time only. It
can be applied to data twice, which depends on the necessity of the data. It
is so rare to be applied for 3 times or more, unless we know there are several
unit roots existing in the data.

8.3 Analysis

After a di�erencing and a 1/50 sub-sampling on the raw data, we subtract
the average angular speed (0.314) and re-scale then we obtain a working data
for our data analysis as shown in �gure 8.4. There are 2 variables and 400
samples in the selected data. Again, the green line represents the left index
�nger while the red line represents the right index �nger. The sub-sampling
reduces the sampling rate from 1000Hz to 20Hz. The horizontal is the time
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axis in second. In the �rst 5 seconds we can see clearly 5 oscillations in both
time series, which means there is a signi�cant 1Hz oscillation. The green line,
ie the left �nger, shows two to three oscillations with every 1Hz oscillation,
and the red line does show 2Hz oscillation but rather weak.
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Figure 8.4: Preprocessed �nger rotation data

8.3.1 NCR Causality of Multivariate AR Model

We �t multivariate AR model to the data as preliminary analysis. An AR
model can be estimated by a computationally e�cient algorithm by Whittle
(1963). For each AR model from we have a likelihood. In �gure 8.5 we show
the AIC of the estimated model of order 1 to order 30 and we �nd that the
AR(11) model gives the minimum AIC. So we will concentrate on the AR(11)
model and compare it with other models.

By �tting the AR(11) model we obtain an AIC of 2883.1, when we assume
the covariance matrix contains non-zero o�-diagonal values. The correlation
coe�cient of the noise variance is 0.9341√

2.2906×2.3463
= 0.4029.
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Figure 8.5: AIC of AR models up to order 30.
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)

+
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+
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t

η
(2)
t

)

(
η

(1)
t

η
(2)
t

)
∼ N

((
0
0

)
,

(
2.2906 0.9341
0.9341 2.3463

))

However, in order to interpret the causal relation by NCR, we �t the model
again with a restriction of diagonal covariance matrix. The estimated model
is as follow.
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(
y

(1)
t

y
(2)
t

)
=

(
0.6776 0.2517
0.1688 0.6882

) (
y

(1)
t−1

y
(2)
t−1

)
+

(
−0.4323 −0.1108
−0.1555 −0.2421
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y

(1)
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y
(2)
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)

+

(
−0.0565 0.1523
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y
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t−3

y
(2)
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)
+
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(2)
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)

+

(
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)
+
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)

+
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y
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y
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)
+

(
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∼ N
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0
0
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,

(
2.1355 0

0 2.3333

))

Then we use equation 3.3 to calculate the model spectra and NCR causal-
ity. In �gure 8.6(a) we show the FFT spectra (blue) and the theoretical AR
spectrum (black) which are plotted together on one plot. The top one is the
spectrum for the rotation time series of the left �nger and the bottom on is
that of right �nger. The vertical axis is the log of power intensity and the
horizontal axis is the frequency ranged from 0Hz to 10Hz. In �gure 8.6(b) we
show the noise contribution ratio. The green color is the contribution from η

(1)
t

and the red color is the contribution from η
(2)
t . The vertical axis is the ratio

from 0 to 1, and the horizontal axis is the frequency axis, again from 0Hz to
10Hz.

In �gure 8.6(a) we can see from the blue spectra that there are a lot of
sharp spikes, especially at 1Hz for both �ngers and 2Hz for left �nger. When
we look at the black curves we see that 1Hz is well captured by the AR model,
and a peak at around 3Hz is also dominant, which may be a harmonic of the
1Hz rotation, which means the bimanual rotation is strongly characterized by
the 1Hz rotating motion.

By �gure 8.6(b) a strong causal relation from the right �nger to the left
�nger can be seen at 1Hz, and a trace amount of feedback at 3Hz can been
seen but not necessary to be an important causal relations.

In �gure 8.7 we show the residuals of the AR(11) model. When we compare
it to �gure 8.4 we can see that most of the low frequency were taken away, but
still some spikes are still remaining in the residuals, especially they are about
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Figure 8.6: Spectra and NCR of a �tted AR(11) model
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Figure 8.7: Innovation from a �tted AR(11) model
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1 s in separation. However, as we have shown in the AIC plot in �gure 8.5 that
increasing the model order may not be suitable to improve the model �tting
signi�cantly in terms of a balance of the number of parameters.

8.3.2 NCR Causality of State Space Model

As an alternative to the multivariate AR model, we perform the analysis
through the linear state space model. It has been stated in chapter 2 that
any multivariate AR model can be written in the form of state space model.
It is not our purpose to transform into a state space model, but we would like
to interpret the NCR causality in another way.

We introduce a hidden variable which is neither observed nor be estimated
perfectly. The hidden variable is taking the common dynamics of both the
left �nger and the right �nger. The remaining uncommon dynamics can be
explained by the individual dynamic of the �ngers, which can produce their
own causal relations. We use this approach because of two reasons. The �rst
reason is due to the physical meaning, and the second reason is due to the
characteristics of the time series based on the �tted AR(11) model.

As we have mentioned in the beginning of this chapter, Cattaert et al.
(1999) used their neural cross-talk model to explain the bimanual motion. Sim-
ilar to their two orthogonal oscillations theory, we assume that there would be
three oscillations, of which they are all orthogonal to each other; one oscillation
takes the common feature of the two time series and the other two oscillations
explaining the individual characteristics of the two time series. The two time
series are reconstructed by the three oscillations with a phase delay. Therefore,
a common force command, which is sent to both limbs as a mirror image, is
explained by this common hidden variable.

In �gure 8.8 (a) we show an Argand diagram of the characteristic roots of
the �tted AR(11) model. The horizontal and the vertical axes are respectively
the real and the complex line. The diagram is symmetric about the horizontal
axis, meaning that the roots can be real roots or complex roots of conjugate
pair. In addition to the conjugate pairing, there is also a virtual pairing of
the roots, as we can see that the 22 roots are closely located two by two.
This suggests that the two time series have very similar but slightly di�erent
characteristics. This brings us idea of how to formulate a suitable model in
the state space framework.

In �gure 8.8 (b) we show another Argand diagram of the characteristic
roots of the �tted state space model. The red asterisks are the characteristic
roots of the common hidden oscillation, and the remaining blue asterisks are
the characteristic roots of the two individual oscillations. The red asterisks
are located very closed to the characteristic roots in �gure (a), except the real
characteristic roots.

And in the following we show the estimated model. The state space model
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Figure 8.8: Argand diagram of characteristic roots of (a) AR(11) model and (b) state
space model

is linear as de�ned in chapter 2. yt is the observation which is a 2 × 1 vector.
xt is the state vector which is 13 × 1 in our example. F is a 13 × 13 square
matrix, G is a 13 matrix and H is a 2× 13 matrix. wt is the system noise, and
it is a 3 × 1 vector. An 11 × 11 block in F is used to explain the dynamics of
the common hidden variable, and the 2×2 block is a coupling of the remaining
two oscillations. G distributes the system noise to only three out of all states.
H sums up the second state and the last state to reconstruct the second time
series. It also sums up the second last state and one of the �rst four states to
reconstruct the �rst time series. When we �t this model we allow at each time
step H chosen from H1, H2, H3 or H4, whichever maximizes the likelihood
function at that time step. In this case we are maximizing the likelihood
to choose the preferable H at every time point, which makes H as a prior
information, and the Kalman �lter is using this prior information, and so the
�tted model is able to explain the data, but not predict any future observations.

xt = Fxt−1 + Gwt

yt = Hxt + εt
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F =



1.6180 1

−1.2744 1

0.6320 1

−0.2395 1

0.0287 1

0.0024 1

0.1733 1

−0.5209 1

0.5762 1

−0.5207 1

0.1276 0

0.1015 0.2001

−0.1895 0.5048



,

G =



1

0
...
0

1 0

0 1


, Hj =

[
h (j) . . . 1 0

0 1 0 0 . . . 0 1

]
,

h (j) =


(1 0 0 0) if j =1

(0 1 0 0) if j =2

(0 0 1 0) if j =3

(0 0 0 1) if j =4

,

wt ∼ N (0, Q), εt ∼ N (0, R), Q =

 0.5907 0 0

0 0.5664 0

0 0 1.2465

, R =

[
0 0

0 0

]
.

This state space model gives the minimum value of AIC as 2634.1, compar-
ing to 2883.1 for AR(11) model, state space model is much better than the AR
model on this data. H switches between H1 to H4, which is chosen according
to the one-step ahead prediction. When H2 is chosen then both the time series
are taking from the common hidden state in phase. When H1 is chosen the
�rst time series is moving before the second one; and when H3 or H4 is chosen
the �rst time series is moving behind the second one. In �gure 8.9 we show the
trajectory of H, in which we see that H is mostly switching between H2, H3
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and H4. It is not suitable to draw conclusion about causal relations by looking
at the delay of the variables, but we should plot the NCR to see the level of
contribution of the driving noises in each of the four cases.
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Figure 8.9: Trajectory of H (j)

In �gure 8.10 we show the NCR for the state space model. From (a) to (d),
each plot is showing the NCR of the state space model with a corresponding H.
In each plot there is a black line and three colors partitioning the rectangle.
The black line is the model spectrum; the yellow color is NCR of common
driving oscillation, the green color and the red color are respectively the two
independent system noises of the state equation. The vertical axis is ranged
from 0 to 1, and the horizontal axis is the frequency axis from 0Hz to 10Hz.

Because the coe�cients of the second row of H is �xed, the calculation
makes no di�erence to the spectral density of the second time series, but the
spectral density of the �rst time series switches between four di�erent shapes.
In �gure 8.10 (a) to (d) the model spectra and the NCR plots of the right
�nger are the same, but those of the left �nger vary. The noise contribution
from the hidden common driving variable, the yellow portion, is signi�cant
particularly at 1Hz and 3Hz, at where the spectra, the black lines, contain
high peaks. By this result we conclude that both time series is greatly caused
by the common hidden driving force at the 1Hz oscillation and its harmonics.

After eliminating the e�ect of the common driving force, we can see the
causal relations of the two time series by the analysis of the remaining co-
variance. In �gure 8.10 (a) and (b) the red color in the upper plots and the
green color in the lower plots are of trace amount, meaning that the causal
relations from the left �nger to the right �nger, and from the right �nger to
the left �nger, conditioned on the hidden common driving force, is negligible.
In �gure 8.10 (c) and (d) there is only a thin green line in the lower plots, but
there is a small proportion of red color in the upper plots. Especially there
is about 20% of NCR from the driving noise of the right �nger to the time
series of the left �nger at 0Hz. This implies that after taking away the e�ect
of the common driving force of the 1Hz oscillatory motion, there is evidence
of showing the causal relations from the right �nger to the left �nger at the
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low frequency motion. In other words, The right �nger was leading the left
�nger in this experiment.
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Figure 8.10: NCR of the state space model with di�erent H

In �gure 8.11 we show the innovations of the state space model. When we
compare to the innovations of the AR(11) model in �gure 8.7 as well as the
data in �gure 8.4, that most of the 1Hz and 3Hz oscillation in both time series,
some of the low frequency in both time series and part of the high frequency
in the green series have been explained by the state space model. However,
there is still a number of spikes in both series which may require an exogenous
to explain, which is believed not to a�ect the conclusion of the NCR causality.
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Figure 8.11: Innovation from a state space model

8.4 Discussions

In this chapter we analyzed a physical data of the bimanual �nger movement.
We apply the time varying NCR to a data of bimanual movement of �ngers
and see the causal relationship between the motion of the �ngers.

We used a multivariate AR model and a linear state space model to �t the
data in our analysis. The multivariate AR model contains constant coe�cients
which explain the homogeneous dynamics of the data and a constant phase
between the time series solely. The linear state space model plays an additional
role of modelling the varying delay of the two time series. By comparing the
AIC we found that the state space model �ts better than the AR model.

The essence of NCR causality is that it should be based on a model, so that
the causal relations are focused in the major characteristics of the data. But it
is also a disadvantage of NCR causality that if we do not �t the data well then
the conclusion on causal relations is unreliable. Therefore, while we draw any
conclusion from the NCR, we should pay more attention to the innovations.

It is important to identify the most important information we want to
obtain from the data. As an example in this chapter, although we have a data
of high frequency but the information from high frequency is not contributing
to model �tting. Also, the monotonic trend in the data should be removed by
either a di�erencing technique or any suitable trend model.
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Although the data shows non-stationary variance, when we tried applying
a GARCH model we cannot get a satisfactory result. The reason could be
that the noise coming from the subject did not exist for long. GARCH model
is a naive prediction of variance from the noise estimate that a sharp and
immediately vanished noise impulse may not work well. More investigation is
needed on this issue.



Chapter 9

Conclusion

We designed a special case of the linear state space model and named it com-
partment model. The compartment model is able to decompose a given time
series into components de�ned by their main frequency. We combine the com-
partment model and GARCH model to develop compartment-GARCH model,
suitable to model non-stationary variance of noise in the system.

We make use of di�erent estimators of the square of system noise for
the compartment-GARCH model. We try di�erent orders of compartment-
GARCH model and compare their performance in real application. We also
apply the jump detection technique as an alternative approach to model the
non-stationarity of variance.

We �t the compartment-GARCH model to an EEG data during the onset of
anaesthesia and conclude that the loss of consciousness at onset of anaesthesia
is re�ected almost exclusively by an increase of power in the delta band. We �t
the compartment-GARCH model to an EEG data of a coma patient and obtain
several clear picture of the e�ectiveness in the detection of heteroscedasticity.

We released the constraint of constant noise variance of a multivariate AR
model, to heterogeneous noise variance so that the non-stationary variance can
be explained as well as the time-varying NCR causality can be observed. A
data quantifying position and angular movement of head gazing between two
subjects was analyzed. A unilateral noise contribution between two subjects
was clearly portrayed. GARCH model brought a better residuals and improved
the likelihood on one hand, and set the NCR free to be time-varying.

We also extend Akaike's NCR from multivariate AR model to multivariate
ARMA model as well as state space model, so that more number of driving
noise than number of time series variables becomes possible. Increasing number
of driving noise allows covariance of driving noises being explained in Akaike's
NCR theory, when the covariance is signi�cantly di�erent from zero. We ap-
plied the method to a bi-variate time series data of bimanual coordination of
rotating index �ngers. We obtained a result of causality from a latent variable
to the two observed variable. The result was based on a state space model
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which gives a better AIC than any ordinary multivariate AR model.



Bibliography

Akaike, H. (1968). On the use of a linear model for the identi�cation of
feedback systems. Annals of the Institute of Statistical Mathematics 20 425�
439.

Akaike, H. (1973). Information theory and an extension of maximum like-
lihood principle. In 2nd International symposium on information theory.
267�281.

Akaike, H. (1974). A new look at statistical model identi�cation. IEEE
Transactions on Automatic Control AC-:19 716�723.

Ameen, J. R. M. & Harrison, P. J. (1985). Normal discount Bayesian
models. In J. M. Bernard, M. H. De Groot, D. V. Lindley & A. F. M.
Smith, eds., Bayesian Statistics 2. Amsterdam: North-Holland, 271�298.

Aoki, M. (1987). State Space Modeling of Time Series. Berlin: Springer.

Åström, K. J. & Kallstrom, C. G. (1973). Application of system iden-
ti�cation techniques to the determination of ship dynamics. In P. Eykho�,
ed., Identi�cation and system parameter estimation. Amsterdam: North-
Holland.

Bingham, G. P. (2004). A perceptually driven dynamical model of bimanual
rhythmic movement (and phase perception). Ecological Psychology 16 45�53.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedas-
ticity. Journal of Econometrics 31 307�327.

Box, G. E. P. & Jenkins, G. (1970). Time Series analysis: Forecasting and
control. Prentice Hall.

Brinllinger, D. R. (1981). Time series: Data analysis and theory. McGraw-
Hill, expanded ed.

Brockwell, P. J. & Davis, R. A. (1991). Time Series: Theory and Meth-
ods. New York: Springer, 2nd ed.



94 BIBLIOGRAPHY

Brockwell, P. J. & Davis, R. A. (1996). Introduction to Time Series and
Forecasting. New York: Springer.

Cattaert, D., Semjen, A. & Summers, J. J. (1999). Simulating a neural
cross-talk model for between-hand interference during bimanual circle draw-
ing. Biological Cybernetics 81 348�358.

Durbin, J. & Koopman, S. J. (2001). Time Series Analysis by State Space
Models. Oxford Univ. Press.

Engle, R. (1982). Autoregressive conditional heteroskedasticity with esti-
mates of the variance of U.K. in�ation. Econometrica 50.

Engle, R. (2002). Dynamic conditional correlation: A simple class of mul-
tivariate generalized autoregressive conditional heteroskedasticity models.
Journal of Business & Economic Statistics 20 339�350.

Franaszczuk, P. J., Blinowska, K. J. & Kowalczyk, M. (1985). The
application of parametric multichannel spectral estimates in the study of
electrical brain activity. Biological Cybernetics 51 239�247.

Friston, K. J., Holmes, A. P., Worsley, K. P., Poline, J. B., Frith,
C. D. & Frackowiak, R. S. J. (1995). Statistical parametric maps in
functional imaging: A general linear approach. Human Brain Mapping 2
189�210.

Galka, A., Yamashita, O. & Ozaki, T. (2004). Garch modelling of co-
variance in dynamical estimation of inverse solutions. Physics Letter A 333
261�268.

Gersch, W. (1970). Spectral analysis of EEG's by autoregressive decompo-
sition of time series. Mathematical Biosciences 7 205�222.

Gersch, W. & Yonemoto, J. (1977). Parametric time series model for
multivariate EEG analysis. Computers and Biomedical Research 10 113�
125.

Geweke, J. F. (1982). Measurement of linear dependence and feedback be-
tween multiple time series. Journal of the American Statistical Association
77 304�324.

Geweke, J. F. (1984). Measures of conditional linear dependence and feed-
back between time series. Journal of the American Statistical Association
79 907�915.

Gilbert, P. D. (1993). State space and arma models: An overview of the
equivalence. Bank of Canada Working Paper 4.



BIBLIOGRAPHY 95

Goldberg, J. L. (1991). Matrix Theory with Applications. McGraw-Hill.

Golub, G. H. & Loan, C. F. V. (1996). Matrix Computations. Baltimore:
Johns Hopkins, 3rd ed.

Granger, C. W. J. (1963). Economic processes involving feedback. Infor-
mation and control 6 28�48.

Granger, C. W. J. (1969). Investigating causal relations by econometric
models and cross-spectral methods. Econometrica 37 424�438.

Grewal, M. S. & Andrews, A. P. (2001). Kalman �ltering: Theory and
Practice Using MATLAB 2nd edition. New York: Wiley.

Haken, H., Kelso, J. A. S. & Bunz, H. (1985). A theoretical model of phase
transitions in human hand movements. Biological Cybernetics 51 347�356.

Harrison, J. & Stevens, C. F. (1976). Bayesian forecasting (with discus-
sion). Journal of the Royal Statistical Society, Series B 38 205�247.

Harvey, A. C. (1985). Trend and cycles in macroeconomic time series. Jour-
nal of Business and Economics Statistics 3 216�227.

Harvey, A. C. (1989). Forecasting, structural time series models and the
Kalman �lter. Cambridge: Cambridge University Press.

Higuchi, T. (1999). Applications of quasi-periodic oscillation models to sea-
sonal small count time series. Computational Statistics and Data Analysis
30 281�301.

Hosoya, Y. (1991). The decomposition and measurement of the interde-
pendency between second-order stationary process. Probability Theory and
Related Fileds 88 429�444.

John, E. R. (2002a). The neurophysics of consciousness. Brain Research
Reviews 39 1�28.

John, E. R. (2002b). A neurophysiological model of consciousness. Interna-
tional Journal of Psychophysiology 45 67.

John, E. R., Karmel, B. Z., Corning, W. C., Easton, P., Brown,
D., Ahn, H., John, M., Harmony, T., Prichep, L. S., Toro, A.,
Gerson, I., Barttlet, F., Thatcher, R., Kaye, H. & Valdés-Sosa,
P. (1977). Neurometrics: numerical taxonomy identi�es di�erent pro�les of
brain functions within groups of behaviourally similar people. Science 196
1393�1410.



96 BIBLIOGRAPHY

John, E. R., Prichep, L. S., Kox, W., Valdés-Sosa, P., Bosch-
Bayard, J., Aubert, E., Tom, M., diMichele, F. & Gugino, L. D.
(2001). Invariant reversible QEEG e�ects of anesthetics. Consciousness and
Cognition 10 165�183.

Kalman, R. E. (1960). A new approach to linear �ltering and prediction
problems. Journal of Basic Engineering 82 35�45.

Kaminski, M., Ding, M., Truccolo, W. A. & Bressler, S. T. (2001).
Evaluating causal relations in neural systems: Granger causality, directed
transfer function and statisitical assessment of signi�cance. Biological Cy-
bernetics 85 145�157.

Kelso, J. A. S. (1984). Phase transitions and critical behavior in human
bimanual coordination. Americal Journal of Physiology 15 R1000�R1004.

Kitagawa, G. & Gersch, W. (1996). Smoothness Priors Analysis of Time
Series. New York: Springer.

McIntosh, A. R. (2000). Towards a network theory of cognition. Neural
Networks 13 861�870.

Mechsner, F., Kerzel, D., Knoblich, G. & Prinz, W. (1971). Identi�ca-
tion of stochastic linear dynamic systems. American Institute of Aeronautics
and Astronautics Journal 9 28�31.

Mehra, R. K. (1971). Identi�cation of stochastic linear dynamic systems.
American Institute of Aeronautics and Astronautics Journal 9 28�31.

Nelson, D. (1991). Conditional heteroskedasticity in asset returns: A new
approach. Econometrica 59 347�370.

Ozaki, T. (1997a). Dynamic X11 model and nonlinear seasonal adjustment
I: Models and computational methods. In Proceedings of the institute of
Statistical Mathematics, vol. 45. Tokyo, 265�285.

Ozaki, T. (1997b). Dynamic X11 model and nonlinear seasonal adjustment
II: Numerical examples and discussion. In Proceedings of the institute of
Statistical Mathematics, vol. 45. Tokyo, 287�300.

Ozaki, T. (2003). Compartment model, powerpoint note.

Ozaki, T. & Tong, H. (1975). On the �tting of non-stationary autoregressive
models in time series analysis. In Proceedings of the 8th Hawaii International
Conference on System Sciences.



BIBLIOGRAPHY 97

Pascual-Marqui, R. D., Valdés-Sosa, P. A. & Alvarez, A. (1988). A
parametric model for multichannel EEG spectra. International Journal of
Neuroscience 40 89�99.

Prichep, L. S., Gugino, L. D., John, E. R., Chabot, R. J., Howard,
B., Merkin, H., Tom, M. L., Wolter, S., Rausch, L. & Kox, W.
(2004). The patient state index as an indicator of the level of hypnosis
under general anaesthesia. British Journal of Anaesthesia 92 393�399.

Priestley, M. (1981). Spectral Analysis and Time Series. London: Academic
Press.

Rappelsberger, P. & Petsche, H. (1975). Spectral analysis of the EEG
by means of autoregression .

Semjen, A., Summers, J. J. & Cattaert, D. (1995). Hand coordination in
bimanual circle drawing. Journal of Experimental Psychology 21 1139�1157.

Shumway, R. H. (2000). Time series analysis and its applications. New York:
Springer.

Tanokura, Y. & Kitagawa, G. (2003). Extended power contribution that
can be applied without independence assumption. Tech. Rep. 886, The
Institute of Statistical Mathematics.

Tsay, R. S. (2005). Analysis of Financial Time Series. Wiley-Interscience.

Valdés-Sosa, P., Biscay, R., Galan, L., Bosch, J., Szava, S. & Virues,
T. (1990). High resolution spectral EEG norms for topography. Brain
Topography 1 281�282.

Valdés-Sosa, P., Jimenez, J. C., Riera, J., Biscay, R. & Ozaki, T.
(1999). Nonlinear EEG analysis based on a neural mass model. Biological
Cybernetics 81 348�358.

Viviani, P., Perani, D., Grassi, F., Bettinardi, V. & Fazio, F.
(1998). Hemispheric asymmetries and bimanual asynchrony in left- and
right-handers. Experimental Brain Research 120 531�536.

Wei, W. W. S. (1990). Time series analysis univariate and multivariate
methods. Addison-Wesley.

Wei, W. W. S. (2006). Time series analysis univariate and multivariate
methods 2nd ed. Addison-Wesley.

West, M. (1995). Bayesian inference in cyclical component dynamic linear
models. Journal of the Aerican Statistical Association 90 1301�1312.



98 BIBLIOGRAPHY

Whittle, P. (1963). On the �tting of multivariate autoregressions, and the
approximate canonical factorization of a spectral density matrix. Biometrika
50 129�134.

Wiener, N. (1956). The theroy of prediction. In E. F. Beckenback, ed.,
Modern mathematics for engineers. NY: McGraw-Hill, 165�190.

Wong, K. F. K., Galka, A., Yamashita, O. & Ozaki, T. (2006). Mod-
elling non-stationary variance in EEG time series by state space GARCH
model. Computers in Biology and Medicine in press.

Yamashita, O., Sadato, N., Okada, N. & Ozaki, T. (2005). Evaluating
frequency-wise directed connectivity of bold signals applying relative power
contribution with the linear multivariate time series models. Neuroimage 25
478�490.

Young, G. B., Ropper, A. H. & Bolton, C. F. (1997). Coma and Impaired
Consciousness: A Clinical Perspective. Mcgraw-Hill.


