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A spatial point pattern is a set of locations of points (objects), irregularly distributed within a
designated region and presumed to have been generated by some form of stochastic mechanism
(Diggle (2003)). Each point is considered as a particle, individual of animals or plants, and so on.
During a few decades, the methods of statistical analysis for spatial point patterns have been
developed: various diagnostic statistics and graphs have been studied by using the second-order and
the nearest-neighbor distance methods (Ripley (1977, 1979a, 2004), Besag (1977), Diggle (1979,
2003)); by clumping indices based on the quadrate methods (David and Moore (1954), Morisita
(1954), Lloyd (1967)) or based on the distance methods (Hopkins and Skellam (1954)). Modelling
spatial point patterns for which interactions exist between individuals has been studied by some
authors (see for example Mat'ern (1960), Ripley (1977), Ogata and Tanemura (1981, 1984)). Spatial
point patterns are generally classified into three types: completely random, clustered (aggregated)
and regular. If we observe a point pattern where a certain repulsive force is acting between
individuals, the pattern is called a regular type. For example, if territorial animals or plants live in a
habi%at, a certain spacing out among them happens. Besides if birds fly in formation or fish swim in
shoals, inhibitions between the individuals realize. In other case, if few or many nanometer- or
micrometer-sized dust particles are immersed in a plasma, then the particles with charge form two-
or three-dimensional dust Coulomb crystals. In outer space, the crystals can be observed such as the
tonosphere or commentary tails, efc. In the laboratory, the circular symmetry of the confining
potential and the interaction with the mutual repulsion lead to dust Coulomb crystals, which can be
observed by the naked eyes through the CCD camera with applying the laser light. Then the
behavior of charged dust particles and the structure of the crystals has been investigated (e.g.
Melzer ef al. (1994), Nitter (1996), Juan et al. (1998), Thomas and Watson (1999), Lai and Lin
(1999)).

Many regular point patterns are observed in nature, then we wish to study the stochastic
mechanism of the regular patterns. In this thesis, we are particularly interested in the interaction
between individuals and it will be interesting to describe this certain spacing out by a repulsive
interaction potential. Then we consider these interactions between individuals by repulsive
mteraction potential models.

We assume that a given regular point pattern is in equilibrium under a certain repulsive interaction
potential in a finite two-dimensional region. It is known that such an equilibrium point pattern is
statistically represented by the Gibbs distribution. The likelihood of parameters which characterize
the interaction potential can be described by the Gibbs distribution for a given equilibrium point
pattern. Since the form of the normalizing factor of the Gibbs distribution is a high multiplicity of
integral, it is very difficult to obtain the likelihood function in principle. For this reason, Bayesian
analysis for these spatial point patterns has been hardly studied. Then, we use the useful approximate
log-likelihood (Ogata and Tanemura (1989)), which will be described in Chapter 3.2, and consider
our Bayesian estimation of various regular point patterns. Bayesian inference may help us to
sensitively estimate parameters of the interaction potentials. The essential characteristic of Bayesian



methods is their explicit use of probability for quantifying uncertainty in inferences based on
statistical data analysis (Gelman ef al. (2004)). Because of the development of recent computational
methodology, the complex posterior density can be simulated by using MCMC (Markov chain
Monte Carlo) methods.

In this thesis, our main purpose is as follows. For a point pattern of repulsive by interacting points
in a finite two-dimensional region, we propose a method to obtain the posterior density of the
parameters of the parameterized interaction potential functions by using MCMC methods. There, the
effective approximate log-likelihood for the models (Ogata and Tanemura (1989)) plays an
important role in the Metropolis-Hastings algorithm. Then two types of prior densities corresponding
to the parameters of the repulsive interaction potential models are considered. Jumping (proposal)
densities with similar type as prior density are applied in Markov chain simulations. Our Bayesian
inference is confirmed by applying to various simulated equilibrium point patterns which are
generated from MCMC of the Soft-Core models for the cases of large and relatively small number of
points. In order to obtain posterior inference for real data sets, we consider the fitting of posterior
densities to some parametric functions.

Moreover, MCMC convergence of iterative simulation is also investigated in detail. In the thesis,
the approach of single long run is adopted. After a long time iterative simulation have been run in
the Metropolis-Hastings algorithm, there are following important problems: when should we begin
and finish sampling?, i.e. when does the run begin to reach stationary and when should we terminate
the run? To solve these problems, we evaluate the burn-in and the stopping time of our single long
run based on independent simulated multiple short runs with various starting points (Gelman and
Rubin (1992), Cowles and Carlin (1996), Gelman et al. (2004)), which will be remarked in
Chapte5.3 and 8.2.

The layout of the thesis is as follows. In Chapter 2, a log-likelihood of parameters for equilibrium
point pattern is given. In Chapter 3, the repulsive interaction potential models (Soft-Core potential
models) with two parameters and their effective approximate log-likelihood are introduced. In
Chapter 4, the fundamentals of Bayesian inference for the Soft-Core models are described. In
Chapter 5, the Metropolis-Hastings algorithm for Bayesian inference, its jumping rule and
assessment of the convergence (the burn-in and the stopping time) from iterative simulation are
stated. In Chapter 6, firstly, our Bayesian estimation procedure is applied to various simulated
equilibrium point patterns which are generated by MCMC methods of the Soft-Core models for the
cases of large and relatively small number of points. Then MCMC convergence is evaluated and the
comparison of marginal posterior densities of parameters under two types of the prior densities is
also shown. In Chapter 7, four real data sets are illustrated. Then as a preliminary analysis, we
classify the type of distribution of each point pattern. In Chapter 8, the results of our Bayesian
estimation of the Soft-Core models for these real data sets are shown. There, the assessment of
MCMC convergence is investigated in detail. In order to obtain posterior inference from iterative
simulation, parametric fitting of the generalized gamma distribution to marginal posterior densities is
considered. To examine the validity of our results, the L-statistics for observed data is compared

graphically with the envelopes of simulated point patterns for the posterior mode of model



parameters. We then make reference to the literature of Okabe and Tanemura (2006). Finally, in

Chapter 9, some concluding remarks are given.
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