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Chapter 1

Introduction

A spatial point pattern is a set of locations of points (objects), irregularly dis-
tributed within a designated region and presumed to have been generated by
some form of stochastic mechanism (Diggle (2003)). Each point is considered
as a particle, individual of animals or plants, and so on. During a few decades,
the methods of statistical analysis for spatial point patterns have been devel-
oped: various diagnostic statistics and graphs have been studied by using the
second-order and the nearest-neighbor distance methods (Ripley (1977, 1979a,
2004), Besag (1977), Diggle (1979, 2003)); by clumping indices based on the
quadrat methods (David and Moore (1954), Morisita (1954), Lloyd (1967)) or
based on distance methods (Hopkins and Skellam (1954)). Modelling spatial
point patterns for which interactions exist between individuals has been stud-
ied by some authors (see for example Matérn (1960), Ripley (1977), Ogata and
Tanemura (1981, 1984)).

Spatial point patterns are generally classified into three types: completely
random, clustered (aggregated) and regular. If we observe a point pattern where
a certain repulsive force is acting between individuals, the pattern is called a
regular type. For example, if territorial animals or plants live in a habitat,
a certain spacing out among them happens. If birds fly in formation or fish
swim in shoals, inhibitions between the individuals are realized. Besides, in
the microscopic world, we can often see regular point patterns. If few or many
nanometer- or micrometer-sized dust particles are immersed in a plasma, the
particles with charge form two- or three-dimensional dust Coulomb crystals.
Then the behavior of charged dust particles and the structure of the crystals
have been investigated (e.g. Melzer et al. (1994), Nitter (1996), Juan et al.
(1998), Thomas and Watson (1999), Lai and Lin (1999)).

In this thesis, we are particularly interested in the interaction between in-
dividuals and it will be interesting to describe this certain spacing out by a
repulsive interaction potential. Then we consider these interactions between
individuals by parametric repulsive interaction potential models.
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We assume that a given regular point pattern is in equilibrium under a
certain repulsive interaction potential in a finite two-dimensional region. It is
known that such an equilibrium point pattern is statistically represented by
the Gibbs distribution. The likelihood of parameters which characterizes the
interaction potential can be described by the Gibbs distribution for a given
equilibrium point pattern. Since the form of the normalizing factor of the
Gibbs distribution is a high multiplicity of integral, it is very difficult to ob-
tain the likelihood function in principle. For this reason, Bayesian analysis for
these spatial point patterns has been hardly studied (e.g. Heikkinen and Pent-
tinen (1999)). Then, we use the useful approximate log-likelihood (Ogata and
Tanemura (1989)), which will be described in §3.2, and consider our Bayesian
estimation of various regular point patterns. Bayesian inference may help us
to sensitively estimate parameters of the interaction potentials. The essential
characteristic of Bayesian methods is their explicit use of probability for quan-
tifying uncertainty in inferences based on statistical data analysis (Gelman et
al. (2004)). Because of the development of recent computational methodology,
the complex posterior density can be simulated by using MCMC (Markov chain
Monte Carlo) methods.

In the thesis, our main purpose is as follows. For a point pattern of re-
pulsively interacting points in a finite two-dimensional region, we propose a
method to obtain the posterior density of the parameters of the parameterized
interaction potential functions by using MCMC methods. There, the effective
approximate log-likelihood for the models (Ogata and Tanemura (1989)) plays
an important role in the Metropolis-Hastings algorithm. Then two types of
prior densities corresponding to the parameters of the repulsive interaction po-
tential models are considered. Jumping (proposal) densities with similar type
as prior density are applied in Markov chain simulations. Our Baysian proce-
dure is confirmed by applying to various simulated equilibrium point patterns
which are generated from MCMC of the Soft-Core models. In order to ob-
tain posterior densities for real data sets, we perform our Bayesian procedure
and consider posterior inference by fitting a certain parametric function to the
posterior densities.

Moreover, MCMC convergence of iterative simulation is also investigated
in detail. In the thesis, the approach of single long run is adopted. Before an
iterative simulation is run in the Metropolis-Hastings algorithm, the following
important problems arise: when should we begin and finish sampling?, i.e.
when does the distribution of the chain begin to get close to the stationary
density and when should we terminate the run? To solve these problems,
we evaluate the burn-in and the stopping time of our single long run based on
independent simulated multiple short runs with various starting points (Gelman
and Rubin (1992), Geyer (1992), Cowles and Carlin (1996), Gelman et al.
(2004)), which will be remarked in §5.3 and 8.2.
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The layout of the thesis is as follows. In Chapter 2, a log-likelihood of
parameters for equilibrium point pattern is given. In Chapter 3, the repulsive
interaction potential models (Soft-Core potential models) with two parameters
and their effective approximate log-likelihood are introduced. In Chapter 4,
the fundamentals of Bayesian inference for the Soft-Core models are described.
In Chapter 5, the Metropolis-Hastings algorithm for Bayesian inference, its
jumping rule and the assessment of convergence (the burn-in and the stopping
time) from iterative simulation are explained. In Chapter 6, firstly, our Baysian
procedure is applied to various simulated equilibrium point patterns which are
generated by MCMC methods of the Soft-Core models for the cases of large
and relatively small number of points. Then MCMC convergence is evaluated
and the comparison of marginal posterior densities of parameters under two
types of the prior densities is also given. In Chapter 7, four real data sets are
illustrated and their preliminary analysis is given in order to categorize the
type of distribution of the point patterns. In Chapter 8, the results of our
Bayesian estimation of the Soft-Core models for these real data sets are shown.
There, the assessment of MCMC convergence is also investigated. In order to
obtain posterior inference from iterative simulation, parametric fitting of the
generalized gamma distribution to marginal posterior densities is considered.
To examine the validity of our results, the L-statistics for observed data is
compared graphically with the envelopes of simulated point patterns for the
posterior mode of parameters. Finally, in Chapter 9, some concluding remarks
are given.
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Chapter 2

Likelihood for equilibrium point
patterns

Let us consider a system consisting of N interacting particles (points, individ-
uals or objects) in equilibrium in a finite two-dimensional region V , typically
a rectangle. We call the system an equilibrium point pattern. A typical equi-
librium point pattern is shown in Fig. 2.1.

　
V

xi xj

rij

Figure 2.1: Example of equilibrium point pattern.

For describing the system, let the Cartesian coordinates of the observed
points be X = {xi = (xi, yi) ∈ V, i = 1, 2, ..., N}, and we consider a fam-
ily of parameterized interaction potential functions {φθ(rij); θ ∈ Θ}, defined
in some parameter space Θ, where rij is the mutual distance | xi − xj | be-
tween the particle centers xi and xj (see Fig. 2.1). The system of N particles
(x1,x2, · · · ,xN) which has reached the stationary state is characterized by the
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Hamiltonian H(X):

H(X) =
N∑

i<j

φθ(rij), (2.1)

where H(X) is equal to the total interaction potential energy. Then we can
suppose the observed data X to follow the Gibbs canonical distribution:

f(X) = exp{−H(X)}/Z(φθ;N, V ), (2.2)

where

Z(φθ;N, V ) =

∫

V

· · ·
∫

V

exp{−H(X)}dx1 · · · dxN (2.3)

is the normalizing factor, which is called the partition function in statistical
mechanics (e.g. Ruelle (1977)). We have put H(X) instead of H(X)/kBT ,
where kB is the Boltzmann constant and T is the absolute temperature. This
means that the parameterized interaction potential functions φθ(rij) virtually
includes the effect of the temperature.

The aim of the present thesis is to obtain, through Bayesian procedure, the
posterior densities of the parameterized interaction potential functions φθ(rij)
from the observed point patternX. Then the Gibbs distribution (2.2) is used as
the likelihood L(φθ;X) of the potential φθ(rij) which is a function of parameter
θ. Since the normalizing factor (2.3) has the high multiplicity of integral, it is
very difficult to obtain the exact form of the likelihood (2.2) as a function of
parameters except for the case of the Poisson model, i.e. the case of φθ(r) ≡ 0.
For the Poisson model, we obtain the normalizing factor Z =| V |N from Eq.
(2.3). Considering the Poisson model as the standard, we hereafter make use
of the log-likelihood (ratio) function:

lnL(φθ;X) = −
N∑

i<j

φθ(rij)− lnZ(φθ;N, V ), (2.4)

where Z = Z/ | V |N .

5



Chapter 3

Repulsive interaction potential
models

3.1 The two-parameter Soft-Core models

We can often observe the regular point patterns in nature. In such a point
pattern, a certain spacing out among individuals happens. This spacing out
might be due to the competitions among individuals for territories, foods and
so on. It will be useful to describe these competitions by a repulsive interaction
potential. We here have the assumptions of homogeneity and isotropy for data
presented as N individuals in a finite two-dimensional region V . In order to
represent the range and the softness of the interactions, the so-called Soft-Core
potential models :

φθ(r) =

(
σ

r

)n

; n = 2/α, 0 ≤ σ <∞, 0 ≤ α < 1, (3.1)

is the most convenient. Here, θ has two components (α, σ). The parameter
α represents the softness of the potential. The shape of potential function
depends on the parameter α. As the special case, α → +0 corresponds to
the Hard-Core potential model (or, rigid sphere model) with diameter σ of the
particle:

φ(0,σ)(r) =

{
∞ (r ≤ σ),

0 (r > σ).
(3.2)

The Hard-Core potential model is known as typical of the repulsive interaction
potential models. On the other hand, the parameter σ represents the range of
potential and we call σ the scale parameter. In particular, σ = 0 corresponds to
the Poisson model. Comparison of Hard-Core and Soft-Core potential curves
for σ = 1 is shown in Fig. 3.1.
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Figure 3.1: Curves of the potential models for σ =1. Each curve near the Hard-
Core model corresponds to the Soft-Core models with n = 4, 6, 8, 12, 16 and
24 from outside.

3.2 Approximate likelihood for the two-parameter

Soft-Core models

In statistical physics, all thermodynamic quantities are derived from the value
of normalizing factor (2.3) in principle. Computation of the normalizing factor
is necessary to maximize the likelihood of parameters. However, in general,
it is hard to obtain the explicit form of the normalizing factor as a function
of θ because of a high multiplicity of the integral in Eq. (2.3). To avoid
such a difficulty, Ogata and Tanemura (1981) have developed the approximate
normalizing factor under the assumption that a spatial point pattern is sparse.
Furthermore, Ogata and Tanemura (1984, 1989) have devised the following
Monte Carlo methods for the estimation of the normalizing factor for the case
of point patterns with higher density. We here define the number density by

ρ = N/V, (3.3)

assuming that the number of particles N and the volume of the region V are
not too small. Since the crampedness of a point pattern is related to the scale
parameter σ, we here introduce a parameter τ :

τ = ρσ2, (3.4)

which is called the reduced density. In thermodynamics, it is known that the
compressibility factor ψ(τ) = P (τ)V/N−1 (P (τ)V/N = ψ(τ)+1 is the equation
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of state, where P (τ) is the pressure) measures the deviation from the ideal gas.
It is also known that ψ(τ) is represented as a function of τ for the potential
models with the scaling property described in §3.1, and that the normalizing
factor is given by ψ(τ) in the form (Ogata and Tanemura (1984, 1989)):

1

N
lnZ(τ) = −

∫ τ

0

ψ(t)

t
dt. (3.5)

To obtain the useful approximated log-likelihood, Ogata and Tanemura
(1984, 1989) performed the Monte Carlo experiments to estimate the compress-
ibility factor ψ(τ) by generating a great number of equilibrium point patterns
for various values of τ and n. For the Soft-Core models, the function ψ(τ) is
estimated as follows:

ψ̂(τ) =
n

2N

1

M

M∑
t=1

N∑
i<j

( √
τ

r∗ij(t)

)n

. (3.6)

Here r∗ij(t) =| xi(t) − xj(t) | /
√
V/N and the patterns [ X(t) = {xi(t); i =

1, 2, ..., N}; t = 1, 2, ...,M ] are obtained by the Monte Carlo simulations with
M steps. After some computer simulations, Ogata and Tanemura (1984, 1989)
obtained the compressibility factor (sample means) ψ̂(τk) for τk = 0.05k, k =
1, 2, ..., 15 and for n = 4, 6, 8, 12, 16 and 24 together with the standard devia-
tions ŝk,n of the time series. We regard the log-normalizing factor lnZ of (2.4)
as a function of (α, τ), and consider ψ(τ)/τ instead of ψ(τ). To estimate the
function ψ(τ)/τ in two parameter space (α, τ), Ogata and Tanemura (1989) fit-
ted the 2-dimensional cubic spline function to the Monte Carlo simulated data
for ψ(τ)/τ . In a subdivided rectangle [αm, αm+1] × [τn, τn+1] for (α, τ)-plane,
the 2-dimensional cubic spline function h(α, τ | C) is defined as follows:

h(α, τ | C) =
3∑

i=0

3∑
j=0

cm+i,n+jB4−i(rα)B4−j(rτ ), (3.7)





B1(r) = r3/6,

B2(r) = (−3r3 + 3r2 + 3r + 1)/6,

B3(r) = (3r3 − 6r2 + 4)/6,

B4(r) = (−r3 + 3r2 − 3r + 1)/6,

(3.8)

where {Bi(r); i = 1, 2, 3, 4} is the B-spline basis (Ahlberg et al. (1967)) on
[0, 1], C represents the coefficients {cm+i,n+j}, and m and n are respectively
specified by the range of (α, τ), that is, rα = 3(α −m/3), (m = −3,−2, ..., 6)
and rτ = 4(τ − n/4), (n = −3,−2, ..., 7). Then Ogata and Tanemura (1989)
considered a linear regression model:

ψ(αi, τj)

τj
= h(αi, τj | C) + εij, εij ∼ N(0, ς2s2

ij), (3.9)
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where ς2 is a parameter to be minimized. The coefficient matrix C = {cij} is
obtained as to minimize the penalized log-likelihood Q(C,w) for total number
IJ = 7× 16 of simulated data set (αi, τj):

Q(C,w) = ln q(C)− [w1Ψ1(h) + w2Ψ2(h)], (3.10)

Ψ1(h) =

∫∫

S

((∂h
∂x

)2

+
(∂h
∂y

)2
)
dxdy, (3.11)

Ψ2(h) =

∫∫

S

((∂2h

∂x2

)2

+ 2
( ∂2h

∂x∂y

)2

+
(∂2h

∂y2

)2
)
dxdy, (3.12)

ln q(C) = −(IJ/2) ln ς2 +
I∑

i=1

J∑
j=1

[ψ(αi, τj)/τj −h(αi, τj | C)]2/(2ς2s2
ij), (3.13)

where the values of (w1, w2) are the weights which control the roughness penal-
ties (smoothness functionals) (Ψ1,Ψ2) and the combination of first- and second-
order derivatives are used to estimate the roughness of the function. Thus we
can use the log-likelihood function for the Soft-Core models:

lnL(α, σ;X) = −
N∑

i<j

(
σ

rij

)2/α

+N

∫ τ

0

h(α, τ | Ĉ)dt, (3.14)

where n = 2/α and the log-likelihood function is effective within the region
0 < τ ≤ 0.75 and 0 < α ≤ 0.5 (i.e. 4 ≤ n < ∞). Since h(α, τ | Ĉ) in
Eq. (3.7) corresponds to ψ(t)/t in Eq. (3.5), the integral form of h(α, τ | Ĉ)
appears in the second term of the rhs in Eq. (3.14). The estimated coefficient
matrix Ĉ is given in Table 2 of Ogata and Tanemura (1989) under the values
of (w1, w2) = (4.42×10−6, 5.53×10−3) (Ogata and Katsura (1988)). We apply
the approximate log-likelihood (3.14) to our Bayesian procedure.
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Chapter 4

Bayesian inference

4.1 Bayesian paradigm

Bayesian inference for the statistical model is as follows (e.g. Box and Tiao
(1973), Gelman et al. (2004), O’Hagan and Forster (2004), Robert (2004)).
Prior information about the interested parameter θ is quantified as a density
p(θ). The likelihood function for θ can be represented as L(θ;X) given the
observed data (point pattern) X. From the Bayes theorem, a product of the
prior density p(θ) and the likelihood function L(θ;X) results the posterior
density of θ:

p(θ | X) ∝ p(θ)L(θ;X), (4.1)

where the rhs is the unnormalized posterior density. Any inference about θ is
then based on the posterior density p(θ | X) after observing the data X. From
Eq. (4.1), the full generality of the posterior density of θ is equivalent to

p(θ | X) =
p(θ)L(θ;X)∫

Θ
p(θ)L(θ;X)dθ

, (4.2)

where the denominator of the rhs is called the normalizing constant.
Suppose that the prior density is chosen from a parametric family F . If for

every prior p(θ) ∈ F the posterior p(θ | X) also belongs to F , then the family
F of prior is said to be closed under sampling for the sampling distribution
(likelihood). This property is called conjugacy. The conjugate prior is often
used in some standard models such as binomial, Poisson and normal, etc for
the likelihood. The use of conjugate prior have the practical advantage for
mathematical convenience. Then it is easy to understand the results which can
be often put in analytic form and are often good approximation. In practice,
conjugate prior densities may not be possible for complicated models including
high dimensions, then it is difficult to obtain posterior densities. Even if, in
early days, the conjugate priors could be applied, computational power was not
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available. However, since the advancement of recent computational methodol-
ogy, through MCMC methods, we can simulate the complex posterior density
without knowing the normalizing constant. The idea of MCMC methods will
be explained in Chapter 5. Note that the normalizing constant is different from
the normalizing factor Z (2.3) of the likelihood for θ in Eq. (2.2) (i.e. Z of
the log-likelihood in Eq. (2.4)). As we shall see in Chapter 5, the value of the
normalizing factor, which is the second term in the rhs of Eq. (3.14), is needed
in the Metropolis-Hastings algorithm.

Our purpose is to obtain Bayesian inference about the Soft-Core potential
models (3.1), that is, we estimate the posterior density p(θ | X) from the
observed point pattern X. Then we run Markov chain simulation for a long
time in the Metropolis-Hastings algorithm, regard it as samples of θ from the
posterior density p(θ | X) and use the samples to estimate the properties of
posterior density.

We will describe our Bayesian procedure about the Soft-Core potential mod-
els with two parameters θ = (α, σ) in §4.2, 4.3 and Chapter 5.

4.2 Prior densities

We specify a prior density p(θ) as

p(θ) = p(α)p(σ), (4.3)

where p(α) and p(σ) are respectively the prior densities of α and σ.
In this thesis, Bayesian analyses are carried out under following two prior

specifications: noninformative and informative prior densities. For noninfor-
mative priors, we select the uniform prior densities which are flat distributions.
The justification of using noninformative priors is often said to be ‘to let the
data speak for themselves’, so that inferences are unaffected by information
external to the current data (Gelman et al. (2004)). Noninformative priors can
be often taken as reference or default ones. For informative priors, we consider
the following distributions. The truncated normal prior densities are chosen.
The truncated normal densities are not flat and not symmetric. When the
number of points N is large or relatively small, we ascertain the posterior to be
sensitive to the choice of the priors. Since Bayesian inference is based on the
posterior density for a particular choice of priors, the uniform priors may be
useful for comparison with the asymmetric priors. Two types of prior densities
for the parameters of the Soft-Core models are as follows:

1. Uniform prior densities (the type (i) prior densities):

p(α) = U(α | a, b), (4.4)
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p(σ) = U(σ | c, d), (4.5)

where U(· | ξ, η) is a uniform distribution on the interval [ξ, η]; a, b, c and
d are the hyperparameters.

2. Truncated normal prior densities (the type (ii) prior densities):

p(α) = TN[0,∞)(α | µα, s
2
α), (4.6)

p(σ) = TN[0,∞)(σ | µσ, s
2
σ), (4.7)

where TN[ξ,η)(· | µ, s2) is a truncated normal distribution which is a nor-
mal distribution with mean µ and variance s2 defined on the truncated
interval [ξ, η). We take here the truncated interval [0,∞) because the
parameters α and σ take only non-negative values. Hereafter, we will ab-
breviate “truncated normal” to “normal” for simplicity unless otherwise
stated.

In two cases, parameters α and σ are initially assumed to be respectively
independent.

4.3 Posterior densities

For each of the above two types of prior specifications, the joint posterior
density of α and σ, given the data X is obtained as

p(α, σ | X) ∝ p(α)p(σ)L(α, σ;X), (4.8)

where L(α, σ;X) is the likelihood of parameters (α, σ) for spatial point pattern
X (the approximate log-likelihood (3.14) is used). And the marginal posterior
densities of α and σ are respectively expressed by

p(α | X) ∝
∫
p(α)p(σ)L(α, σ;X)dσ, (4.9)

p(σ | X) ∝
∫
p(α)p(σ)L(α, σ;X)dα. (4.10)

So we can estimate the two marginal posterior densities p(α | X) and p(σ | X).
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Chapter 5

Markov chain Monte Carlo
methods

5.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Hastings (1970)) generates a general fam-
ily of MCMC simulation methods. This method is widely used in different
fields of science and is usually simple for computer programming. We note
that a Metropolis method (Metropolis et al. (1953), Gelman et al. (2004))
is known as a particular type of Metropolis-Hastings algorithm. For the time
t = 0, 1, 2, · · · , the Metropolis-Hastings algorithm produces a sequence of ran-
dom points (θ0, θ1, θ2, · · · ) whose distributions converge to the desired target
posterior density p(θ | X), given the observed point pattern X. As we shall see
later, a candidate point θ∗ is generated from an asymmetric transition function,
given the current point θt−1. The Metropolis-Hastings algorithm proceeds as
follows:

1. Draw a starting point θ0 from a starting density (prior density) p(θ):

θ0 ∼ p(θ). (5.1)

2. For the iteration time t = 1, 2, · · · , T (T is the stopping time):

(a) Sample a proposal (known as a new candidate) point θ∗ from a
jumping (proposal or transition) density Jt(θ

∗ | θt−1) at time t, given
the current point θt−1:

θ∗ ∼ Jt(θ
∗ | θt−1). (5.2)

In Markov chain simulation, a candidate point θ∗ does not depend
on (θ0, θ1, . . . , θt−2) but on the current point θt−1.
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(b) Compute the ratio w:

w =
p(θ∗ | X)/Jt(θ

∗ | θt−1)

p(θt−1 | X)/Jt(θt−1 | θ∗) . (5.3)

The ratio w is always defined, since a jump from θt−1 to θ∗ can only
occur if both p(θt−1 | X) and Jt(θ

∗ | θt−1) are not zero. Instead
of calculating w itself, we compute its logarithm ln(w): if we make
use of the log-likelihood function (3.14) and Eq. (4.1), it is easier to
compute ln(w) = ln[p(θ∗ | X)/Jt(θ

∗ | θt−1)]−ln[p(θt−1 | X)/Jt(θ
t−1 |

θ∗)] than to compute w, as described in detail below. Note that if
the jumping density is symmetric (for the case of the Metropolis
algorithm), namely Jt(θa | θb) = Jt(θb | θa) for all θa, θb and t, then
the ratio w turns out p(θ∗ | X)/p(θt−1 | X).

(c) If ln(w) > 0, then set θt = θ∗, else if ln(w) < 0, then generate an in-
dependent uniform random number u from the uniform distribution
on [0, 1] and set

θt =

{
θ∗ (ln(w) ≥ ln(u)),

θt−1 (ln(w) < ln(u)).

Here, we describe the advantage of the use of the Metropolis-Hastings al-
gorithm. It is known that the Metropolis algorithm is proposed as the Monte
Carlo method of simulating the Gibbsian equilibrium point patterns without
calculating the normalizing factor (2.3). On the other hand, in Bayesian in-
ference, the Metropolis-Hastings algorithm is used for simulating the target
posterior density p(θ | X) without calculating the normalizing constant of
p(θ | X), not of the normalizing factor (2.3) of L(θ;X) in Eq. (5.1). In the
Metropolis-Hastings algorithm for our Bayesian procedure, we need to calcu-
late the ratio w = p(θ∗)L(θ∗;X)Jt(θ

t−1 | θ∗)/p(θt−1)L(θt−1;X)Jt(θ
∗ | θt−1) in

Eq. (5.3). In this ratio, the normalizing factor (2.3) of L(θ;X) is not cancelled.
It means that the values of L(θ∗;X) and L(θt−1;X) each are necessary to com-
pute w. Therefore, in the thesis, it is essential to use the explicit form of the
approximated log-likelihood.

5.2 Jumping rule

5.2.1 Jumping densities

For Markov chain simulations, to draw a candidate point θ∗ given the current
point θt−1 of the chain, we assume the following independent jumping density
Jt(θ

∗ | θt−1):
Jt(θ

∗ | θt−1) = Jt(α
∗ | αt−1)Jt(σ

∗ | σt−1). (5.4)
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For the type (i) priors, we adopt the two jumping densities Jt(α
∗ | αt−1) and

Jt(σ
∗ | σt−1) as uniform, centered on the current point and with the interval

length of 2δα and 2δσ, respectively:

Jt(α
∗ | αt−1) =

{
U(α∗ | αt−1 − δα, α

t−1 + δα) (a+ δα ≤ θt−1 ≤ b− δα),

U(α∗ | a, αt−1 + δα) (θt−1 < a+ δα); δα > 0,

(5.5)

Jt(σ
∗ | σt−1) =

{
U(σ∗ | σt−1 − δσ, σ

t−1 + δσ) (c+ δσ ≤ θt−1 ≤ d− δσ),

U(σ∗ | c, σt−1 + δσ) (θt−1 < c+ δσ); δσ > 0.

(5.6)
The values of δ should be adjusted for the optimal proportion of acceptable

jumps. So, δα and δσ are called the adjusting parameters for the jumping of α
and σ, respectively.

For the type (ii) priors, we specify two jumping densities as truncated nor-
mal (we call it “normal” as noted before), whose mean and variance are the
current point and δ2, respectively:

Jt(α
∗ | αt−1) = TN[0,∞)(α

∗ | αt−1, δ2
α); δα > 0, (5.7)

Jt(σ
∗ | σt−1) = TN[0,∞)(σ

∗ | σt−1, δ2
σ); δσ > 0, (5.8)

where δ2
α and δ2

σ are the adjusting parameters for the jumping of α and σ,
respectively. For the normal jumping densities (5.9)-(5.10), given the current
point θt−1, draw a candidate point θ∗ from a normal density N(θt−1, δ2

θ) recur-
rently until θ∗ is sampled in the range [0,∞) (e.g. Geweke (1991)).

For comparison, the independence sampler will be also examined. We
choose the two uniform jumping densities of the parameters as independence
samplers under the type (i) priors:

Jt(α
∗ | αt−1) = U(α∗ | a, b), (5.9)

Jt(σ
∗ | σt−1) = U(σ∗ | c, d), (5.10)

where the form of the densities is the same as the type (i) prior, respectively
(e.g. Møller (2003)). Hereafter, we will abbreviate “independent uniform sam-
pler” to “independence sampler” for simplicity unless otherwise remarked.

5.2.2 Relation between jumping rule and efficiency of
Markov chain simulations

We describe relation between jumping rule and efficiency of Markov chain sim-
ulations. The ideal jumping density of the Metropolis-Hastings algorithm is
the target density, that is, Jt(θ

∗ | θt−1) = p(θ∗ | X) for all θ. Then the ratio
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w in Eq. (5.3) is always 1 strictly, and the all iterations θt are a sequence of
independent draws from p(θ | X). However, in practice, iterative simulation is
applied to problems for which direct sampling is impossible. A good jumping
density has following properties: it is desirable that it is easy to sample θ∗

from Jt(θ
∗ | θt−1) for any θ; it is easy to compute the ratio w; each jump goes

a reasonable distance in the parameter space Θ; the jump are not rejected too
frequently.

In this thesis, we must make a careful choice of the values of the two pa-
rameters δα and δσ so that each transition keeps moving in two-dimensional
parameter space Θ, and the transitions are not accepted or rejected too fre-
quently in Markov chain simulations; we carried out simulation experiments to
have the rate of acceptance of candidate point θ∗ around 0.40 ∼ 0.44 in two
dimensions within Metropolis-Hastings steps in the application to the simu-
lated data (see Chapter 6) and several real data (see Chapter 8) (Gelman et
al. (2004)).

5.3 Assessing convergence from iterative sim-

ulation

5.3.1 Assessing convergence and stopping time

In §5.1 and 5.2, we have presented the Metropolis-Hastings algorithm. An im-
portant problem concerning the implementation of MCMC methods is to assess
when convergence has been achieved. Convergence is considered as follows: the
distribution of the Markov chain at time t ≥ T ∗ (T ∗ is the initial burn-in time,
which will be described in §5.3.2 and 8.2.3) is sufficiently close to the target
density, then Markov chain samples adequately describe the characteristics of
the target density. Then, to assess the convergence from iterative simulation,
convergence diagnostics are considered. Convergence diagnostics are the quan-
tities that assess how long to run a chain to obtain observations approximately
from the stationary density (e.g. Gelfand and Smith (1990), Gilks et al. (1996),
Gamerman (1997), Brooks (1998), Roberts and Tweedie (2001), Møller (2003),
Robert and Casella (2004)). Various methods for assessing convergence have
been proposed: for single long run, diagnostics based on the spectral analysis
(Geweke (1992)), based on the convergence rate estimate (Raftery and Lewis
(1992)) and based on the graphical cusum path plots (Yu and Mykland (1998)),
etc; for multiple short runs, diagnostics based on the large-sample normal the-
ory (Gelman and Rubin (1992)) and based on the probability theory (Roberts
(1992)), etc. For extensive reviews, see Cowles and Carlin (1996), Brooks and
Roberts (1998) and Mengersen et al. (1999).

There is a controversy about MCMC convergence: single long run (Geyer
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(1992)) versus multiple short runs (Gelman and Rubin (1992)). An approach
based on the single long run is as follows (Geyer (1992)). One very long run
is a valuable diagnostic. If the run does not seem to be stationary, it is too
short. As the iteration time t is getting larger, a distribution of a sequence
of simulated random points θt may be closer to the target density. Running
one long time iterative simulation is of higher efficiency and smaller bias than
running multiple short runs and will have the chance of getting posterior modes.
However, since it is possible that the simulated points θt keep on moving in
the small part of the parameter space, single long run may fail to detect meta-
stability.

On the other hand, an approach based on the multiple short runs proceeds
as follows (Gelman and Rubin (1992)). Multiple short runs are the parallel
simulation of several k(≥ 2) independent sequences θt

(k) with various starting

points θ0
(k). By using the simulated multiple sequences, it is easy and effective

to control convergence to the stationary density comparing the estimation of
quantities of interest without knowing the time series structure of the simula-
tions. Each of these sequences may indicate slow mixing and sticky regions.
Then we can regard these various independent sequences as samples from the
posterior density. For the implementation of this approach, note that the slower
sequence governs convergence and that the choice of the starting points θ0

(k) is
very important in guaranteeing that the various sequences are well dispersed.
It is waste of discarding initial burn-in time from each of multiple short runs.

Each approach has its advantages and disadvantages. Asmussen et al.
(1992) pointed out that no convergence diagnostic technique will successfully
diagnose convergence in all settings. In particular, for slow mixing sequences,
convergence diagnostics may be often unreliable. We should carry out the ex-
ploration of the target density beforehand. Whenever the approach based on
multiple short run is adopted, we should run very long time iterative simulation
once at least.

In our case, the log-likelihood for the Soft-Core models (3.14) is effective
within 0 < α ≤ 0.5 and 0 < τ ≤ 0.75, as described in §3.2. Within the
region, the system consisting of N interacting points does not make a phase
transition. When we run a long time iterative simulation under this assumption,
the simulated posterior density will not be multimodal. Then, in the thesis,
we adopt the approach of single long run. Multiple short runs with various
starting points are also simulated. We employ these multiple short runs only
for estimating the convergence and the stopping time T of the simulated single
long run.

Our approach of the assessment of convergence proceeds as follows. After
we have run the long time iterative simulation in the above Metropolis-Hastings
algorithm, we investigated when the convergence had been reached and when
we have to terminate the simulation. To estimate the stopping time T of our
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single long run, we computed the diagnostics quantity (potential scale reduction
factor) R̂, defined below, in the approach of Gelman and Rubin (1992) (see
Gelman et al. (2004), Cowles and Carlin (1996)). Gelman and Rubin’s R̂
is one of the quantities in the MCMC convergence diagnostics. In particular,
since it is easy for computer programming, it is useful for users as a convergence
diagnostics. Gelman and Rubin proposed that the prescribed several sequences
for each scalar estimand of interest are run independently with starting points
drawn from an overdispersed distribution (either from rough estimates or from
a more elaborate approximate distribution). Then a comparison of calculating
the between- and within-sequence variances (i.e. the potential scale reduction
factor R̂) will reveal whether the sequences converge or not. Gelman and
Rubin’s method can be stated as follows.

1. Simulate independently the prescribed k(≥ 2) parallel sequences whose
number of iteration is (l∗+l) each, with starting points dispersed through-
out the parameter space. We throw away the first l∗ iterations as a burn-in
time. We label the simulation draws as ϕij (i = 1, ..., l; j = 1, ..., k) for
the scalar estimand ϕ of interest.

2. Compute the between- and within-sequence variances, B and W , for sim-
ulated k parallel sequences:

B =
l

k − 1

k∑
j=1

(ϕ̄·j − ϕ̄··)2, where ϕ̄·j =
1

l

l∑
i=1

ϕij, ϕ̄·· =
1

k

k∑
j=1

ϕ̄·j,

(5.11)

W =
1

k

k∑
j=1

s2
j , where s2

j =
1

l − 1

l∑
i=1

(ϕij − ϕ̄·j)2. (5.12)

Note that B/l is the variance between the means from k parallel se-
quences, and W is the mean of the k within-sequence variances.

3. Calculate the potential scale reduction factor R̂:

R̂ =

√
l − 1

l
+

1

l
· B
W

(5.13)

to estimate the factor by which the variance of the estimand of interest
might be reduced by continuing simulation. If the value of R̂ is near 1 for
all scalar estimands of interest, then we can assume that enough simula-
tions have been run and just collect (k × l) simulations from the second
parts of all the sequences. And we can regard the (k × l) simulations as
samples from the posterior distribution. The value of R̂ below 1.1 are
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acceptable in practice. A cut-off of 1.1 was suggested by Gelman in a
round table discussion on MCMC methods (Kass et al. (1997)).

As an estimate of the stopping time T , we take T = T ∗ + (k × l) for our
single long run approach. Here T ∗(≡ l∗) is the initial burn-in time, which will
be described in the next section. Then these (k × l) simulations are regarded
as samples from the posterior distribution.

5.3.2 Assessing burn-in time

In Markov chain simulation, the practice of discarding initial iterations is men-
tioned to as burn-in and it is necessary to use burn-in time T ∗ in order to
diminish the effect of the starting point θ0. Then, we have the following ques-
tion; for large enough iteration time, when should we begin sampling?, that is,
how long does it take the Markov chain to get sufficiently close to the station-
ary (target) density p(θ | X)? Some methods of effective burn-in have been
discussed. Geyer (1992) proposed routinely throwing away the initial 1 or 2%
of runs will suffice. Jones and Hobert (2001) suggested appropriate burn-in
is the total variation distance between the density of the simulated value and
the stationary density is less than 1%. Gelman et al (2004) pointed out dis-
carding the first half of sequence and focus attention on the second half. In
general, discarding the initial 100 ∼ 1000 steps of the simulation runs is often
used for the appropriate burn-in time, then dependence on the starting point
is supposed to be lost.

In this thesis, the burn-in time T ∗ of a single long run is investigated and
evaluated by simulating multiple short runs and applying the above Gelman
and Rubin’s method as remarked in §5.2.2.
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Chapter 6

Bayesian inference for simulated
equilibrium point patterns

In order to verify our Bayesian procedure, we performed Bayesian inference
for simulated equilibrium point patterns. Then, to investigate the influence of
priors upon posterior, we applied to the cases of the number of points N = 500
and N = 100.

6.1 Large sample point patterns

6.1.1 Example: the single-parameter Soft-Core models

Firstly, our Bayesian procedure was applied to the simulated data for the case
of N = 500. These simulated data were generated from MCMC of the Soft-
Core models, through the Metropolis algorithm, for the cases of N = 500, V =√

500 × √500, α = 1/3, τ = 0.1, 0.3, 0.5. These simulated equilibrium point
patterns are relatively large size and illustrated in Figs. 6.1(a)-(c). These three
data sets (a), (b) and (c) are named D1,D2 and D3, respectively. From Figs.
6.1(a)-(c), we can see that as the reduced density τ is getting larger, the degree
of regularity increases.

By employing the simulated data, we can obtain the posterior densities of
the interaction potential functions and then verify our Bayesian procedure. In
this subsection, to simplify the two-parameter Soft-Core models of Eq. (3.1),
we begin with considering the case of the single-parameter ones for the three
simulated data sets (D1,D2,D3). The method is as follows. Each parameter
α or τ will be estimated separately by fixing the other parameter. Then, in
Eq. (3.1), we can define as the Soft-Core models with the parameter α fixing
τ and with the parameter τ fixing α, respectively. Each of them is called the
single-parameter Soft-Core models. Then, we adopted the uniform prior (type
(i) prior) density with the uniform jumping density and with the independence
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sampler. Then the log-likelihood Eq. (3.14) was used. By considering the
effective region of the log-likelihood, we set the hyperparameters of the type
(i) prior density. To specify the jumping density for the type (i) prior, the
adjusting parameters were chosen such that Markov chain simulation should
have the acceptance rate about 0.5. Then, for estimating α by fixing τ (i.e.
σ), we set the hyperparameters (a, b) in Eq. (4.4) and the optimal adjusting
parameter δα of Eq. (5.5). These values are given in Table 6.1. For estimating
τ by fixing α, we put the hyperparameters of (c, d) in Eq. (4.5) (using Eq.
(3.4)) and the optimal adjusting parameter δσ of Eq. (5.6). The values are
given in Table 6.2. When we used the independence sampler as the jumping
density, the type (i) prior was chosen, as described in §5.2.1 (see Tables 6.1-
6.2). Then we performed a single long run simulation of 31000 steps in the
Metropolis-Hastings algorithm for the data sets (D1,D2,D3). We calculated the
total potential energy in Eq. (3.14) by using the periodic boundary condition,
i.e. the region (rectangle) V was regarded as a torus (see §8.5).

MCMC methods rely on the generation of random numbers. In the imple-
mentation of the methods, it is important to choose a good and fast random
number generator. If we use a deterministic pseudo-random number generator,
a periodicity usually appears. Then MCMC random samples will suffer some
biases. Contrary to this, a physical random number generator is known to be
free from periodicity. Therefore, we employed the reliable and fast physical
random number generator (133Mbytes per second) equipped in the Institute of
Statistical Mathematics.
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Figure 6.1: Simulated equilibrium point patterns (N = 500, V =
√

500 ×√
500, α = 1/3). (a): τ = 0.1 (D1); (b): τ = 0.3 (D2); (c): τ = 0.5 (D3).
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Table 6.1: Prior and jumping specification (estimating α by fixing τ (i.e. σ)):
the values of hyperparameters (a, b) in Eq. (4.4), the adjusting parameters δα
in Eq. (5.5) and the independence sampler in Eq. (5.9) for the type (i) prior.

Data ( a, b ) δα

D1 ( 0, 0.50 ) 0.15
D2 ( 0, 0.50 ) 0.08
D3 ( 0, 0.50 ) 0.05

Table 6.2: Prior and jumping specification (estimating τ(i.e. σ) by fixing α):
the values of hyperparameters (c, d) in Eq. (4.5), the adjusting parameters δσ
in Eq. (5.6) and the independence sampler in Eq. (5.10) for the type (i) prior.

Data ( c, d ) δσ

D1 ( 0, 0.866 ) 0.030
D2 ( 0, 0.866 ) 0.029
D3 ( 0, 0.866 ) 0.028

The convergence of our single long run was evaluated as follows. We divided
the single long runs (initial T ∗ = 1000 steps were discarded as burn-in in each
case) into five sequences of equal length for all data sets. Then the potential
scale reduction factor R̂ was calculated for each case (see Tables 6.3-6.4). In
the Tables 6.3-6.4, the values of R̂ are here well below 1.1 for all cases. This
indicates that the length of each single long run is sufficient for sampling from
the posterior density. Thus, for these single long runs, we have used 30000
samples for the data sets (D1,D2,D3) as samples from the posterior density
p(α | X) or p(σ | X).

Table 6.3: Results of the values of the potential scale reduction factor R̂α as
the convergence diagnostics for all data sets; ‘R̂α (U)’ and ‘R̂α (I)’ stand for the
uniform jumping density and the independence sampler, respectively.

Data R̂α (U) R̂α (I)

D1 1.0008 1.0003
D2 1.0007 1.0002
D3 1.0004 1.0016
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Table 6.4: Results of the values of the potential scale reduction factor R̂σ as
the convergence diagnostics for all data sets; ‘R̂σ (U)’ and ‘R̂σ (I)’ represent the
uniform jumping density and the independence sampler, respectively.

Data R̂σ (U) R̂σ (I)

D1 1.0001 1.0062
D2 1.0000 1.0017
D3 1.0000 1.0011

For the estimation α under the fixed τ , we show in Figs. 6.2(a)-(f) the time
series plots of the Monte Carlo output of α for all data sets under the type (i)
prior with the uniform jumping, and their histograms of α for the simulation.
Figs. 6.3(a)-(f) show the time series plots of the Monte Carlo output of α for
data D1 for the independence sampler, and their simulated histograms of α.
Table 6.5 gives simulated posterior mean of α under the type (i) prior with the
uniform jumping and with the independence sampler.

For the estimation τ under the fixed α, we give in Figs. 6.4(a)-(f) the time
series plots of the Monte Carlo output of τ for all data sets under the type (i)
prior with the uniform jumping, and their histograms of τ for the simulation.
Figs. 6.5(a)-(f) show the time series plots of the Monte Carlo output of τ for
all data sets for the independence sampler, and their simulated histograms of
τ . Table 6.6 gives simulated posterior mean of τ under the type (i) prior with
the uniform jumping and with the independence sampler. In the last column of
Tables 6.5-6.6, for all data sets, the maximum likelihood estimates (MLE) are
also given. We calculated the values of α̂ and τ̂ from the log-likelihood (3.14)
by using the quasi-Newton method. For calculating the total potential energy
in Eq. (3.14), we employed the periodic boundary condition again.

Table 6.5: Posterior means of α under the type (i) prior for all data sets; ‘αU ’
and ‘αI ’ stand for mean for the case of the uniform jumping and of the inde-
pendence sampler, respectively. The last column gives the maximum likelihood
estimates (α̂).

Data αU αI α̂

D1 0.34477 0.34349 0.33865
D2 0.33297 0.33285 0.32906
D3 0.33762 0.33796 0.33587
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Table 6.6: Posterior means of τ under the type (i) prior for all data sets; ‘τU ’
and ‘τ I ’ indicate mean for the case of the uniform jumping and of the inde-
pendence sampler, respectively. The last column gives the maximum likelihood
estimates (τ̂).

Data τU τ I τ̂

D1 0.10948 0.10900 0.10984
D2 0.30694 0.30679 0.30723
D3 0.52315 0.52391 0.52360

From Table 6.5, we can see that, for the data D1 whose τ is relatively
small, the posterior mean of α is slightly greater than the MLE for both types
jumping density. It seems that the coincidence between the values of each
posterior means and MLE is good for other cases. From Table 6.6, it is clear
that, for all data sets, each posterior mean and MLE of τ are very close. From
Figs. 6.2(b), (d) and (f), it seems that, as the degree of regularity of the data
is getting lower, the posterior density of α tends to be more slightly spread.

From Figs. 6.2(a), (c) and (e), and Figs. 6.4(a), (c) and (e), for estimating
α or τ using the uniform jumping, each run seems to be stationary. In these
simulations, the acceptance rate were about 0.5. Then the values of R̂ are well
below 1.1 for the uniform jumping (see Tables 6.3-6.4). From the results, we
consider that the use of the uniform jumping is suitable for inference. On the
other hand, from Figs. 6.3(a), (c) and (e), and Figs. 6.5(a), (c) and (e), for the
independence sampler, each run looks stationary. However, each acceptance
rate was about 0.3, 0.2 and 0.1 for the data D1, D2 and D3, respectively. Since
the independence sampler has no adjusting parameter, each value was lower
than 0.5. Although the values of R̂ are well below 1.1 for the independence
sampler (see Tables 6.3-6.4), we found that the use of the independence sampler
is not appropriate for inference.

In this subsection, we have presented the validity of our Bayesian procedure
for the single-parameter Soft-Core models by using MCMC methods. In the
next subsection, we will apply our procedure to the two-parameter Soft-Core
models.
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Figure 6.2: Time series plots for α of simulation (after burn-in) for all data
sets under the type (i) prior with the uniform jumping and their histograms of
α of 30000 simulation draws; (a),(b): D1; (c),(d): D2; (e),(f): D3. For all
histograms (b), (d) and (f), the class interval is 0.01.
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Figure 6.3: Time series plots for α of simulation (after burn-in) for all data
sets under the type (i) prior with the independence sampler and their histograms
of α of 30000 simulation draws; (a),(b): D1; (c),(d): D2; (e),(f): D3. For all
histograms (b), (d) and (f), the class interval is 0.01.
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Figure 6.4: Time series plots for τ of simulation (after burn-in) for all data sets
under the type (i) prior with the uniform jumping and their histograms of τ of
30000 simulation draws; (a),(b): D1; (c),(d): D2; (e),(f): D3. For histograms
(b), (d) and (f), each class interval is 0.002, 0.004 and 0.008, respectively.

28



　

Figure 6.5: Time series plots for τ of simulation (after burn-in) for all data sets
under the type (i) prior with the independence sampler and their histograms
of τ of 30000 simulation draws; (a),(b): D1; (c),(d): D2; (e),(f): D3. For
histograms (b), (d) and (f), each class interval is 0.002, 0.004 and 0.008, re-
spectively.
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6.1.2 Example: the two-parameter Soft-Core models

In previous subsection, we have verified our Bayesian procedure for the single-
parameter Soft-Core models for the simulated data. In this subsection, we
applied our Bayesian procedure to the two-parameter Soft-Core models (3.1)
for the three simulated data sets (D1,D2,D3) illustrated in Figs. 6.1(a)-(c). The
method proceeds as follows. The two parameters α and τ will be estimated
simultaneously. Then, we adopted the type (i) prior densities of parameters
(α, τ (i.e. σ)) with the uniform jumping densities. We set the values of hyper-
parameters (a, b, c, d) in Eqs. (4.4)-(4.5) for the type (i) prior densities of α
and σ by considering the effective region. Then to specify jumping densities
in Eqs. (5.5)-(5.6) for the type (i) priors, their adjusting parameters are cho-
sen such that Markov chain simulation should have the acceptance rate about
0.40 ∼ 0.44 in two-dimension, as remarked in §5.2.2. These values are given in
Table 6.7. Then, to estimate (α, τ), we performed a simulation of 31000 steps
in the Metropolis-Hastings algorithm for each of the data sets (D1,D2,D3).

Table 6.7: Prior and jumping specification: the values of hyperparameters
(a, b, c, d) in Eqs. (4.4)-(4-5) and the adjusting parameters (δα, δσ) in Eqs.
(5.5)-(5.6).

Data ( a, b, c, d ) ( δα, δσ )

D1 ( 0, 0.50, 0, 0.866 ) ( 0.025, 0.038 )
D2 ( 0, 0.50, 0, 0.866 ) ( 0.020, 0.035 )
D3 ( 0, 0.50, 0, 0.866 ) ( 0.020, 0.035 )

In order to investigate the convergence, the single long runs (initial T ∗ =
1000 steps were discarded as burn-in in each case) were divided into five se-
quences of equal length for all data sets, and the potential scale reduction factor
R̂ was calculated for parameters α and σ separately. Table 6.8 shows the values
of R̂ for respective parameters for all data sets. In the Table, we see that the
values of R̂ are well below 1.1 for all cases, that is, our single long runs are
sufficient for sampling from the target posterior density. Thus, we have used
30000 samples for each of the data sets (D1,D2,D3) as samples from the joint
posterior densities p(α, σ | X).
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Table 6.8: Results of the values of the potential scale reduction factor R̂ as the
convergence diagnostics for all data sets.

Data parameter R̂ (single long run)

D1
α 1.0099

σ 1.0011

D2
α 1.0060

σ 1.0023

D3
α 1.0190

σ 1.0132

Table 6.9: Posterior means of (α, τ) under the type (i) prior for all data sets;
‘α’ and ‘τ ’ stand for mean for the case of the uniform jumping and of the inde-
pendence sampler, respectively. The last column gives the maximum likelihood
estimates of (α, τ).

Data α τ (α̂, τ̂)

D1 0.34347 0.10934 (0.33865, 0.10984)
D2 0.33547 0.30825 (0.32906, 0.30723)
D3 0.33833 0.52538 (0.33587, 0.52360)

Figs. 6.6, 6.7 and 6.8 display the time series plots for the Monte Carlo
output of α and τ together with their histograms for all data sets under the
type (i) prior. We can see that each run seems to be stationary. Table 6.9
shows posterior means of α and τ under the type (i) prior with the uniform
jumping. In the last column of the table, the maximum likelihood estimates
(α̂, τ̂) are also given.

We compare the results between this case and the case of the single-parameter
models. From Tables 6.5 and 6.9, some small difference can be found between
the values of each posterior means and each MLE, but it seems that their coin-
cidence of the values is good for all cases. From Tables 6.6 and 6.9, we see that
each posterior mean and MLE of τ are very close for all cases. Figs. 6.9(a)-(f)
show posterior densities of α and τ under the type (i) prior in the cases of the
single- and two-parameter models. From Figs. 6.9(a)-(b), the marginal poste-
rior densities of the respective parameters are said to be similar for the data
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D1. From Figs. 6.9(c)-(f), for the data sets D2 and D3, the marginal posterior
densities of respective parameters for the independence sampler show smaller
peak and slightly spread. For all data sets (D1, D2, D3), the coincidence be-
tween the shape of all marginal posterior densities of respective parameters
using the uniform jumpings is good for the two models. From the results, it
seems that as the degree of regularity of the data is getting lower, the posterior
density of α tends to be more spread.

In this subsection, we have shown the validity of our Bayesian procedure for
the two-parameter Soft-Core models. In the next subsection, we will apply our
procedure to various point patterns for the two-parameter Soft-Core models.

　

Figure 6.6: Time series plots for α and τ of the single long run (after burn-in)
for data D1 under the type (i) prior with the uniform jumping and their his-
tograms of α of 30000 simulation draws; (a),(b): α; (c),(d): τ . For histograms
(b) and (d), the class intervals of α and τ are 0.01 and 0.002, respectively.
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Figure 6.7: Time series plots for α and τ of the single long run (after burn-in)
for data D2 under the type (i) prior with the uniform jumping and their his-
tograms of α of 30000 simulation draws; (a),(b): α; (c),(d): τ . For histograms
(b) and (d), the class intervals of α and τ are 0.01 and 0.004, respectively.

　
Figure 6.8: Time series plots for α and τ of the single long run (after burn-in)
for data D3 under the type (i) prior with the uniform jumping and their his-
tograms of α of 30000 simulation draws; (a),(b): α; (c),(d): τ . For histograms
(b) and (d), the class intervals of α and τ are 0.01 and 0.008, respectively.
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Figure 6.9: Comparison of posterior densities of α and τ (p(α | X) and p(τ |
X)) under the type (i) prior (the symbol ◦ indicates the densities of the type
(i) prior with uniform jumping and the symbol + represents the densities of the
type (i) prior with the independence sampler for the single-parameter models;
the symbol 2 stands for the densities of the type (i) priors with the jumping
densities for the two-parameter models). (a),(b): D1; (c),(d): D2; (e),(f): D3.
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6.1.3 Example: the two-parameter Soft-Core models for
various large sample point patterns

In §6.1.1-6.1.2, we have found that our Bayesian procedure can be applied to the
three simulated point patterns (D1, D2, D3). In practice, for observed data, it
is probable that the parameters α and τ will take various values. In this subsec-
tion, we would like to apply our procedure to various simulated point patterns.
Then, we performed our Bayesian estimation of the two-parameter Soft-Core
models for simulated equilibrium point patterns generated by MCMC for the
cases of N = 500, V =

√
500 ×√500, α = 0.2, 0.3, 0.4, τ = 0.05, 0.1, 0.3, 0.5.

These data sets are named as follows; for α = 0.2 corresponding to τ : (DL0.2-
0.05, DL0.2-0.1, DL0.2-0.3, DL0.2-0.5), for α = 0.3: (DL0.3-0.05, DL0.3-0.1,
DL0.3-0.3, DL0.3-0.5) and for α = 0.4: (DL0.4-0.05, DL0.4-0.1, DL0.4-0.3,
DL0.4-0.5), respectively. These simulated point patterns are illustrated in Figs.
6.10, 6.11 and 6.12. From the figures, it is found that as the reduced density τ
is getting larger, the degree of regularity increases.

As described in §4.2, we have considered two types of prior (the type (i) and
(ii) prior) densities of the parameters. In the subsection, we carry out Bayesian
inference under the two types of prior for the two-parameter Soft-Core models.
Similarly as the previous subsection, to specify the type (i) prior density of α,
we put the values of hyperparameters (a, b) = (0, 0.5) in Eq. (4.4) for all data
sets. By considering the relation between σ and τ of Eq. (3.4), we set the values
of hyperparameters (c, d) for σ in Eq. (4.5): (c, d) = (0, 0.224) for τ = 0.05;
(c, d) = (0, 0.316) for τ = 0.1; (c, d) = (0, 0.548) for τ = 0.3; (c, d) = (0, 0.707)
for τ = 0.5, respectively. For the type (ii) prior densities of the parameters,
their means (µα, µσ) were chosen as the center of the range of each parameter,
and their standard deviations (sα, sσ) for α and σ are respectively chosen as
the values of half of the mean. Then we put the values of hyperparameters
(µα, sα) = (0.25, 0.125) and (µσ, sσ) = (0.612, 0.306) in Eqs. (4.6)-(4.7) for all
data sets, respectively. These normal priors are supposed to cover the range
0 < α ≤ 0.5 and 0 < τ ≤ 0.75, as stated in §3.2.

For both types (i) and (ii) of prior, we applied three types of jumping den-
sities: uniform, normal and independence sampler. For uniform and normal
jumping densities, the adjusting parameters in Eqs. (5.5)-(5.8) were chosen
such that Markov chain simulation should have the acceptance rate about
0.40 ∼ 0.44 in two-dimension of the Metropolis-Hastings steps, as remarked
in §5.2.2. The values of the adjusting parameters are given in Tables 6.10-6.13.
For the independence samplers of respective parameters, the values of the hy-
perparameters (a, b) = (0, 0.5) were set in Eq. (5.9). And corresponding to the
value of τ for each data set, the values of (c, d) were put in Eq. (5.10) as the
same values of prior as described above.

35



　

Figure 6.10: Simulated equilibrium point patterns (N = 500, V =
√

500 ×√
500, α = 0.2). (a): τ = 0.05 (DL0.2-0.05); (b): τ = 0.1 (DL0.2-0.1); (c):

τ = 0.3 (DL0.2-0.3) ; (d): τ = 0.5 (DL0.2-0.5).
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Figure 6.11: Simulated equilibrium point patterns (N = 500, V =
√

500 ×√
500, α = 0.3). (a): τ = 0.05 (DL0.3-0.05); (b): τ = 0.1 (DL0.3-0.1); (c):

τ = 0.3 (DL0.3-0.3) ; (d): τ = 0.5 (DL0.3-0.5).
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Figure 6.12: Simulated equilibrium point patterns (N = 500, V =
√

500 ×√
500, α = 0.4). (a): τ = 0.05 (DL0.4-0.05); (b): τ = 0.1 (DL0.4-0.1); (c):

τ = 0.3 (DL0.4-0.3) ; (d): τ = 0.5 (DL0.4-0.5).
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Table 6.10: Type (i) prior with uniform jumping specification: the values of the
adjusting parameters (δα, δσ) in Eqs. (5.5)-(5.6) for the uniform jumpings.

Data (δα, δσ)

DL0.2− 0.05 ( 0.050, 0.050 )
DL0.2− 0.1 ( 0.023, 0.030 )
DL0.2− 0.3 ( 0.018, 0.026 )
DL0.2− 0.5 ( 0.017, 0.026 )

DL0.3− 0.05 ( 0.040, 0.040 )
DL0.3− 0.1 ( 0.021, 0.035 )
DL0.3− 0.3 ( 0.019, 0.034 )
DL0.3− 0.5 ( 0.017, 0.031 )

DL0.4− 0.05 ( 0.030, 0.030 )
DL0.4− 0.1 ( 0.025, 0.029 )
DL0.4− 0.3 ( 0.019, 0.029 )
DL0.4− 0.5 ( 0.013, 0.027 )

Table 6.11: Type (i) prior with normal jumping specification: the values of the
adjusting parameters (δ2

α, δ
2
σ) in Eqs. (5.7)-(5.8) for the normal jumpings.

Data (δ2
α, δ

2
σ)

DL0.2− 0.05 ( 0.050, 0.050 )
DL0.2− 0.1 ( 0.011, 0.021 )
DL0.2− 0.3 ( 0.009, 0.018 )
DL0.2− 0.5 ( 0.009, 0.018 )

DL0.3− 0.05 ( 0.027, 0.027 )
DL0.3− 0.1 ( 0.015, 0.023 )
DL0.3− 0.3 ( 0.013, 0.022 )
DL0.3− 0.5 ( 0.013, 0.021 )

DL0.4− 0.05 ( 0.021, 0.028 )
DL0.4− 0.1 ( 0.019, 0.028 )
DL0.4− 0.3 ( 0.019, 0.027 )
DL0.4− 0.5 ( 0.016, 0.024 )
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Table 6.12: Type (ii) prior with uniform jumping specification: the values of
the adjusting parameters (δα, δσ) in Eqs. (5.5)-(5.6) for the uniform jumpings.

Data (δα, δσ)

DL0.2− 0.05 ( 0.030, 0.030 )
DL0.2− 0.1 ( 0.023, 0.030 )
DL0.2− 0.3 ( 0.018, 0.026 )
DL0.2− 0.5 ( 0.017, 0.026 )

DL0.3− 0.05 ( 0.036, 0.036 )
DL0.3− 0.1 ( 0.019, 0.033 )
DL0.3− 0.3 ( 0.017, 0.030 )
DL0.3− 0.5 ( 0.017, 0.030 )

DL0.4− 0.05 ( 0.025, 0.025 )
DL0.4− 0.1 ( 0.031, 0.038 )
DL0.4− 0.3 ( 0.028, 0.038 )
DL0.4− 0.5 ( 0.027, 0.037 )

Table 6.13: Type (ii) prior with normal jumping specification: the values of the
adjusting parameters (δ2

α, δ
2
σ) in Eqs. (5.7)-(5.8) for the normal jumpings.

Data (δ2
α, δ

2
σ)

DL0.2− 0.05 ( 0.018, 0.020 )
DL0.2− 0.1 ( 0.011, 0.021 )
DL0.2− 0.3 ( 0.009, 0.018 )
DL0.2− 0.5 ( 0.009, 0.018 )

DL0.3− 0.05 ( 0.025, 0.025 )
DL0.3− 0.1 ( 0.015, 0.023 )
DL0.3− 0.3 ( 0.013, 0.022 )
DL0.3− 0.5 ( 0.013, 0.020 )

DL0.4− 0.05 ( 0.020, 0.026 )
DL0.4− 0.1 ( 0.014, 0.025 )
DL0.4− 0.3 ( 0.019, 0.027 )
DL0.4− 0.5 ( 0.016, 0.024 )
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Then, to estimate (α, τ) simultaneously, we performed a simulation of 26000
steps in the Metropolis-Hastings algorithm for all data sets. For the investi-
gation of the convergence, we assessed the burn-in time T ∗ and the stopping
time T using similar methods described as previous subsection. As a result,
the values of R̂ for both parameters were well below 1.1 for all cases. Then we
estimated the burn-in and the stopping time (T ∗, T ) = (1000, 26000). There-
fore, we have used 25000 samples for all data sets as samples from the joint
posterior densities p(α, τ | X). We will explain the assessment of convergence
in detail in §8.2.

In Tables 6.14, 6.15 and 6.16, the values of simulated posterior mean of
respective parameters under the both types (i) and (ii) of prior with each of
three types of the jumping density are shown for all data sets, respectively. In
these Tables, the maximum likelihood estimates (MLE) of α and τ are also
given. From Tables 6.14-6.16, we can see that each posterior mean and each
MLE of τ are very close in every data set DL0.2, DL0.3 and DL0.4. From
Table 6.14, it can be seen that each posterior mean of α is slightly greater than
each MLE. There, it seems that, for the data whose τ is large, the difference
of the mean and MLE tends to be small. In Table 6.15, we can see that, under
the type (i) prior, each posterior mean of α is slightly greater than each MLE.
Then, we also see that, under the type (ii) prior, for the data whose τ is large,
each mean is close to each MLE. From Table 6.16, it is found that, under the
type (i) prior, each posterior mean of α is close to each MLE except the case
of DL0.4-0.05. Then, we can see that, under the type (ii) prior, for the data
whose τ is large, each mean is smaller than each MLE.
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Table 6.14: Posterior means of (α, τ), indicated by ‘α’ and ‘τ ’, under both types
(i) and (ii) of prior with three jumpings for data sets (DL0.2-0.05, DL0.2-0.1,
DL0.2-0.3, DL0.2-0.5); ‘prior-jump’ stands for combinations of the prior and
jumping for respective parameters. In the last column, the maximum likelihood
estimates of (α, τ) are also given.

Data prior − jump α τ (α̂, τ̂)

uni-uni 0.19166 0.052369
uni-nor 0.19333 0.052136

DL0.2-0.05 nor-uni 0.21444 0.052878 (0.18285, 0.052707)
nor-nor 0.20251 0.052607
uni-ind 0.18528 0.052064
nor-ind 0.20643 0.052585

uni-uni 0.23406 0.099200
uni-nor 0.23412 0.099037

DL0.2-0.1 nor-uni 0.23378 0.099308 (0.19823, 0.099319)
nor-nor 0.23603 0.099339
uni-ind 0.21835 0.099127
nor-ind 0.22660 0.098952

uni-uni 0.21377 0.30403
uni-nor 0.21426 0.30385

DL0.2-0.3 nor-uni 0.21678 0.30428 (0.20417, 0.30301)
nor-nor 0.21965 0.30482
uni-ind 0.21234 0.30385
nor-ind 0.21801 0.30387

uni-uni 0.24185 0.53467
uni-nor 0.24847 0.53847

DL0.2-0.5 nor-uni 0.24505 0.53615 (0.22425, 0.53496)
nor-nor 0.24227 0.53440
uni-ind 0.23852 0.53381
nor-ind 0.24045 0.53486
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Table 6.15: Posterior means of (α, τ), indicated by ‘α’ and ‘τ ’, under both types
(i) and (ii) of prior with three jumpings for data sets (DL0.3-0.05, DL0.3-0.1,
DL0.3-0.3, DL0.3-0.5); ‘prior-jump’ stands for combinations of the prior and
jumping for respective parameters. In the last column, the maximum likelihood
estimates of (α, τ) are also given.

Data prior − jump α τ (α̂, τ̂)

uni-uni 0.33957 0.052857
uni-nor 0.34449 0.052886

DL0.3-0.05 nor-uni 0.32034 0.053121 (0.32021, 0.053772)
nor-nor 0.31493 0.052961
uni-ind 0.32998 0.053202
nor-ind 0.30868 0.052979

uni-uni 0.28268 0.10609
uni-nor 0.27960 0.10575

DL0.3-0.1 nor-uni 0.26952 0.10581 (0.26578, 0.10650)
nor-nor 0.26539 0.10559
uni-ind 0.26735 0.10491
nor-ind 0.27078 0.10495

uni-uni 0.30985 0.29714
uni-nor 0.30999 0.29694

DL0.3-0.3 nor-uni 0.30248 0.29579 (0.30814, 0.29729)
nor-nor 0.30679 0.29664
uni-ind 0.31508 0.29788
nor-ind 0.29787 0.29471

uni-uni 0.29067 0.50413
uni-nor 0.29203 0.50535

DL0.3-0.5 nor-uni 0.28786 0.50265 (0.28779, 0.50228)
nor-nor 0.28360 0.50058
uni-ind 0.29484 0.50810
nor-ind 0.28155 0.50113
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Table 6.16: Posterior means of (α, τ), indicated by ‘α’ and ‘τ ’, under both types
(i) and (ii) of prior with three jumpings for data sets (DL0.4-0.05, DL0.4-0.1,
DL0.4-0.3, DL0.4-0.5); ‘prior-jump’ stands for combinations of the prior and
jumping for respective parameters. In the last column, the maximum likelihood
estimates of (α, τ) are also given.

Data prior − jump α τ (α̂, τ̂)

uni-uni 0.41098 0.059886
uni-nor 0.40758 0.059831

DL0.4-0.05 nor-uni 0.36051 0.059620 (0.37402, 0.060521)
nor-nor 0.36660 0.059789
uni-ind 0.38238 0.059593
nor-ind 0.35914 0.059728

uni-uni 0.38346 0.091055
uni-nor 0.38909 0.091168

DL0.4-0.1 nor-uni 0.35688 0.090693 (0.38955, 0.091530)
nor-nor 0.35851 0.090811
uni-ind 0.37372 0.091354
nor-ind 0.35429 0.090954

uni-uni 0.41678 0.32409
uni-nor 0.41948 0.32442

DL0.4-0.3 nor-uni 0.40065 0.31955 (0.41113, 0.32269)
nor-nor 0.40057 0.31979
uni-ind 0.41491 0.32244
nor-ind 0.39633 0.31800

uni-uni 0.39236 0.52426
uni-nor 0.39100 0.52330

DL0.4-0.5 nor-uni 0.38179 0.51757 (0.38955, 0.52237)
nor-nor 0.38090 0.51712
uni-ind 0.39154 0.52537
nor-ind 0.38394 0.51999
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Figs. 6.13, 6.14 and 6.15 display the comparison of the marginal posterior
densities of α and τ (p(α | X) and p(τ | X)) under both types (i) and (ii) of
prior with three types of the jumping densities for all data sets, respectively.
From Figs. 6.13, 6.14 and 6.15, we can see that, for all data sets, the coincidence
of the shape of the marginal posterior densities of τ between the type (i) and
(ii) priors is good for four kinds of combinations of the two priors and the
uniform and normal jumpings. From Figs. 6.13(c), (e) and (g), it seems that
the marginal posterior densities of α between the type (i) and (ii) priors is
nearly similar for DL0.2-0.1, DL0.2-0.3 and DL0.2-0.5. For the DL0.2-0.05, we
can see that the marginal posterior density of α under the type (ii) prior shifts
to the right slightly as indicated in Fig. 6.13(a). It can be seen from Figs.
6.14(e) and (g) and 6.15(e) and (g) that, for the data sets (DL0.3-0.3, DL0.3-
0.5) and (DL0.4-0.3, DL0.4-0.5), the marginal posteriors of α under the type
(ii) prior shift to the left slightly. And from Figs. 6.14(a) and (c) and 6.15(a)
and (c), it seems that, for the (DL0.3-0.05, DL0.3-0.1) and (DL0.4-0.05, DL0.4-
0.1), the marginal posteriors of α under the type (ii) prior show the slightly
larger peak and the slightly narrow than that under the type (i) prior. The
slightly different spread of marginal posteriors of α between the type (i) and
(ii) priors might be the influence of the choice of priors. For the cases of the
independence samplers, because each acceptance ratio was low, the use of the
independence samplers is not suitable for inference.

In this subsection, we have verified our Bayesian procedure for the two-
parameter Soft-Core models for various point patterns for the case of N = 500.
In the next section, we will apply our procedure to various small sample point
patterns.
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Figure 6.13: Comparison of marginal posterior densities of α and τ under the
type (i) prior with uniform jumping (uni-uni:•), normal jumping (uni-nor:2)
and independence sampler (uni-ind:◦), respectively, and under the type (ii)
prior with uniform jumping (nor-uni:+), normal jumping (nor-nor:×) and in-
dependence sampler (nor-ind:4), respectively. (a),(b): DL0.2-0.05; (c),(d):
DL0.2-0.1; (e),(f): DL0.2-0.3; (g),(h): DL0.2-0.5.
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Figure 6.14: Comparison of marginal posterior densities of α and τ under the
type (i) prior with uniform jumping (uni-uni:•), normal jumping (uni-nor:2)
and independence sampler (uni-ind:◦), respectively, and under the type (ii)
prior with uniform jumping (nor-uni:+), normal jumping (nor-nor:×) and in-
dependence sampler (nor-ind:4), respectively. (a),(b): DL0.3-0.05; (c),(d):
DL0.3-0.1; (e),(f): DL0.3-0.3; (g),(h): DL0.3-0.5.
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Figure 6.15: Comparison of marginal posterior densities of α and τ under the
type (i) prior with uniform jumping (uni-uni:•), normal jumping (uni-nor:2)
and independence sampler (uni-ind:◦), respectively, and under the type (ii)
prior with uniform jumping (nor-uni:+), normal jumping (nor-nor:×) and in-
dependence sampler (nor-ind:4), respectively. (a),(b): DL0.4-0.05; (c),(d):
DL0.4-0.1; (e),(f): DL0.4-0.3; (g),(h): DL0.4-0.5.
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6.2 Small sample point patterns; example: the

two-parameter Soft-Core models for vari-

ous small sample point patterns

In the previous section, we have verified that our Bayesian procedure can be
applied to the simulated point patterns for the case of N = 500. In this section,
to investigate the influence of the choice of priors on posterior, we apply our
procedure to relatively small point patterns. Then we performed our Bayesian
procedure of the two-parameter Soft-Core models for the simulated equilibrium
point patterns generated by MCMC for the cases of N = 100, V =

√
100 ×√

100, α = 0.2, 0.3, 0.4, τ = 0.05, 0.1, 0.3, 0.5. These data sets are named
as follows; for α = 0.2 corresponding to τ : (DS0.2-0.05, DS0.2-0.1, DS0.2-
0.3, DS0.2-0.5), for α = 0.3: (DS0.3-0.05, DS0.3-0.1, DS0.3-0.3, DS0.3-0.5)
and for α = 0.4: (DS0.4-0.05, DS0.4-0.1, DS0.4-0.3, DS0.4-0.5), respectively.
Figs. 6.16, 6.17 and 6.18 illustrate these simulated point patterns. We regard
these point patterns as relatively small samples in comparison with the case
of N = 500. From Figs. 6.16, 6.17 and 6.18, it is clear that as the reduced
density τ is getting larger, the degree of regularity increases. This tendency is
similar to the case of the large sample point patterns as remarked in §6.1.3.
We consider that it will be interesting, through our procedure, to estimate the
two-parameter Soft-Core models for the case of small sample point patterns.

By similar methods as described in §6.1.3, we applied two types of the prior
again. To specify the type (i) prior densities of α and σ for all data sets, we
put the values of hyperparameters (a, b) = (0, 0.5) in Eq. (4.4). And we set the
values of (c, d) in Eq. (4.5): (c, d) = (0, 0.224) for τ = 0.05; (c, d) = (0, 0.316)
for τ = 0.1; (c, d) = (0, 0.548) for τ = 0.3; (c, d) = (0, 0.707) for τ = 0.5,
respectively. For the type (ii) priors, we put the values of hyperparameters
(µα, sα) = (0.25, 0.125) and (µσ, sσ) = (0.612, 0.306) in Eqs. (4.6) and (4.7) for
all data sets, respectively.

For both types (i) and (ii) of prior, we applied again the three jumping
densities: uniform, normal and independence sampler. For uniform and nor-
mal jumping densities, the adjusting parameters of Eqs. (5.5)-(5.8) were cho-
sen such that Markov chain simulation should have the acceptance rate about
0.40 ∼ 0.44, mentioned in §5.2.2. Tables 6.17-6.20 provide the values of the
adjusting parameters. For the independence samplers, we set the values of the
hyperparameters (a, b) = (0, 0.5) in Eq. (5.9). Then corresponding to the value
of τ for each data set, we put the values of (c, d) in Eq. (5.10) as the same
values of prior as described above.
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Figure 6.16: Simulated equilibrium point patterns (N = 100, V =
√

100 ×√
100, α = 0.2). (a): τ = 0.05 (DS0.2-0.05); (b): τ = 0.1 (DS0.2-0.1); (c):

τ = 0.3 (DS0.2-0.3) ; (d): τ = 0.5 (DS0.2-0.5).
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Figure 6.17: Simulated equilibrium point patterns (N = 100, V =
√

100 ×√
100, α = 0.3). (a): τ = 0.05 (DS0.3-0.05); (b): τ = 0.1 (DS0.3-0.1); (c):

τ = 0.3 (DS0.3-0.3) ; (d): τ = 0.5 (DS0.3-0.5).
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Figure 6.18: Simulated equilibrium point patterns (N = 100, V =
√

100 ×√
100, α = 0.4). (a): τ = 0.05 (DS0.4-0.05); (b): τ = 0.1 (DS0.4-0.1); (c):

τ = 0.3 (DS0.4-0.3) ; (d): τ = 0.5 (DS0.4-0.5).
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Table 6.17: Type (i) prior with uniform jumping specification: the values of the
adjusting parameters (δα, δσ) in Eqs. (5.5)-(5.6) for the uniform jumpings.

Data (δα, δσ)

DS0.2− 0.05 ( 0.085, 0.080 )
DS0.2− 0.1 ( 0.060, 0.072 )
DS0.2− 0.3 ( 0.050, 0.060 )
DS0.2− 0.5 ( 0.020, 0.050 )

DS0.3− 0.05 ( 0.085, 0.075 )
DS0.3− 0.1 ( 0.090, 0.080 )
DS0.3− 0.3 ( 0.006, 0.040 )
DS0.3− 0.5 ( 0.003, 0.010 )

DS0.4− 0.05 ( 0.100, 0.095 )
DS0.4− 0.1 ( 0.080, 0.082 )
DS0.4− 0.3 ( 0.003, 0.040 )
DS0.4− 0.5 ( 0.003, 0.040 )

Table 6.18: Type (i) prior with normal jumping specification: the values of the
adjusting parameters (δ2

α, δ
2
σ) in Eqs. (5.7)-(5.8) for the normal jumpings.

Data (δ2
α, δ

2
σ)

DS0.2− 0.05 ( 0.030, 0.060 )
DS0.2− 0.1 ( 0.013, 0.043 )
DS0.2− 0.3 ( 0.010, 0.040 )
DS0.2− 0.5 ( 0.007, 0.037 )

DS0.3− 0.05 ( 0.040, 0.040 )
DS0.3− 0.1 ( 0.065, 0.055 )
DS0.3− 0.3 ( 0.003, 0.050 )
DS0.3− 0.5 ( 0.002, 0.050 )

DS0.4− 0.05 ( 0.050, 0.040 )
DS0.4− 0.1 ( 0.040, 0.050 )
DS0.4− 0.3 ( 0.002, 0.035 )
DS0.4− 0.5 ( 0.002, 0.039 )
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Table 6.19: Type (ii) prior with uniform jumping specification: the values of
the adjusting parameters (δα, δσ) in Eqs. (5.5)-(5.6) for the uniform jumpings.

Data (δα, δσ)

DS0.2− 0.05 ( 0.075, 0.070 )
DS0.2− 0.1 ( 0.060, 0.070 )
DS0.2− 0.3 ( 0.053, 0.060 )
DS0.2− 0.5 ( 0.026, 0.053 )

DS0.3− 0.05 ( 0.090, 0.080 )
DS0.3− 0.1 ( 0.075, 0.075 )
DS0.3− 0.3 ( 0.025, 0.035 )
DS0.3− 0.5 ( 0.003, 0.010 )

DS0.4− 0.05 ( 0.080, 0.080 )
DS0.4− 0.1 ( 0.008, 0.080 )
DS0.4− 0.3 ( 0.004, 0.045 )
DS0.4− 0.5 ( 0.003, 0.044 )

Table 6.20: Type (ii) prior with normal jumping specification: the values of the
adjusting parameters (δ2

α, δ
2
σ) in Eqs. (5.7)-(5.8) for the normal jumpings.

Data (δ2
α, δ

2
σ)

DS0.2− 0.05 ( 0.020, 0.050 )
DS0.2− 0.1 ( 0.018, 0.005 )
DS0.2− 0.3 ( 0.015, 0.045 )
DS0.2− 0.5 ( 0.013, 0.040 )

DS0.3− 0.05 ( 0.055, 0.050 )
DS0.3− 0.1 ( 0.050, 0.050 )
DS0.3− 0.3 ( 0.007, 0.005 )
DS0.3− 0.5 ( 0.005, 0.005 )

DS0.4− 0.05 ( 0.060, 0.050 )
DS0.4− 0.1 ( 0.050, 0.050 )
DS0.4− 0.3 ( 0.005, 0.030 )
DS0.4− 0.5 ( 0.002, 0.030 )

54



Then, to estimate (α, τ) simultaneously, we performed a simulation of 60000
steps in the Metropolis-Hastings algorithm for all data sets. For the assessment
of convergence, we evaluated the burn-in time T ∗ and the stopping time T for
our single long run by using similar methods as described in §6.1.3. Then we
estimated (T ∗, T ) = (10000, 60000). Therefore, we have used 50000 samples for
all data sets as samples from the joint posterior densities p(α, τ | X). We will
explain the assessment of convergence in §8.2.

Tables 6.21, 6.22 and 6.23 provide the values of simulated posterior mean
of respective parameters under the both types (i) and (ii) of prior with three
jumping densities for all data sets, respectively. In the last column of the
Tables, the maximum likelihood estimates (MLE) of α and τ are also given.
Then we can see that each posterior mean and each MLE of τ are nearly close
in every data set DS0.2, DS0.3 and DS0.4.

On the other hand, it is clear that each posterior mean of α is different
between type (i) and (ii) priors. From Table 6.21, we can see that each posterior
mean of α is greater than each MLE. From Table 6.22, we can see that, for the
(DS0.3-0.05, DS0.3-0.1), each posterior mean of α under the type (i) prior is
greater than each MLE, and each posterior mean of α under the type (ii) prior
is less than MLE. It can be seen from Table 6.23 that each posterior mean of
α under the type (i) prior is larger than MLE for the DS0.4-0.05. Then we can
see that each posterior mean of α under the type (ii) prior is less than MLE
for all data sets DS0.4. It can be found from three Tables 6.21-6.23 that, for
the data whose τ is large, the difference of the mean of α between the type (i)
and (ii) prior tends to be small.
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Table 6.21: Posterior means of (α, τ), indicated by ‘α’ and ‘τ ’, under both
types (i) and (ii) of prior with each jumping density for data sets (DS0.2-0.05,
DS0.2-0.1, DS0.2-0.3, DS0.2-0.5); ‘prior-jump’ stands for combinations of the
prior and jumping for respective parameters. In the last column, the maximum
likelihood estimates of (α, τ) are also given.

Data prior − jump α τ (α̂, τ̂)

uni-uni 0.36721 0.059111
uni-nor 0.34042 0.059010

DS0.2-0.05 nor-uni 0.26890 0.060581 (0.21194, 0.062325)
nor-nor 0.25841 0.060311
uni-ind 0.26085 0.059522
nor-ind 0.25996 0.060615

uni-uni 0.33297 0.090118
uni-nor 0.25128 0.089021

DS0.2-0.1 nor-uni 0.25930 0.090943 (0.23717, 0.092476)
nor-nor 0.25849 0.090722
uni-ind 0.25325 0.089728
nor-ind 0.26048 0.090992

uni-uni 0.25335 0.28354
uni-nor 0.23845 0.28117

DS0.2-0.3 nor-uni 0.25529 0.28349 (0.21294, 0.27452)
nor-nor 0.23847 0.28204
uni-ind 0.24699 0.28212
nor-ind 0.24323 0.28271

uni-uni 0.22945 0.51986
uni-nor 0.24116 0.52692

DS0.2-0.5 nor-uni 0.23213 0.52098 (0.19923, 0.50421)
nor-nor 0.23246 0.52130
uni-ind 0.23569 0.52401
nor-ind 0.23485 0.52120

56



Table 6.22: Posterior means of (α, τ), indicated by ‘α’ and ‘τ ’, under both
types (i) and (ii) of prior with each jumping density for data sets (DS0.3-0.05,
DS0.3-0.1, DS0.3-0.3, DS0.3-0.5); ‘prior-jump’ stands for combinations of the
prior and jumping for respective parameters. In the last column, the maximum
likelihood estimates of (α, τ) are also given.

Data prior − jump α τ (α̂, τ̂)

uni-uni 0.44074 0.043206
uni-nor 0.44429 0.043194

DS0.3-0.05 nor-uni 0.28373 0.043420 (0.31299, 0.046066)
nor-nor 0.28631 0.043596
uni-ind 0.28251 0.042379
nor-ind 0.27138 0.043586

uni-uni 0.43445 0.091305
uni-nor 0.42272 0.090864

DS0.3-0.1 nor-uni 0.29818 0.090318 (0.31047, 0.093013)
nor-nor 0.30210 0.090407
uni-ind 0.31662 0.088631
nor-ind 0.29224 0.089812

uni-uni 0.29559 0.29958
uni-nor 0.22323 0.30569

DS0.3-0.3 nor-uni 0.29305 0.32089 (0.29022, 0.32114)
nor-nor 0.28140 0.31789
uni-ind 0.31176 0.32377
nor-ind 0.29034 0.32002

uni-uni 0.30967 0.51393
uni-nor 0.35856 0.54476

DS0.3-0.5 nor-uni 0.29157 0.50432 (0.29977, 0.51055)
nor-nor 0.31131 0.51556
uni-ind 0.33432 0.53194
nor-ind 0.30257 0.51169
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Table 6.23: Posterior means of (α, τ), indicated by ‘α’ and ‘τ ’, under both
types (i) and (ii) of prior with each jumping density for data sets (DS0.4-0.05,
DS0.4-0.1, DS0.4-0.3, DS0.4-0.5); ‘prior-jump’ stands for combinations of the
prior and jumping for respective parameters. In the last column, the maximum
likelihood estimates of (α, τ) are also given.

Data prior − jump α τ (α̂, τ̂)

uni-uni 0.48746 0.052066
uni-nor 0.48283 0.052017

DS0.4-0.05 nor-uni 0.31259 0.051132 (0.37988, 0.054667)
nor-nor 0.31439 0.051016
uni-ind 0.32413 0.050137
nor-ind 0.29962 0.050839

uni-uni 0.39569 0.12415
uni-nor 0.35535 0.12232

DS0.4-0.1 nor-uni 0.33579 0.12170 (0.40367, 0.12808)
nor-nor 0.35353 0.12313
uni-ind 0.37854 0.12311
nor-ind 0.34026 0.12192

uni-uni 0.37713 0.26653
uni-nor 0.34305 0.26061

DS0.4-0.3 nor-uni 0.35757 0.26325 (0.39491, 0.27248)
nor-nor 0.35620 0.26364
uni-ind 0.38813 0.26939
nor-ind 0.35378 0.26293

uni-uni 0.35272 0.47149
uni-nor 0.38443 0.51068

DS0.4-0.5 nor-uni 0.35494 0.47546 (0.37883, 0.51718)
nor-nor 0.34858 0.49819
uni-ind 0.39828 0.53138
nor-ind 0.36674 0.50888
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The comparison of the posterior densities of α and τ under both types (i)
and (ii) of prior with three jumping densities are plotted in Figs. 6.19, 6.20
and 6.21 for all data sets, respectively. From Figs. 6.19-6.21(b), (d), (f) and
(h), we can see that, for all data sets, the coincidence of the shape of the
marginal posterior densities of τ between the type (i) and (ii) priors is good
for four kinds of combinations of the two priors and the uniform and normal
jumpings. On the other hand, for the parameter α, the results of posterior are
quite different. From Figs. 6.19-6.21(e) and (g), it seems that, for the cases
of τ = 0.3, 0.5, the marginal posteriors of α under both types (i) and (ii) of
prior are said to be similar in all data sets. On the contrary, for the cases
of relatively small reduced density τ = 0.05, 0.1, the marginal posteriors of α
between type (i) and (ii) priors show different spread regardless of the jumping
density (see Figs. 6.19-6.21(a) and (c)). From the results, it was found that
priors have strong influence on the posterior for small sample point patterns
whose reduced density τ is relatively small.

In this section, we have verified our Bayesian procedure for the two-parameter
Soft-Core models for various point patterns for the case of N = 100. In the
next section, we will discuss our procedure applied to various point patterns.
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Figure 6.19: Comparison of marginal posterior densities of α and τ under the
type (i) prior with uniform jumping (uni-uni:•), normal jumping (uni-nor:2)
and independence sampler (uni-ind:◦), respectively, and under the type (ii)
prior with uniform jumping (nor-uni:+), normal jumping (nor-nor:×) and in-
dependence sampler (nor-ind:4), respectively. (a),(b): DS0.2-0.05; (c),(d):
DS0.2-0.1; (e),(f): DS0.2-0.3; (g),(h): DS0.2-0.5.
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Figure 6.20: Comparison of marginal posterior densities of α and τ under the
type (i) prior with uniform jumping (uni-uni:•), normal jumping (uni-nor:2)
and independence sampler (uni-ind:◦), respectively, and under the type (ii)
prior with uniform jumping (nor-uni:+), normal jumping (nor-nor:×) and in-
dependence sampler (nor-ind:4), respectively. (a),(b): DS0.3-0.05; (c),(d):
DS0.3-0.1; (e),(f): DS0.3-0.3; (g),(h): DS0.3-0.5.
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Figure 6.21: Comparison of marginal posterior densities of α and τ under the
type (i) prior with uniform jumping (uni-uni:•), normal jumping (uni-nor:2)
and independence sampler (uni-ind:◦), respectively, and under the type (ii)
prior with uniform jumping (nor-uni:+), normal jumping (nor-nor:×) and in-
dependence sampler (nor-ind:4), respectively. (a),(b): DS0.4-0.05; (c),(d):
DS0.4-0.1; (e),(f): DS0.4-0.3; (g),(h): DS0.4-0.5.
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6.3 Discussions

In this chapter, we have presented our Bayesian procedure for the two-parameter
Soft-Core interaction potential models for the simulated equilibrium point pat-
terns generated by MCMC for the cases of large and relatively small sample
point patterns. Then our procedure is proved to be applicable to a wide class
of various regular point patterns.

When large sample point patterns (N = 500) are given, from Figs 6.13-6.15,
the coincidence between the shape of each marginal posterior density of α and
τ is good regardless of combinations of the prior and jumping densities. Then it
seems that the influence of the choice of prior densities upon posterior density
is not too strong.

For relatively small sample point patterns (N = 100), from Figs 6.19-6.21,
the coincidence between the shape of marginal posterior densities of τ is said
to be good for all combinations of the prior and jumping. On the other hand,
for the parameter α, the behavior of posterior are different. For the cases
of relatively large reduced density (i.e. the degree of regularity is relatively
high), the marginal posteriors of α under both types (i) and (ii) of prior with
uniform and normal jumping densities seem to be similar in all data sets. On
the contrary, for the cases of relatively small reduced density (i.e. the degree of
regularity is relatively low), the marginal posteriors of α between the two priors
show different spread regardless of the jumping densities. When the number
of points N is small, Bayesian inferences are more sensitive to choice of prior
density than inferences with large samples (Little and Rubin (2002)). Then it
will be interesting to apply our Bayesian procedure to small sample real data.
These results will be discussed in §8.4 and 8.6.

We here refer to the case of the application of the independence samplers.
In each simulation, convergence of respective parameters seems to be good, but
the acceptance rate were below 0.1 for all cases. Since the samplers have no
adjusting parameters, these values were very low. Since the optimal jumping
rule has acceptance rate about 0.40 ∼ 0.44 in two-dimension, as stated in
§5.2.2, the use of the independence samplers is not appropriate for our Bayesian
inference.
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Chapter 7

Real data

7.1 Preliminary analysis

As the illustrative examples, we applied our method to four observed data,
namely charged steel balls (Ogata and Tanemura (1989), Mase et al. (1994)),
two blue cones in a macaque retina (Shapiro et al. (1985)), and nesting pattern
of the Gray Gulls (Howell et al. (1974)), which are illustrated in Fig. 7.1, Figs.
7.2(a)-(b) and Fig. 7.3, respectively. Configurations of these data all show
regular point pattern. Intuitively speaking, the degree of regularity of the first
three data seems to be higher than the data of Gray Gulls. Table 7.1 gives the
number of individuals N and the rectangular region V for each data set.

Table 7.1: The number of individuals N and the rectangular region V for each
data set.

Balls P6T13 M6T10 Gulls

N 271 398 427 110
V 2.81× 2.79[cm2] 125× 85[mm2] 125× 85[mm2] 100× 100[m2]

To categorize the type of distribution of our point patterns as a preliminary
analysis (Cressie (1993)), we obtained the following two indices of clumping ; the
Morisita’s index Iδ based on quadrat counts (Morisita (1959)) and the Hopkins-
Skellam index A based on nearest-neighbor distance measures (Hopkins and
Skellam (1954)). The Morisita’s index Iδ is expressed by

Iδ = q

q∑
i=1

ci(ci − 1)/N(N − 1), (7.1)
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where ci is the number of individuals in the ith quadrat and q is the number
of contiguous quadrats which divide the rectangular region V . In the special
case when the spatial point pattern is a homogeneous Poisson point process, Iδ
is equal to 1. And if the point pattern is a clustered type, Iδ is greater than 1,
else if the point pattern is a regular type, Iδ is less than 1. On the other hand,
the Hopkins-Skellam index A is represented as

A =
M∑

j=1

r2
1j

/
M∑

j=1

r2
2j, (7.2)

where r1j is the distance between randomly sampled point and its nearest
individual, r2j is the distance between a randomly chosen individual and its
nearest individual in the rectangular V , and where M is the total number of
samples. When the point pattern is considered as a Poisson pattern, A is equal
to 1. If the point pattern is a clustered type, or a regular type, then A is
greater than 1, or less than 1, respectively. Table 7.1 gives the values of the
Morisita’s index Iδ and the Hopkins-Skellam index A for all data. In the first
column of Table 7.1, Iδ(i× i) represents the value of Eq. (7.1) for q = i× i grid
of quadrats, χ2

0 = Iδ(N − 1) + q − N represents χ2 test statistic with (q − 1)
degrees of freedom for the Poisson null hypothesis and Pr{X ≤ χ2

0(q−1)} is

the probability below the χ2
0(q−1) point. The values of Pr{X ≤ χ2

0(q−1)} are

calculated numerically. Each χ2 statistic obtained for suitably large q leads
to the rejection of the null hypothesis of the Poisson model in the two-sided
test for the significance level 0.05/2 for all data sets. In the last row of Table
7.1, the values of A are the mean of independent 1000 trial values of A in the
case of M = 1000 in Eq. (7.2), and Φ0 represents test statistic for the Poisson
model based on the distance methods, where Φ0 = 2{A/(1+A)−1/2}√2N + 1
approximately obeys a standard normal distribution for not too small N . We
have used a periodic boundary condition, that is to say, the rectangular region
V is regarded as a torus, in calculating the Hopkins-Skellam index A (Ripley
(1977, 2004), see §8.5). From Table 7.1, the null hypothesis of Poisson model
is rejected in cases of both quadrat methods and distance methods. All data
sets appear to be regular from the values of test statistics.
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Figure 7.1: Map of the charged steel balls (abbreviated to Balls) (N = 271, V =
2.81× 2.79[cm2]).
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Figure 7.2: Two point patterns of blue cones of macaque retina in the region
V = 125 × 85 [mm2] in the scale of the photomicrograph. (a) P6T13 (N =
398; 6 degrees above the horizontal meridian and 13 degrees to the right of the
vertical); (b) M6T10 (N = 427; 6 degrees below and 10 degrees to the right).
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Figure 7.3: The map of nests of Gray Gulls, Larus modestus (abbreviated to
Gulls) (N = 110, V = 100× 100 [m2]).

68



Table 7.2: Results of the values of the Morisita’s index Iδ of Eq. (7.1) and the
Hopkins-Skellam index A of Eq. (7.2), and their tests of the Poisson model
based on the quadrat and distance methods.

Balls P6T13 M6T10 Gulls

Iδ(4× 4), χ2
0 0.962, 4.74 0.981, 7.46 0.997, 13.72 0.993, 14.24

Pr{X ≤ χ2
0(4×4−1)} 0.00589 0.0564 0.453 0.493

Iδ(8× 8), χ2
0 0.855, 23.85 0.897, 22.11 0.922, 29.77 0.907, 52.86

Pr{X ≤ χ2
0(8×8−1)} 1.81× 10−6 3.82× 10−7 1.17× 10−4 0.185

Iδ(12× 12), χ2
0 0.665, 49.85 0.778, 54.87 0.800, 57.80 0.889, 130.90

Pr{X ≤ χ2
0(12×12−1)} ∼ 0 ∼ 0 ∼ 0 0.243

Iδ(16× 16), χ2
0 0.497, 119.19 0.578, 87.47 0.630, 97.38 0.641, 215.87

Pr{X ≤ χ2
0(16×16−1)} ∼ 0 ∼ 0 ∼ 0 0.0359

Iδ(20× 20), χ2
0 0.284, 205.68 0.435, 174.70 0.449, 164.27 0.400, 333.60

Pr{X ≤ χ2
0(20×20−1)} ∼ 0 ∼ 0 ∼ 0 0.00752

A,Φ0 0.362,−10.92 0.313,−14.77 0.334,−14.60 0.792,−1.73
Pr{X ≤ Φ0} ∼ 0 ∼ 0 ∼ 0 0.0422

7.2 Charged steel balls

The mapped data of charged steel balls (abbreviated to Balls) is shown in
Fig. 7.1, and it was obtained by the following way (Ogata and Tanemura
(1989), Mase et al. (1994)). Many steel balls of diameter 0.5 mm were put
in a transparent plastic box. When the box was shaken violently by hand, all
particles charged up with electricity and are supposed to form a regular point
pattern. The values of the Morisita’s index Iδ and the Hopkins-Skellam index
A, in Table 7.1, indicate clearly that this data is classified as a regular point
pattern. The interaction between particles may not be described simply by the
Coulomb repulsive force, because of the existence of the wall of the plastic box,
which is also charged with electricity. So it will be interesting to estimate a
repulsive Soft-Core interaction potential between steel balls by our procedure.
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7.3 Blue cones in a macaque retina

Figs. 7.2(a)-(b) exhibit the two spatial point patterns of blue cones in a
macaque retina (abbreviated to P6T13 and M6T10, respectively). The retina
of the primates consists of two photoreceptors of rod and cone cells. The
cones of the retina in primates are classified into three types: blue-sensitive,
green-sensitive and red-sensitive. The two data sets, P6T13 and M6T10, were
collected from different areas of the retina at about the same distance, 13 de-
grees, from the fovea (the center of the retina). The data in Figs. 7.2(a)-(b)
were read from the photomicrographs in Shapiro et al. (1985) (see Ogata and
Tanemura (1989)). Therefore the scale of length in the data does not represent
that of real objects. The blue cones (blue-sensitive) represent a comparatively
small fraction of the total cone population, and their configuration forms a
regular point pattern of loosely packed cones among other cone types. From
the values of two indices of clumping, Iδ and A, in Table 7.1, both P6T13 and
M6T10 are classified as regular point patterns. So the blue cones are consid-
ered to distribute evenly in the fovea to work for photoreceptors, and it will be
interesting to analyze the pattern of blue cones by our procedure.

7.4 Nesting pattern of the Gray Gulls

Fig. 7.3 shows a nesting pattern of the Gray Gulls, Larus modestus (abbre-
viated to Gulls), near the Pacific coast of South America. It is reported that
the habitat of these gulls has no plants and is rather uniform in this region V .
In Ogata and Tanemura (1989), the data was analyzed, and a small reduced
density was obtained. In our preliminary analysis, Iδ and A were obtained
in Table 7.1, too. The values of the Morisita’s index Iδ and Hopkins-Skellam
index A indicate that this data is interpreted as a regular type in short range.
Because this data shows a different character from other three data in long
range, it will be interesting to analyze it by our procedure.
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Chapter 8

Application to the real data

8.1 Performing MCMC experiments

In Chapter 6, we have verified our Bayesian procedure for the two-parameter
Soft-Core potential models to various simulated regular point patterns. Then,
in this chapter, we would like to apply our procedure to four real data sets
explained in Chapter 7. To perform Bayesian estimation of the two-parameter
Soft-Core models for each of our data sets, we considered two types of prior
density (with jumping density), as described in §4.2: (i) uniform prior densities
(with uniform jumping densities) (type (i) prior) and (ii) normal prior densities
(with normal jumping densities) (type (ii) prior). Here, we make reference to
the literature of Okabe and Tanemura (2006).

To specify prior densities, we can set the values of hyperparameters (a, b, c, d)
in Eqs. (4.4)-(4.5) for the type (i) prior densities. Since the log-likelihood in
Eq. (3.14) is effective in the range 0 < α ≤ 0.5 and 0 < τ ≤ 0.75 as stated
in §3.2, and since σ is related to τ through Eq. (3.4), these values are given
in Table 8.1 for all data sets. For the type (ii) priors, the hyperparameters
of normal densities are specified as follows. In Eqs. (4.6)-(4.7), their means
(µα, µσ) are chosen as the center of the range of each parameter, and their
standard deviations (sα, sσ) for α and σ are respectively chosen, through trial
and error, as the values of half of the mean (see Table 8.1). These normal priors
are supposed to cover the above effective range.

For jumping densities for both types (i) and (ii) of prior, their adjusting pa-
rameters are chosen such that Markov chain simulation should have the accep-
tance rate around 0.40 ∼ 0.44 of the Metropolis-Hastings steps, as described in
§5.2.2. For the normal jumping densities in Eqs. (5.7)-(5.8), the method of gen-
erating random values from a truncated normal distribution TN[0,∞)(· | θt−1, δ2

θ)
proceeds as follows. Given the current point θt−1, sample a proposal point θ∗

from a normal density N(θt−1, δ2
θ) recurrently until θ∗ is sampled in the range

[0,∞) (e.g. Geweke (1991)), as stated in §5.2.1. Table 8.2 shows the values
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of the optimal adjusting parameters (δα, δσ) in Eqs. (5.5)-(5.6) of the uniform
jumping densities for the type (i) prior, and (δ2

α, δ
2
σ) in Eqs. (5.7)-(5.8) of the

normal jumping densities for the type (ii) prior.
Then we performed a single long run simulation of 26000 steps in the

Metropolis-Hastings algorithm for three data sets (Balls, P6T13, M6T10), and
of 60000 steps for Gulls data. These simulations were performed for both types
(i) and (ii) of prior, and the periodic boundary condition was used for cal-
culating the total potential energy in Eq. (3.14), as described in §6.1.1 (see
§8.5). The above choice of the number of steps will be discussed later. For
comparison, the case of the independence samplers will be also examined in
§8.2.4.

Table 8.1: Prior specification: the values of hyperparameters (a, b, c, d) in Eqs.
(4.4)-(4.5) for the type (i) prior, and the means (µα, µσ) and the variances
(s2

α, s
2
σ) in Eqs. (4.6)-(4.7) for the type (ii) prior. These hyperparameters

(a, b, c, d) are also used in the case of the independence sampler as described in
§8.2.3.

Data ( a, b, c, d ) ( µα, µσ, s2
α, s2

σ )

Balls ( 0, 0.50, 0, 0.147 ) ( 0.25, 0.0736, 0.1252, 0.03682 )
P6T13 ( 0, 0.50, 0, 4.48 ) ( 0.25, 2.24, 0.1252, 1.122 )
M6T10 ( 0, 0.50, 0, 4.32 ) ( 0.25, 2.16, 0.1252, 1.082 )
Gulls ( 0, 0.50, 0, 8.26 ) ( 0.25, 4.13, 0.1252, 2.062 )

Table 8.2: Jumping specification: the values of the adjusting parameters (δα, δσ)
in Eqs. (5.5)-(5.6) for the type (i) prior, and (δ2

α, δ
2
σ) in Eqs. (5.7)-(5.8) for

the type (ii) prior.

Data ( δα, δσ ) ( δ2
α, δ2

σ )

Balls ( 0.035, 0.008 ) ( 0.0172, 0.00552 )
P6T13 ( 0.035, 0.20 ) ( 0.0182, 0.132 )
M6T10 ( 0.035, 0.15 ) ( 0.0122, 0.122 )
Gulls ( 0.058, 0.68 ) ( 0.0312, 0.492 )
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8.2 MCMC convergence

8.2.1 Assessing stopping time of the Metropolis-Hastings
algorithm

In this thesis, single long run approach is adopted, as described in §5.3.1.
To assess the convergence of the Metropolis-Hastings algorithm, we used the
diagnostics quantity (potential scale reduction factor) R̂ of Gelman and Rubin’s
method as described in §5.3.1. To estimate the stopping time T of a single long
run, we performed k = 5 independent simulations whose number of iterations
is (l∗ + l) steps each (l∗: the length of the sequence discarded as burn-in (the
first part); l: the length of the sequence after burn-in (the second part)) for all
data sets Balls, P6T13, M6T10 and Gulls. Then we fixed the length (l∗, l) to
be (1000, 5000) of each simulation for three data sets (Balls, P6T13, M6T10).
For the data set Gulls, we put (l∗, l) to be (10000, 10000). Starting point
(α0

(1), σ
0
(1)) of the first sequence among five simulations was chosen as the mean

of the Monte Carlo samples generated by a test long run of 30000 steps for each
data. And starting points (α0

(i), σ
0
(i)) (i = 2, 3, 4, 5) of the other four simulations

were independently drawn from the normal densities whose mean is (α0
(1), σ

0
(1))

and whose standard deviation is the half of the means. For each data set, we
calculated the potential scale reduction factor R̂ in Eq. (5.13) for α and σ
separately. Table 8.3 shows the values of R̂ for respective parameters for all
data sets. In this table, the last column represents the values of R̂ in the case
of prescribed k = 5 parallel sequences. Since each value of R̂ was well below
1.1 for both parameters, as the suitable set of the values (l∗, l), we evaluated
(l∗, l) = (1000, 5000) for Balls, P6T13 and M6T10, and (l∗, l) = (10000, 10000)
for Gulls. We will discuss the burn-in time T ∗(= l∗) in detail in §8.2.3.

Thus, we estimated T ∗(= l∗) = 1000 and T = (5× 5000) + T ∗ = 26000 for
(Balls, P6T13, M6T10), and T ∗ = 10000 and T = (5 × 10000) + T ∗ = 60000
for Gulls. Then, we performed the MCMC simulations of the stopping time T
for each data.

To monitor the convergence graphically, time series plots are given in Figs.
8.1(a)-(d) for k = 5 independent sequences of respective parameters for Balls
under the type (i) prior. Figs. 8.1(a) and (c) show initial l∗ = 1000 steps (first
part) of five independent sequences for α and σ, respectively, and Figs. 8.1(b)
and (d) show correspondingly the subsequent l = 5000 steps (second parts)
where five independent sequences are overlapping (e.g. Cowles and Carlin
(1996), Bray and Wright (1998)). From these figures, we can see the behavior
of five sequences for the case of Balls. We see here that a convergence had
been reached by l∗ = 1000 steps. Figs. 8.2(a)-(d) show the case of the type
(ii) prior. The results of k = 5 independent simulations for P6T13 and M6T10
were similar to the case of Balls and their time series plots are given in Figs.
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8.3-8.6 for k = 5 independent sequences of respective parameters for P6T13
and M6T10.

On the other hand, for the time series plots of k = 5 independent sequences
by fixing (l∗, l) = (10000, 10000) for Gulls, the convergence had been achieved
by l∗ = 10000 steps, and their subsequent l = 10000 steps sufficiently converged
for respective parameters. These behaviors are given in Figs. 8.7-8.8. As
described above, in the case of (l∗, l) = (1000, 5000) for Gulls under the type
(ii) prior, the values of R̂α and R̂σ are respectively less than 1.1. We here put
the convergence time to be 10000 steps for both types (i) and (ii) of prior.

Table 8.3: Results of the values of the potential scale reduction factor R̂ as the
monitoring convergence diagnostics in the case of k=5 parallel sequences for all
data sets; ‘param.’ and ‘type’ stand for the kind of parameter and the type of
prior, respectively.

Data param. type R̂ (5 sequences)

α
(i) 1.0033

Balls
(ii) 1.0028

σ
(i) 1.0016

(ii) 1.0012

α
(i) 1.0016

P6T13
(ii) 1.0026

σ
(i) 1.0011

(ii) 1.0013

α
(i) 1.0010

M6T10
(ii) 1.0026

σ
(i) 1.0007

(ii) 1.0023

α
(i) 1.0056

Gulls
(ii) 1.0032

σ
(i) 1.0001

(ii) 1.0008
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Figure 8.1: Convergence monitoring plots of the parameters α [(a),(b)] and σ
[(c),(d)] for Balls under the type (i) prior. (a),(c): First part of five sequences
(t=0-1000); (b),(d): Second part of five sequences (t=1001-6000).

　

Figure 8.2: Convergence monitoring plots of the parameters α [(a),(b)] and σ
[(c),(d)] for Balls under the type (ii) prior. (a),(c): First part of five sequences
(t=0-1000); (b),(d): Second part of five sequences (t=1001-6000).
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Figure 8.3: Convergence monitoring plots of the parameters α [(a),(b)] and σ
[(c),(d)] for P6T13 under the type (i) prior. (a),(c): First part of five sequences
(t=0-1000); (b),(d): Second part of five sequences (t=1001-6000).

　

Figure 8.4: Convergence monitoring plots of the parameters α [(a),(b)] and
σ [(c),(d)] for P6T13 under the type (ii) prior. (a),(c): First part of five
sequences (t=0-1000); (b),(d): Second part of five sequences (t=1001-6000).

76



　

Figure 8.5: Convergence monitoring plots of the parameters α [(a),(b)] and
σ [(c),(d)] for M6T10 under the type (i) prior. (a),(c): First part of five
sequences (t=0-1000); (b),(d): Second part of five sequences (t=1001-6000).

　

Figure 8.6: Convergence monitoring plots of the parameters α [(a),(b)] and
σ [(c),(d)] for M6T10 under the type (ii) prior. (a),(c): First part of five
sequences (t=0-1000); (b),(d): Second part of five sequences (t=1001-6000).
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Figure 8.7: Convergence monitoring plots of the parameters α [(a),(b)] and σ
[(c),(d)] for Gulls under the type (i) prior. (a),(c): First part of five sequences
(t=0-10000); (b),(d): Second part of five sequences (t=10001-20000).

　

Figure 8.8: Convergence monitoring plots of the parameters α [(a),(b)] and σ
[(c),(d)] for Gulls under the type (ii) prior. (a),(c): First part of five sequences
(t=0-10000); (b),(d): Second part of five sequences (t=10001-20000).
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8.2.2 Checking convergence of the single long run

In the previous subsection, we have evaluated the convergence of our single long
run based on independent simulated multiple short runs with various starting
points. In this subsection, we check the convergence of our single long run. The
methods are as follows. We divided the single long runs (second part of 26000
steps for three data sets (Balls, P6T13, M6T10) and of 60000 steps for Gulls,
respectively) into prescribed k = 5 sequences of equal length, and calculated the
potential scale reduction factor R̂ for α and σ separately. Table 8.4 summarizes
the results. In the Table, we can see that the values of R̂ here are well below 1.1
for all cases. This indicates that our single long runs are sufficient for sampling
from the posterior density. Therefore, for these single long runs, we have used
25000 samples for three data sets (Balls, P6T13, M6T10), and 50000 samples
for Gulls as samples from the joint posterior densities p(α, σ | X).

Table 8.4: Results of the values of the potential scale reduction factor R̂ as the
monitoring convergence diagnostics in the case of single long run for all data
sets.

Data param. type R̂ (single long run)

α
(i) 1.0011

Balls
(ii) 1.0044

σ
(i) 1.0005

(ii) 1.0020

α
(i) 1.0010

P6T13
(ii) 1.0027

σ
(i) 1.0002

(ii) 1.0014

α
(i) 1.0010

M6T10
(ii) 1.0069

σ
(i) 1.0010

(ii) 1.0028

α
(i) 1.0069

Gulls
(ii) 1.0016

σ
(i) 1.0003

(ii) 1.0001
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8.2.3 Assessing burn-in time of the Metropolis-Hastings
algorithm

In §8.2.1-8.2.2, we have evaluated the convergence of our single long run. In this
subsection, we investigate the burn-in time T ∗ for the single long run in detail.
The methods proceed as follows. We estimated the burn-in time T ∗ for each
single long run using k = 5 independent simulations for all data sets. Then,
we calculated the potential scale reduction factor R̂ for α and σ separately for
initial time step which had not yet got close to stationary.

Figs. 8.9(a)-(d) exhibit, for all data sets, the values of R̂ of respective
parameters in the case of k = 5 sequences under both types (i) and (ii) of prior
as time t increases. Figs. 8.9(a)-(c) show that each value of R̂ is well below 1.1
for respective parameters until t = 1000 under both types (i) and (ii) of prior.
Then we evaluated l∗ = T ∗ = 1000 for Balls, P6T13 and M6T10.

On the other hand, for Gulls data, the different results were obtained. From
Fig. 8.9(d), we can see that the value of R̂ for σ is well below 1.1 under both
types (i) and (ii) of prior until t = 1000. On the contrary, for α, the value of R̂
does not show below 1.1 until t = 1000. In the case of (k, l∗, l) = (5, 1000, 5000),
the values of R̂ for α and σ were as follows: (R̂α, R̂σ) = (1.3994, 1.0218) under
the type (i) prior and (R̂α, R̂σ) = (1.0530, 1.0052) under the type (ii) prior,
respectively. These results showed that a bigger number of iteration was needed
for the Gulls. As the simulated results, we found that a few thousand iterations
were needed as burn-in under both types (i) and (ii) of prior (in particular, the
type (i) prior). Then (l∗, l) = (10000, 10000) was chosen, that is, the burn-in
time T ∗ = 10000 was estimated for Gulls.
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Figure 8.9: Assessing burn-in time for single long run: the potential scale
reduction factor R̂ as the convergence diagnostics vs. the initial iteration time
t in the case of k = 5 parallel sequences for all data sets. The symbol • and
¥ stand for R̂ of α and σ under the type (i) prior, and the symbol N and H
represent R̂ of α and σ under the type (ii) prior, respectively: (a) Balls; (b)
P6T13; (c) M6T10; (d) Gulls.
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Figs. 8.10(a)-(d) show the time series plots for the single long runs of the
Monte Carlo output of α and σ for Balls data under both types (i) and (ii) of
prior. The marginal histograms based on 25000 successive draws with a burn-in
of 1000 iterations are displayed in Figs. 8.11(a)-(d) which correspond to Figs.
8.10(a)-(d), respectively. Figs. 8.12(a)-(d) and 8.14(a)-(d) show the time series
plots for two data sets P6T13 and M6T10 under the two priors. Figs. 8.13(a)-
(d) and 8.15(a)-(d) are the marginal histograms based on 25000 successive
draws with a burn-in of 1000 iterations corresponding to Figs. 8.12(a)-(d) and
8.14(a)-(d), respectively. And the time series plots for Gulls data under the
two priors are given in Figs. 8.16(a)-(d). Figs. 8.17(a)-(d) are the marginal
histograms based on 50000 successive draws with a burn-in of 10000 iterations
corresponding to Figs. 8.16(a)-(d), respectively.

Figs. 8.18 and 8.19 illustrate scatter plots of 25000 or 50000 draws from
the joint posterior densities p(α, τ | X)(τ = ρσ2), defined in Eq. (4.8), for all
data sets under both types (i) and (ii) of prior, respectively. Table 8.5 gives
the values of the correlation coefficient between α and τ . We see from Table
8.5 that, for three data sets (Balls, P6T13, M6T10), the correlation between
α and τ is relatively high and each of the values for both types (i) and (ii) of
prior is very close. On the other hand, for the Gulls data set, the correlation
become small for both types (i) and (ii) of prior, and the correlation coefficient
of the type (ii) prior is greater than that for the type (i) prior. It seems that
the prior affects the correlation for Gulls.
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Figure 8.10: Time series plots for α and σ of the second parts of the Markov
chain simulation for Balls under both types (i) and (ii) of prior. (a),(b): the
type (i) prior; (c),(d): the type (ii) prior.

　

Figure 8.11: Marginal histograms of α and σ of 25000 simulation draws for
Balls under both types (i) and (ii) of prior. (a),(b): the type (i) prior; (c),(d):
the type (ii) prior.
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Figure 8.12: Time series plots for α and σ of the second parts of the Markov
chain simulation for P6T13 under both types (i) and (ii) of prior. (a),(b): the
type (i) prior; (c),(d): the type (ii) prior.

　

Figure 8.13: Marginal histograms of α and σ of 25000 simulation draws for
P6T13 under both types (i) and (ii) of prior. (a),(b): the type (i) prior; (c),(d):
the type (ii) prior.
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Figure 8.14: Time series plots for α and σ of the second parts of the Markov
chain simulation for M6T10 under both types (i) and (ii) of prior. (a),(b): the
type (i) prior; (c),(d): the type (ii) prior.

　

Figure 8.15: Marginal histograms of α and σ of 25000 simulation draws for
M6T10 under both types (i) and (ii) of prior. (a),(b): the type (i) prior; (c),(d):
the type (ii) prior.
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Figure 8.16: Time series plots for α and σ of the second parts of the Markov
chain simulation for Gulls under both types (i) and (ii) of prior. (a),(b): the
type (i) prior; (c),(d): the type (ii) prior.

　

Figure 8.17: Marginal histograms of α and σ of 50000 simulation draws for
Gulls under both types (i) and (ii) of prior. (a),(b): the type (i) prior; (c),(d):
the type (ii) prior.
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Table 8.5: The values of correlation coefficient (C.C.) between α and τ for both
types (i) and (ii) of prior.

Data C.C. of type(i) C.C. of type(ii)

Balls 0.68834 0.66286
P6T13 0.72794 0.70926
M6T10 0.73414 0.73176
Gulls 0.10410 0.19054

　

Figure 8.18: Scatter plots of the joint posterior density of α and τ under the
type (i) prior: (a)-(c) 25000 simulation draws for three data sets (Balls, P6T13,
M6T10); (d) 50000 simulation draws for Gulls.
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Figure 8.19: Scatter plots of the joint posterior density of α and τ under the type
(ii) prior: (a)-(c) 25000 simulation draws for three data sets (Balls, P6T13,
M6T10); (d) 50000 simulation draws for Gulls.
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8.2.4 Case of the independence sampler

For comparison, we applied the two independence samplers to the jumping
densities of (α, σ) under the type (i) priors, as described in §5.2.1. The values
of hyperparameters (a, b, c, d) in Eqs. (4.4)-(4.5) for the type (i) prior densities
and for their jumping densities in Eqs. (5.9)-(5.10) are given in Table 8.1 for
all data sets. Then we performed a single long run simulation for all data sets.
The burn-in time T ∗ and the stopping time T were estimated by using Gelman
and Rubins’s method, as remarked in §8.2. Table 8.6 provides the values of R̂
for respective parameters in the case of (k, l∗, l) = (5, 1000, 5000) for all data
sets. Since each value of R̂ was well below 1.1 for both parameters from Table
8.6, we estimated (T ∗, T ) = (1000, (5× 5000+1000 = 26000)) for all data sets.
Then we carried out the MCMC simulation of the stopping time T = 26000 for
each data.

Table 8.6: Results of the values of the potential scale reduction factor R̂ as the
monitoring convergence diagnostics for the independence samplers of (α, σ) in
the case of k=5 parallel sequences for all data sets.

Data param. R̂ (5 sequences)

α 1.0051
Balls

σ 1.0048

α 1.0101
P6T13

σ 1.0148

α 1.0038
M6T10

σ 1.0051

α 1.0038
Gulls

σ 1.0051

Furthermore, to check the convergence, we divided the single long runs
(second part of 26000 steps for all data sets) into five sequences of equal length,
and calculated the potential scale reduction factor R̂ for α and σ separately.
Table 8.7 summarizes the results for all data sets. We can see that the values
of R̂ here are well below 1.1 for all cases. Then it seems that our single long
runs are sufficient for sampling from the target posterior density.
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Table 8.7: Results of the values of the potential scale reduction factor R̂ as the
monitoring convergence diagnostics for the independence samplers of (α, σ) in
the case of single long run for all data sets.

Data param. R̂ (single long run)

α 1.0055
Balls

σ 1.0016

α 1.0103
P6T13

σ 1.0104

α 1.0159
M6T10

σ 1.0088

α 1.0023
Gulls

σ 1.0013

Figs. 8.20-8.23 show the time series plots for the single long runs of the
Monte Carlo output of α and σ for all data sets under the type (i) prior with
the independence samplers, and their marginal histograms which correspond
to Figs. 8.20-8.23, respectively. From Figs. 8.20-8.22, we can see that each run
of respective parameters does not seem to be stationary. In these simulations,
each of the acceptance rate was around 0.01. From Figs. 8.23 (a) and (b),
we can see that each run of respective parameters looks stationary, but the
acceptance rate was about 0.1. As the simulated results, these values of the
acceptance rate were very low. From Figs. 8.20-8.23, it seems that most of the
shape of the marginal posteriors are distorted. Although the values of R̂ are
well below 1.1 for the independence samplers (from Tables 8.6-8.7), we found
that the use of the independence samplers is not suitable for inference (see
§6.3).
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Figure 8.20: Time series plots for (α, σ) of the second parts of the simulation
for Balls under the (i) uniform priors with the independence samplers and their
marginal histograms of (α, σ) of 25000 simulation draws.

　

Figure 8.21: Time series plots for (α, σ) of the second parts of the simulation
for P6T13 under the (i) uniform priors with the independence samplers and
their marginal histograms of (α, σ) of 25000 simulation draws.
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Figure 8.22: Time series plots for (α, σ) of the second parts of the simulation
for M6T10 under the (i) uniform priors with the independence samplers and
their marginal histograms of (α, σ) of 25000 simulation draws.

　

Figure 8.23: Time series plots for (α, σ) of the second parts of the simulation
for Gulls under the (i) uniform priors with the independence samplers and their
marginal histograms of (α, σ) of 25000 simulation draws.
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8.3 Parametric fitting of the generalized gamma

distribution to the marginal posterior den-

sities

We fitted the generalized gamma distribution to the simulated marginal poste-
rior densities p(α | X) and p(σ | X) in Eqs. (4.9)-(4.10) for the parameters α
and σ, respectively. The generalized gamma distribution with three parameters
λ, ω and ζ is defined as:

g(x | λ, ω, ζ) =
λωζ/λ

Γ(ζ/λ)
xζ−1 exp(−ωxλ); x > 0, λ, ω, ζ > 0. (8.1)

Note that setting the parameter λ = 1 gives the ordinary gamma distribution.
The reason for our choice of the generalized gamma distribution is that it can
represent, by adjusting three parameters (λ, ω, ζ), a wide range of distribution
with single mode and with the range (0,∞) of its variable (Tanemura (2003)).

Furthermore, in order to obtain posterior inference from our simulations
for all data sets, we considered parametric fitting of the generalized gamma
distribution to our simulated marginal posterior densities, will be discussed in
§8.4.

The class intervals, the number of classes and the 95% quantiles of the
observed histograms of respective parameters for all data sets are given in
Table 8.8. Then we obtained numerically the estimates (λ̂, ω̂, ζ̂) by using the
quasi-Newton method for all data sets. Table 8.9 summarizes the results. In the
table, chi-square goodness-of-fit statistics together with skewness and kurtosis
are also given. Figs. 8.24 and 8.25 illustrate the simulated and the estimated
marginal posteriors of respective parameters for all data sets under both types
(i) and (ii) of prior, respectively. We see here that the generalized gamma
distribution fits sufficiently well with the simulated marginal posterior density
in every case.
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Table 8.8: Class intervals, number of classes and 95% quantiles of the observed
histograms of the model parameters.

Data param. type Class intervals No. of classes [ 2.5%, 97.5% ]

α
(i) 0.010 32 [ 0.28758, 0.46964 ]

Balls
(ii) 0.010 29 [ 0.27423, 0.44492 ]

σ
(i) 0.00095 25 [ 0.10404, 0.11754 ]

(ii) 0.00095 23 [ 0.10323, 0.11592 ]

α
(i) 0.0079 24 [ 0.35183, 0.46504 ]

P6T13
(ii) 0.0080 24 [ 0.34421, 0.44932 ]

σ
(i) 0.026 24 [ 3.6910, 4.0766 ]

(ii) 0.028 24 [ 3.6697, 4.0313 ]

α
(i) 0.0075 24 [ 0.30983, 0.41495 ]

M6T10
(ii) 0.0079 22 [ 0.30560, 0.40770 ]

σ
(i) 0.024 23 [ 3.5838, 3.9035 ]

(ii) 0.029 18 [ 3.5698, 3.8818 ]

α
(i) 0.04 27 [ 0.062086, 0.75753 ]

Gulls
(ii) 0.027 26 [ 0.061925, 0.50070 ]

σ
(i) 0.088 22 [ 1.5891, 2.6790 ]

(ii) 0.078 26 [ 1.7141, 2.6086 ]
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Table 8.9: Estimates (λ̂, ω̂, ζ̂) of the generalized gamma distribution (8.1) fitted
to the simulated marginal posterior densities for all data sets under both types
(i) and (ii) of prior. In the fifth column, χ2 represents the chi-square goodness-
of-fit statistics between the simulated posterior and its generalized gamma fit,
χ2

0.05 is the critical value of probability 5% and ν is the degrees of freedom. In the
last column, ‘Skew.’ and ‘Kurt.’ stand for skewness and kurtosis, respectively.

Data param. type ( λ̂, ω̂, ζ̂ ) ( χ2, χ2
0.05, ν ) (Skew.,Kurt.)

α
(i) ( 1.5811, 126.30, 41.701 ) ( 1.211, 44.99, 31 ) ( 0.564, −1.22 )

Balls
(ii) ( 2.7171, 161.560, 27.030 ) ( 1.491, 41.34, 28 ) ( 0.536, −1.25 )

σ
(i) ( 1.0029, 9175.5, 1009.3 ) ( 8.732, 36.42, 24 ) ( 0.533, −1.25 )

(ii) ( 1.0026, 10491.8, 1142.3 ) ( 9.227, 33.92, 22 ) ( 0.493, −1.29 )

α
(i) ( 3.4057, 390.55, 61.576 ) ( 2.345, 35.17, 23 ) ( 0.497, −1.23 )

P6T13
(ii) ( 3.2953, 426.46, 67.782 ) ( 0.9013, 35.17, 23 ) ( 0.577, −1.21 )

σ
(i) ( 4.7359, 0.12513, 364.00 ) ( 0.6166, 35.17, 23 ) ( 0.482, −1.30 )

(ii) ( 4.6805, 0.14490, 373.00 ) ( 0.1847, 35.17, 23 ) ( 0.597, −1.19 )

α
(i) ( 2.7200, 403.90, 68.970 ) ( 0.8819, 35.17, 23 ) ( 0.510, −1.28 )

M6T10
(ii) ( 2.6455, 419.42, 72.108 ) ( 1.346, 32.67, 21 ) ( 0.485, −1.30 )

σ
(i) ( 5.8190, 0.02789, 351.00 ) ( 0.2140, 33.92, 22 ) ( 0.475, −1.31 )

(ii) ( 5.8755, 0.02868, 379.60 ) ( 0.3897, 27.59, 17 ) ( 0.446, −1.33 )

α
(i) ( 3.7595, 5.9889, 1.5802 ) ( 0.8297, 32.67, 21 ) ( −0.427, −1.16 )

Gulls
(ii) ( 3.6795, 41.590, 2.5302 ) ( 1.459, 37.65, 25 ) ( 0.303, −1.45 )

σ
(i) ( 6.0909, 0.01916, 16.023 ) ( 5.215, 38.89, 26 ) ( 1.08, −0.365 )

(ii) ( 7.2422, 0.00760, 19.279 ) ( 25.27, 37.65, 25 ) ( 1.11, −0.301 )
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Figure 8.24: Fitting the generalized gamma distribution to the simulated
marginal posterior density, which is indicated by the symbol •, of respective
parameters under the type (i) prior. (a),(b): Balls; (c),(d): P6T13; (e),(f):
M6T10; (g),(h): Gulls.
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Figure 8.25: Fitting the generalized gamma distribution to the simulated
marginal posterior density, which is indicated by the symbol •, of respective
parameters under the type (ii) prior. (a),(b): Balls; (c),(d): P6T13; (e),(f):
M6T10; (g),(h): Gulls.
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8.4 Posterior inference

Table 8.10 gives simulated marginal posterior summary statistics for the model
parameters under both types (i) and (ii) of prior for all data sets. For finding
posterior modes of respective parameters, the Newton’s method was applied
to the fitted generalized gamma distributions. Marginal posterior quantiles
were computed using numerical integration of the fitted densities. Since all
simulated marginal posteriors of respective parameters are unimodal and not
highly skewed, the 95% highest posterior density intervals include the posterior
mode and the mean. In the last column of the table, the maximum likelihood
estimates (α̂, σ̂) are also given. We calculated the values of (α̂, σ̂) from the log-
likelihood (3.14) numerically (see §6.1.1). For calculating the total potential
energy in Eq. (3.14), we used again the periodic boundary condition (see §8.5).
In the table, the estimates of Ogata and Tanemura (1989) are also given.

From Table 8.10, we see that the marginal posterior modes of each parame-
ter are respectively close to their maximum likelihood estimates under the type
(i) uniform prior for three data sets (Balls, P6T13, M6T10). It is because, for
these three data, the marginal posteriors under the uniform prior are propor-
tional to the likelihood. Then under the type (ii) normal prior, the results of
marginal posterior mode of the respective parameters tend to be smaller than
those for the type (i) prior for three data. Marginal posterior densities which
were fitted to the generalized gamma distribution of α and σ for all data sets
under both types (i) and (ii) of prior are given in Figs. 8.26(a)-(h).

On the other hand, for the Gulls data set, the results of σ under both
types (i) and (ii) of prior are similar, but the results are different for parameter
α. Although the marginal posterior density of σ for the type (ii) prior shows
the slightly larger peak than that for the type (i) prior, they are both said
to be similar (see Fig. 8.26(h)). On the contrary, for the parameter α, the
marginal posterior shows a different spread between type (i) and (ii) priors, as
indicated in Fig. 8.26(g). In order to investigate this difference, we performed
our Bayesian estimation procedure by using the simulated equilibrium point
patterns generated by MCMC of the Soft-Core models for the cases of τ =
0.05, α = 0.2, 0.3, 0.4 (N = 500, V =

√
500×√500), as stated in §6.1.3. These

values of parameters τ and α were selected, as true values, so that they are near
to the maximum likelihood estimate (MLE) of corresponding parameters for
Gulls data. Especially, the true values of α, namely α = 0.2, 0.3 and 0.4 were
chosen due to a rather big standard error (s.e.= 0.22) of the MLE (α̂ = 0.29)
(see Table 8.10). The joint posterior densities of (α, τ) were computed, for each
of type (i) and (ii) priors, from the equilibrium point patterns simulated under
the set of these parameter values. As a result, the marginal posterior density of
α did not show a big difference between type (i) and (ii) priors for all set of the
true parameter values. This result suggests that the different spread between
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marginal posteriors of α from type (i) and from type (ii) priors in Gulls case
should be attributed to the characteristic of the Gulls data set itself.

Furthermore, we also examined the cases of τ = 0.05, α = 0.2, 0.3, 0.4 (N =
100, V =

√
100 × √100), as described in §6.2. Then, we obtained the similar

results to the case of the Gulls data: for the cases of relatively small reduced
density, the marginal posteriors of α showed different spread between two types
of priors regardless of the jumping densities. It means that the different spread
of p(α | X) found in Gulls case might not be attributed only to the charac-
teristic of the Gulls data set itself. We found that when the number of points
N is small, the choice of the priors for α affects the marginal posterior for the
cases of the relatively reduced density.
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Table 8.10: Posterior modes, means and the 95% highest posterior density
intervals (95% HPD intervals) for the model parameters under both types (i)
and (ii) of prior. The values of the reduced density τ are calculated by Eq.
(3.4). In the last column, the maximum likelihood estimates (MLE) are also
given; values in the parentheses are MLE together with standard errors (s.e.)
of Ogata and Tanemura (1989).

Data param. type Mode Mean 95% HPD intervals MLE

α (i) 0.36569 0.37268 [ 0.28428, 0.46277 ] 0.35843
(ii) 0.35353 0.35531 [ 0.27329, 0.43676 ] (0.35, s.e. = 0.04)

Balls σ (i) 0.11027 0.11033 [ 0.10368, 0.11728 ] 0.10969
(ii) 0.10912 0.10928 [ 0.10299, 0.11563 ] (0.11, s.e. = 0.003)

τ (i) 0.42031 0.42077 [ 0.37158, 0.47545 ] 0.41590
(ii) 0.41162 0.41312 [ 0.36665, 0.46217 ] (0.42, s.e. = 0.0003)

α (i) 0.40372 0.40580 [ 0.34803, 0.45792 ] 0.40212
(ii) 0.39672 0.39616 [ 0.34395, 0.44852 ] (0.41, s.e. = 0.03)

P6T13 σ (i) 3.8772 3.8746 [ 3.6901, 4.0567 ] 3.8681
(ii) 3.8479 3.8462 [ 3.6635, 4.0251 ] (3.88, s.e. = 0.10)

τ (i) 0.56311 0.56233 [ 0.51007, 0.61645 ] 0.56046
(ii) 0.55463 0.55446 [ 0.50274, 0.60689 ] (0.56, s.e. = 0.0004)

α (i) 0.35949 0.36086 [ 0.30816, 0.41171 ] 0.35661
(ii) 0.35396 0.35434 [ 0.30420, 0.40506 ] (0.36, s.e. = 0.03)

M6T10 σ (i) 3.7404 3.7391 [ 3.5728, 3.8979 ] 3.7304
(ii) 3.7191 3.7200 [ 3.5597, 3.8691 ] (3.73, s.e. = 0.08)

τ (i) 0.56225 0.56186 [ 0.51299, 0.61060 ] 0.55924
(ii) 0.55586 0.55639 [ 0.50924, 0.60162 ] (0.56, s.e. = 0.0003)

α (i) 0.37789 0.39980 [ 0.055751, 0.77396 ] 0.29190
(ii) 0.28605 0.28068 [ 0.081326, 0.48899 ] (0.29, s.e. = 0.22)

Gulls σ (i) 2.2201 2.1809 [ 1.6888, 2.6115 ] 2.2511
(ii) 2.2291 2.1952 [ 1.7718, 2.5499 ] (2.26, s.e. = 0.21)

τ (i) 0.054215 0.052322 [ 0.031372, 0.075019 ] 0.055746
(ii) 0.054660 0.053550 [ 0.034533, 0.071520 ] (0.06, s.e. = 0.0005)
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Figure 8.26: Comparison of the generalized gamma fits of marginal posterior
densities of α and σ (p(α | X) and p(σ | X)) under both types (i) and (ii)
of prior (the symbol + indicates the densities of the type (i) prior, and the
symbol ◦ represents the densities of the type (ii) prior). (a),(b): Balls; (c),(d):
M6T10; (e),(f): P6T13; (g),(h): Gulls.
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8.5 Model evaluation: diagnostic posterior pre-

dictive checking by using L-statistics

To examine whether our results of Bayesian estimation of two parameter Soft-
Core models were reasonable or not, we computed the L-statistics (or, L-
function) L(r) of the observed data and of the simulated data (equilibrium
point patterns) predicted from the marginal posterior densities of the param-
eters. The L-statistics is known as the second-order diagnostic characteristic
for stationary of the spatial point patterns (Ripley (1977, 1979a, 2004), Besag
(1977), Stoyan et al. (1995), Diggle (2003)).

The L-function is the transformed function of the K-function. The K-
function is similarly categorized into the second-order diagnostic characteristic
and its definition K(r) is,

ρK(r) = E[number of individuals within distance r

of an arbitrary individual], r ≥ 0, (8.2)

where ρ is the number density of Eq. (3.3) (e.g. Cressie (1993)). Note that the
K-function relates to the pair-correlation (or, two body-correlation) function
g(r):

g(r) =
1

2πr

dK(r)

dr
. (8.3)

Then given the observed point pattern, the unbiased estimator K̂(r) of K-
function is represented by

K̂(r) =
1

ρN

N∑
i=1

Ni(r), (8.4)

where Ni(r) denotes the number of individuals within the circle with centre xi

and radius r. However, since individuals outside the region V are not observed,
the estimator K̂(r) is negatively biased. When we calculate the individuals for
an individual near the boundary of the region, counts will be low because indi-
viduals outside the region are not taken into account (Diggle (2003), Schaben-
berger and Gotway (2005)). Then to decrease the edge effects, in this thesis, a
periodic boundary condition is applied, i.e. we regard the rectangular regions
V as a torus, so that the individuals near the opposite edges are considered to
be mutually close. Several methods have been proposed to correct the effects;
see, for example, Ripley (1976, 1979b, 1988, 2004), Stein (1991), Geyer (1998)
and Baddeley (1999).

When the point pattern is considered as Poisson, K(r) is equal to πr2.
There K(r) − πr2 is the deviation from the Poisson pattern. If we transform
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K(r) = πr2 into r =
√
K(r)/π, then the transformed unbiased estimator L̂(r)

is defined as

L̂(r) =

√
K̂(r)/π. (8.5)

Then we can graphically evaluate the type of distribution of a given point
pattern by comparing L̂(r) with the line L(r) = r.

We compared plot of L-statistics L̂(r) graphically for the observed data
with its envelopes of 99 simulated data which were generated by using the
values of the posterior mode of the parameters α and σ given in Table 8.10.
Plots of observed L̂(r) with its simulated envelopes for every data under both
types (i) and (ii) of prior are illustrated in Figs. 8.27(a)-(d) and 8.28(a)-(d),
respectively. From Figs. 8.27 and 8.28, although Gulls data indicates a regular
in short range, every data set shows inhibitory property. And we find that
the L-statistics for observed data are not deviated from the range of upper
and lower envelopes of 99 simulated data for all data sets. It seems that the
L-statistics is not sensitive to the two priors (i) and (ii). These results indicate
the reasonability of our Bayesian estimation of the two parameter Soft-Core
models for spatial point patterns.
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Figure 8.27: Plots of L-statistics for the data and its upper and lower envelopes
from 99 simulated point patterns of the Soft-Core models in the case of the
type (i) prior. The symbol × indicates the values of the L-statistics of the raw
data, and the symbol · represents the values of the L-statistics of the upper and
lower envelopes of simulations. The 45◦ line corresponds to the Poisson model.
The unit of length is equal to

√
V/N in the graph, respectively: (a) Balls; (b)

P6T13; (c) M6T10; (d) Gulls.
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Figure 8.28: Plots of L-statistics for the data and its upper and lower envelopes
from 99 simulated point patterns of the Soft-Core models in the case of the
type (ii) prior. The symbol × indicates the values of the L-statistics of the raw
data, and the symbol · represents the values of the L-statistics of the upper and
lower envelopes of simulations. The 45◦ line corresponds to the Poisson model.
The unit of length is equal to

√
V/N in the graph, respectively: (a) Balls; (b)

P6T13; (c) M6T10; (d) Gulls.
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8.6 Discussions

Data analysis of the spatial point patterns for Balls, P6T13, M6T10, and Gulls
are briefly summarized as follows. First of all, regarding the Balls data, the
posterior mode values of σ and α are about 0.11 and 0.36, respectively (see
Table 8.10). It means that the estimated interaction range of charged steel ball
is about 1.1 mm, which is about twice as long as the diameter of steel ball,
and that the estimated softness of the Soft-Core potential is about n = 5.6.
These results can be considered to be reasonable as a consequence of complex
interactions between steel balls under the existence of charged wall of the plastic
box.

Next, about blue cones in a macaque retina, P6T13 and M6T10, from Ta-
ble 8.10, the values of posterior mode of the parameters (α, n, σ, τ) are about
(0.40, 5.0, 3.8, 0.56) and (0.36, 5.6, 3.7, 0.56), respectively. These values are sim-
ilar in both P6T13 and M6T10; since the two data sets were respectively sam-
pled from near areas in the center of the retina, the above results are quite
natural. These results indicate that since the blue cones represent a relatively
small fraction of the total cone population, the blue cones regularly distribute
in the fovea in order the photoreceptors work efficiently (see Figs 8.27 and
8.28). It will be interesting to analyze a pattern of other type of cones or a
pattern of cones in other primates.

Finally, for the pattern of Gulls, the nests of gulls result in a certain spacing
out one another because of territoriality of gulls. From Table 8.10, the posterior
mode of σ, that is, the mean interval of neighboring nests is about 2.2 meters.
Since the body size of a Gray Gull is a few tens of centimeters, their territory
is not crowded with one another (the posterior mode of τ ∼ 0.05). This agrees
with our result that the reduced density of the nesting pattern of Gulls is rather
small.

In order to investigate the sensitivity of prior and jumping densities, we per-
formed our Bayesian procedure under the uniform priors with normal jumpings
and the normal priors with uniform jumpings by crossing the combination of
prior and jumping densities, as remarked in §6.1.3 and 6.2. Then marginal
posterior densities, modes, means and convergence of respective parameters
were similar to the results of the case of the previous combinations of prior
and jumping density except for the Gulls data set. As stated in §6.3, for large
sample point patterns (N = 500) the influence of the choice of priors upon
posterior is not too strong. On the other hand, for relatively small point pat-
terns, we investigated the case of N = 100. Then, we obtained the similar
results between the case of N = 100 and the Gulls data, as described in §6.3
and §8.4. For the case where the number of points N and the reduced density
τ are relatively small, a bigger number of iteration is needed and the influence
of the choice of priors on posterior is strong for α.
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Chapter 9

Concluding remarks

In this thesis, we have considered Bayesian estimation of the two-parameter
Soft-Core interaction potential models between individuals for various regular
point patterns by using MCMC methods.

For a given point pattern in equilibrium under a certain repulsive inter-
action potential in a finite two-dimensional region, such an equilibrium point
pattern is statistically represented by the Gibbs distribution of Eq. (2.2). The
likelihood of parameters which characterizes the interaction potentials can be
described by the Gibbs distribution. However, since the form of the normal-
izing factor (2.3) of the Gibbs distribution is a high multiplicity of integral, it
is very difficult to obtain the likelihood in general. For this reason, Bayesian
analysis for these spatial point patterns has been scarcely studied. If we make
use of the effective approximate log-likelihood for the Soft-Core models (Ogata
and Tanemura (1989)), then we can consider our Bayesian estimation proce-
dure of parameterized repulsive interactions for various regular point patterns.
The main contribution of the thesis is to develop, through MCMC methods, a
method to obtain the marginal posterior densities of the parameters for the
Soft-Core models for given point patterns. There, the useful approximate
log-likelihood (Ogata and Tanemura (1989)) plays an important part in the
Metropolis-Hastings algorithm. Then two types of prior densities (type (i) and
(ii) prior) of the parameters are applied and jumping densities with similar
type as prior density are applied in Markov chain simulations.

First, we have presented our results of Metropolis-Hastings iterative simu-
lations for various simulated equilibrium point patterns, which were generated
from MCMC of the Soft-Core models for the cases of large and small size.
As the results, when the number of points N is large (N = 500), the coinci-
dence between the shape of each marginal posterior density of α and τ (i.e. σ)
seems to be good regardless of combinations of the prior and jumping densities.
When the number of points N is relatively small (N = 100), the coincidence
between the shape of marginal posterior densities of τ is said to be good for
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all combinations of the prior and jumping densities. On the other hand, for
the parameter α, for the cases of relatively large reduced density, the marginal
posteriors of α under both types (i) and (ii) of prior with each jumping density
seem to be similar in all data sets. On the contrary, for the cases of relatively
small reduced density, the marginal posteriors of α between the type (i) and (ii)
priors show different spread. Then, it seems that priors have strong influence
on posterior for small sample point patterns (see §6.3, 8.4 and 8.6).

Next, we have shown the application of our Bayesian procedure to four real
data sets. In order to obtain posterior inference for real data sets, we consid-
ered parametric fitting of the generalized gamma distribution to the simulated
marginal posterior densities for the parameters. The validity of our procedure
and the model evaluation were examined graphically using L-statistics. Then
reasonable results were obtained, and our Bayesian procedure was shown to be
applicable to a wide class of regular point patterns (see §8.4 and 8.6).

In addition, we also investigated and confirmed MCMC convergence thor-
oughly. Then we evaluated the stopping and the burn-in time of each single
long run by calculating the diagnostics quantity based on independent multiple
short runs with various starting points (Gelman and Rubin (1992), Cowles and
Carlin (1996), Gelman et al. (2004)) (see §5.3 and 8.2).

In our Bayesian procedure, it is essential to use the approximated log-
likelihood for the Soft-Core models given in Eq. (3.14). In our future work,
we will consider the extension of the effective range of the approximated log-
likelihood. Then we are planning to prepare a further paper of investigations
of our Bayesian procedure based on simulated equilibrium point patterns and a
wider class of regular point patterns. Various prior densities of the parameters
will be also considered, then we will discuss as a problem of sensitivity to the
prior density.
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