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Abstract

In data analysis and engineering applications, one often comes across unknown

densities which are complex and multimodal. In such situations, it is natural and

intuitive to break up the original density into a mixture of simpler, structurally less

complex densities, so as to facilitate analysis and modelling. In this thesis, we demon-

strate that it is possible to decompose a multimodal density into simpler densities via

the novel concept of M-decomposability. The letter M derives from “multimodal”

or “mixture”.

For clarity of presentation, this thesis is divided into two parts. Part one consists

of Chapters 1 to 4, and solely considers densities in one-dimension. In Chapter 2,

we introduce the notion of M-decomposability in one-dimension. We say that a den-

sity f is M-decomposable if it is possible to rewrite f as a mixture of two densities

g and h such that the sum of the standard deviations of g and h is less than the

standard deviation of f . If f does not satisfy the above condition, we say that f

is M-undecomposable. To clarify matters, we then provide examples to illustrate

the concept of M-decomposability. We also derive a theorem that states that “All

uniform densities in one-dimension areM-undecomposable” (Theorem 2.1). In Chap-

ter 3, we demonstrate that unimodal densities in one-dimension can be approximated

to an arbitrary level of accuracy using a specially constructed mixture of uniform

densities. In Chapter 4, we make use of Theorem 2.1 and the representation in Chap-

ter 3 to derive a theorem which states that “All symmetric unimodal densities in

one-dimension are M-undecomposable” (Theorem 4.1).

The second part of the thesis builds up on the results derived in the first and

extends to d-dimensions. To avoid confusion of notation, we provide a fresh set of
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notations in Chapter 5 and a list of theorems and definitions to apply to the sec-

ond part of the paper. In Chapters 6 and 7, we provide the theoretical aspects

of M-decomposability in d-dimensions. In Chapter 6, we define the uniform den-

sity in d-dimensions to be the elliptical uniform. To extend the definition of M-

undecomposability to apply d-dimensions, the “standard deviation” that appears

in the first part is replaced by the “square-root of the determinant of covariance”

of the underlying density. This step is crucial to the future development of M-

decomposability in d-dimensional. We derive a theorem that says that “All elliptical

uniform densities in d-dimension are M-undecomposable”. In Chapter 7, we ex-

tend Theorem 4.1 derived in Chapter 4 to d-dimensions, i.e., “All elliptical unimodal

densities in d-dimension are M-undecomposable” (Theorem 7.2).

In Chapter 8, we derive a theorem which links M-decomposability with Kullback-

Leibler divergence. This provides justification of using M-decomposability in a num-

ber of statistical applications, namely clustering and density estimation. Simulation

examples of both clustering and density estimation are provided in the chapter. On

top of that, we also demonstrate the application of M-decomposability to real data

cluster analysis, using the Iris dataset as test data. The results not only show thatM-

decomposability can be used to improve cluster analysis and density estimation, but

also suggest that M-decomposability is a viable criterion for cluster discrimination.

Concluding remarks are given in Chapter 9.
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Chapter 1

Introduction

In this thesis, we introduce the notion of M-decomposability in probability den-

sity functions and present M-decomposability as an alternative non-parametric ap-

proach to statistical analysis. When dealing with an unknown density with possibly

complex underlying structure, it is natural and intuitive to break up the original den-

sity into a mixture of simpler, structurally less complex densities, so as to facilitate

analysis and modelling. We demonstrate that the above can be achieved via the con-

cept of M-decomposability. Conceptually, M-decomposability is a non-parametric

approach to data analysis and statistical modelling, which is based on a natural strat-

egy in the spirit of divide-and-conquer. One important aspect of M-decomposability

is that it can either be applied as a standalone tool, or provide support to improve

existing methods in data analysis and modeling. As such, the implementation of

M-decomposability can have important consequences in statistics and scientific ap-

plications. To the best of our knowledge, the very concept of M-decomposability is

the first of its kind in the literature of statistics.
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1.1 Existing Parametric and Nonparametric Ap-

proaches to Data Analysis

Representing a complicated density via parametric or semi-parametric models

has become routine in statistical data analysis. The finite mixture model method

is probably the most commonly used parametric or semi-parametric approach, and

is treated in great detail in [McLachlan and Basford , 1988], [McLachlan and Peel ,

2000] and many others. The idea is to attempt to model a given sample as a mixture

of parametric densities (usually unimodal, often Gaussian!), where the parameters

of the mixture components (location, scale and number of underlying components)

are usually derived using maximum likelihood estimation. Kernel density estimation

is a popular semi/non-parametric approach to data analysis, and has been covered

by [Scott , 1992], [Silverman, 1986], [Wand and Jones , 1995] among many others.

Here, the problem of parameter estimation in the mixture model approach is being

transformed to that of bandwidth estimation. It is well known that bandwidth esti-

mation works best for densities which are approximately elliptical unimodal, and is

problematic with densities comprising of undulating profiles.

1.2 M-Decomposability and Modality

The notion of M-decomposability derived in the thesis is closely related to the

aspects of modality of a probability density function. Multimodal densities are, by

definition, structurally complex and it is both natural and desirable to have multi-

modal densities represented as mixtures of structurally simpler, unimodal densities as

far as the possibility arises. The ideas introduced in this thesis can be implemented

either as a standalone tool to locate modally simpler densities within a multimodal
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density, or as a supplement to further improve existing statistical methodologies like

mixture models and kernel density estimation.

As M-decomposability is a novel idea in this thesis, we build its theoretical foun-

dations from scratch. One important class of statistical distributions is the class of

symmetric unimodal distributions, among which the Gaussian is perhaps the most

commonly used. Unimodality and symmetric unimodality have been previously in-

vestigated by [Anderson, 1955] and [Ibragimov , 1956] among many others. (See,

for example, the references on pg 8870 accompanying the section on Unimodality in

[Kotz et al., 2005]. The class of symmetric unimodal distributions is a more general

and flexible class of distributions than the Gaussian (and many others with specific

functional forms), without the strongly assumptive functional constraints.

A complimentary class of the symmetric unimodal distributions is the class of

multimodal distributions. In this paper, we attempt to quantify the fundamental

differences between the densities of unimodal and multimodal distributions. Intu-

itively, it is possible to express a multimodal density as a mixture of functionally

simpler, unimodal ones, such that the sum of the a certain measure of “scatter” of

each unimodal density component is less than that of the original density. One pos-

sible measure of scatter is to consider the “hypervolume” of the covariance matrix

of the density. Fig 1.1 shows that a bimodal density has a larger “scatter” than its

mixture components. In this visual example, it is clear that the original density can

be expressed as a mixture of two densities with simpler structure. On the other hand,

it may be difficult to achieve the same for unimodal densities. The main result of this

paper is developed from this relatively simple observation.
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1.3 Layout of Thesis

For clarity, this thesis is presented in the following chronological order. From

Chapters 2 to 4, we only consider probability density functions in one-dimension. The

extension from one-dimension to a more general scenario in d-dimensions is presented

from Chapters 5 onwards.

In Chapter 2, we introduce the notion of M-decomposability of probability den-

sity functions in one-dimension. The prefix ‘M’ in “M-decomposability” can mean

both ‘multimodal’ and ‘mixture’. Examples are provided to illustrate the concept

of M-decomposability. In Chapter 3, we demonstrate that unimodal densities in

one-dimension can be approximated using a specially constructed mixture of uniform

densities. In Chapter 4, we derive an inequality on symmetric unimodal densities in

one-dimension. This ends the first part of the thesis.

The second part of the thesis builds up on the results derived in the first and

extends to d-dimensions. To avoid confusion of notation, we provide a fresh set of

notations in Chapter 5 and a list of theorems and definitions to apply to the second

part of the paper. In Chapters 6 and 7, the theoretical aspects of M-decomposability

in d-dimensions are documented. All d-dimensional extensions to theorems and lem-

mas derived in Chapters 2 and 4 are proven in Chapters 6 and 7. In Chapter 6, we

define the uniform density in d-dimensions to be the elliptical uniform. This step is

crucial to the future development of M-decomposability in d-dimensional.

In Chapter 8, we derive a theorem which provides justification of using M-

decomposability in a number of statistical applications, namely clustering and den-

sity estimation. Simulation examples of both clustering and density estimation are

provided in the chapter. On top of that, we also demonstrate the application of

M-decomposability to real data cluster analysis, using the Iris dataset as test data.

Concluding remarks are given in Chapter 9.
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Figure 1.1. Sample from multimodal density. Blue ellipse denotes covariance struc-
ture of original density; green ellipses denote covariance structures of each mixture
component.
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Chapter 2

M-Decomposability

The following notations apply to the first part of this thesis, from Chapter 2 to

Chapter 4. We denote the mean and the standard deviation of a one-dimensional

density f by µf and σf respectively. The density of the uniform distribution on the

support [a, b] is denoted by U(· |a, b) for (a < b). As for unimodality in one-dimension,

we say that f is unimodal with mode m if there exists a real number m such that f

is non-decreasing on (−∞,m) and non-increasing on (m,∞). If f does not satisfy

the above, we say that f is multimodal. Our definition of unimodality is commonly

used in textbooks and is comparable with the definitions given in [Dharmadhikari

and Joag-Dev , 1987] and [Kotz et al., 2005]. If we also have f(m− x) = f(m+ x) on

top of unimodality, we say that f is symmetric unimodal with mode m.

2.1 Definitions

A density f can always be written as a two-component mixture, i.e. in the form

f(x) = α g(x) + (1− α)h(x) (2.1)
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where 0 < α < 1. Conventionally, g and h are known as the component densities

of f . In general, the number of component densities are not limited to two. In this

paper, however, the focus is on the decomposition of a density into two components.

We define decomposition pairs of a probability density function f as follows:

Definition 2.1 (Decomposition Pair) Given a probability density function f , a

pair of densities {g, h} satisfying Eq (2.1) is defined as a decomposition pair of f .

It is clear that there exist infinitely many possible decomposition pairs for a given f .

Definition 2.2 (M-Decomposability) For a given probability density function f ,

if there exists a decomposition pair {g, h} such that

σf > σg + σh ,

then f is defined to be M-decomposable. Otherwise, f is M-undecomposable. If, for

all decomposition pairs {g, h},

σf < σg + σh ,

then f is strictly M-undecomposable.

2.2 Examples

Example 2.1 (Mixture Density of 2 Gaussians) Let p be a mixture of two

Gaussians such that

p(x) = 0.5N (x| −m, 1) + 0.5N (x|m, 1) .

Here, N (·|µ, σ) denotes the density of the Gaussian with mean µ and standard de-

viation σ, and m ≥ 0. The original density p has a standard deviation σp which
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is
√

1 +m2. One possible decomposition pair {q, r} is easily obtained by setting

q(x) = N (x|−m, 1) and r(x) = N (x|m, 1), yielding σq + σr = 2. If m >
√

3,

then σp > σq + σr and accordingly p is M-decomposable. Fig 2.2 shows the densities

of p with m = 3 and m =
√

3. The density of p with m = 3 is an example of an

M-decomposable density.
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Figure 2.1. Densities in Example 2.1: p with m = 3 and
√

3; denoted by solid and
broken lines respectively.
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From the above argument, a density is likely to be M-decomposable if it is a

mixture of two distantly located densities. In Example 2.1, p is M-decomposable for

all m >
√

3 by considering the given decomposition pair {q, r}. It is actually possible

to find another decomposition pair {q∗, r∗} of p such that σq∗ +σr∗ < 2. For example,

set q∗ to be p truncated above 0 (hence r∗ is p truncated below 0). Then, regardless

of m, we must have σq∗ = σr∗ < 1. We are therefore able to conclude that when

m =
√

3, p is M-decomposable as well. For 0 < m <
√

3, it is difficult to determine

the M-decomposability of p.

Next, we present a class of M-decomposable density.

Theorem 2.1 All uniform densities are M-undecomposable.

To prove Theorem 2.1, we need to establish the following lemma first.

Lemma 2.1 (Density with Minimum Variance) Let f be a probability density

function such that f(x) ≤Mf <∞ for all x. Then

σf ≥
1

Mf

√
12
.

Identity holds if and only if f is U( · |t, t+ 1/Mf ) for real t’s.

Proof We prove Lemma 2.1 in the spirit of Chebyshev’s inequality. Set µf = 0

without loss of generality. Let the density of u be

u(x) = U(x| − 1

2Mf

,
1

2Mf

) .

Therefore, µu = 0 and σu = 1/(Mf

√
12). It is also clear that

f(x)


≤ u(x) when |x| ≤ 1

2 Mf
;

≥ u(x) when |x| > 1
2 Mf

.
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Since µf = µu = 0, we obtain

σ2
f − σ2

u =

∫
x2 {f(x)− u(x)} dx

=

∫
|x|≤ 1

2 Mf

x2 {f(x)− u(x)︸ ︷︷ ︸
≤0

} dx+

∫
|x|> 1

2 Mf

x2 {f(x)− u(x)︸ ︷︷ ︸
≥0

} dx (∗)

≥ 1

4M2
f

∫
{f(x)− u(x)} dx = 0 .

Therefore, σ2
f ≥ σ2

u and hence σf ≥ σu. Identity holds if and only if both terms of (∗)

equal to 0, that is f(x) = u(x).

Using Lemma 2.1, we are ready to prove Theorem 2.1.

Proof [Proof of Theorem 2.1] Let u be a uniform density. We need to prove that for

any decomposition pair {v, w} of u,

σu ≤ σv + σw .

Without loss of generality, set max(u) = M and therefore, and σu = 1/(M
√

12).

Since u(x) = α v(x) + (1− α)w(x), we have

v(x) ≤ u(x)

α
≤ M

α
; w(x) ≤ u(x)

1− α
≤ M

1− α
. (2.2)

Using Lemma 2.1, the standard deviations of v and w must satisfy

σv ≥
α

M
√

12
= ασu; σw ≥

1− α

M
√

12
= (1− α)σu; (2.3)

yielding

σv + σw ≥ σu . (2.4)

Remark For identity in Eq (2.4) to hold, equality has to hold for both cases in

Eq (2.3). From Lemma 2.1, this occurs if and only if v is uniform with max(v) = M/α

and w is uniform with max(w) = M/(1 − α). The original density u can be written

as u(x) = U(x|a, b) where b = a + 1/M . Identity holds in Eq (2.4) if and only if v

and w are such that v(x) = U(x|a, c) and w(x) = U(x|c, b) where a < c < b.
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The uniform distribution forms a natural divider between unimodal and multi-

modal distributions. When the density is cup-shaped with depression occurring near

the centre, we have a multimodal distribution. On the other hand, if the density

is bell-shaped, with the mode located around the middle, an unimodal distribution

is formed. Intuitively, unimodal densities are more likely to be M-undecomposable.

In the next example, we investigate the M-decomposability of a skewed unimodal

density.

Example 2.2 (L-Shaped Density) Let the probability density function p be

p(x) = 0.1U(x|0, 1) + 0.9U(x|0, 9) ,

as depicted in Fig 2.2. The standard deviation of p is σp =
√

2257/300 > 2.742. One

can also write p as p(x) = 0.2 q(x) + 0.8 r(x), where q(x) = U(x|0, 1) and r(x) =

U(x|1, 9). Now, we can easily compute σq =
√

1/12 < 0.289 and σr =
√

16/3 <

2.310. Hence, σq + σr < 2.599 < σp and thus p is M-decomposable.
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Figure 2.2. Density p which is shown in Example 2.2.
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Thus, we have a skewed unimodal density p which is M-decomposable. As such,

we conclude that not all unimodal densities are M-undecomposable.
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Chapter 3

Representation of Unimodal

Densities

From Theorem 2.1, all uniform densities are M-undecomposable. We shall pro-

ceed to show that the class ofM-undecomposable densities can be extended to include

symmetric unimodal densities. For that purpose, we need to represent symmetric uni-

modal densities via a mixture of uniform densities in a special way presented in this

section.

3.1 Approximation via Uniforms

Theorem 3.1 (Representation of Unimodal Densities via Uniforms) Let f

be an unimodal density whose kth moment is finite and is equal to M , where k is

even. Then, for all ε > 0, it is possible to construct gn =
∑n

i=1 ωiui, a mixture of

uniforms such that

|
∫ ∞

−∞
xk gn(x) dx−M | < ε .

15



Here, each ui is the density of the uniform on the interval Ii,n satisfying I1,n ⊇ I2,n ⊇

. . . ⊇ In,n, and the weight ωi, corresponding to ui, is proportional to the length of the

interval Ii,n.
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Proof In this proof, all integrals are evaluated from −∞ to ∞. As both f(x) and

xk f(x) are non-negative and integrable, we can define the following functions on

non-negative values of y, for a given f :

p(y) =

∫
min{f(x), y} dx ; q(y) =

∫
xk min{f(x), y} dx . (3.1)

Then, both p and q are increasing with p(0) = q(0) = 0. If f is unbounded, then p

and q are strictly increasing for all y with limy→∞ p(y) = 1 and limy→∞ q(y) = M . If f

is bounded such that max(f) = F , then p and q are strictly increasing for 0 ≤ y ≤ F

and p(F ) = 1 and q(F ) = M .

We can rewrite f as a sum of two positive functions in the form

f(x) = f (1)(x) + f (2)(x) (3.2)

where f (1)(x) = min{f(x), Y } and Y is positive. For a given ε1 > 0, it is possible to

choose Y such that

1− ε1 <

∫
f (1)(x) dx = p(Y ) < 1, (3.3)

M − ε1 <

∫
xk f (1)(x) dx = q(Y ) < M . (3.4)

The above “slicing” ensures that the function f (1) is bounded from above by Y . Let

h = Y/n. Define two sets of real numbers {an,1, . . . , an,n} and {bn,1, . . . , bn,n} by

an,j = inf{x|f(x) ≥ jh} and bn,j = sup{x|f(x) ≥ jh} .

Let In,j denote the interval [an,j, bn,j] and let un,j be the density of the uniform on the

interval In,j. By construction, a’s are monotone non-decreasing and b’s are monotone

non-increasing, ensuring that In,1 ⊇ In,2 ⊇ . . . ⊇ In,n. Setting

ωn,j =
bn,j − an,j∑n

i=1(bn,i − an,i)
,
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we create a density gn such that gn(x) =
∑n

j=1 ωn,j un,j(x). Next, rewrite gn as a sum

of two positive functions in the form of

gn(x) = g(1)
n (x) + g(2)

n (x) (3.5)

where g
(1)
n (x) =

∑n
j=1(bn,j − an,j)hun,j(x). Here, all three functions gn, g

(1)
n and g

(2)
n

are proportional to one another. Each uniform component (bn,j−an,j)hun,j of g
(1)
n has

thickness h. As depicted in Fig 3, we have constructed g
(1)
n such that it is dominated

everywhere by f (1). Unimodality of f ensures that

0 ≤ f (1)(x)− g(1)
n (x) ≤ min(f(x), h) ≤ h .

It is then possible to choose n (and hence h) such that∫
|g(1)

n (x)− f (1)(x)| dx =

∫
{f (1)(x)− g(1)

n } dx = p(h) < ε1 (3.6)

∫
|xk g(1)

n (x)− xk f (1)(x)| dx =

∫
xk {f (1)(x)− g(1)

n (x)} dx = q(h) < ε1 . (3.7)

Applying the triangle inequality on integrals twice, we have

|
∫
xk gn(x) dx−M | ≤

∫
|xk gn(x)− xk f(x)| dx

≤
∫
|xk g(1)

n (x)− xk f (1)(x)| dx+

∫
|xk f (2)(x)| dx+

∫
|xk g(2)

n (x)| dx .
(3.8)

The first term on the last inequality is less than ε1, from Eq (3.7). The second term

is also less than ε1, ensured by Eqs (3.2) and (3.4). To quantify the third term, note

that from Eqs (3.5) and (3.6),∫
g(2)

n (x) dx = 1−
∫

g(1)
n (x) dx < 1−

∫
f (1)(x) dx+ ε1 < 2 ε1

and therefore,
∫
g

(1)
n (x) dx > 1 − 2 ε1. Furthermore, since g

(1)
n and g

(2)
n are propor-

tional,

g(2)
n (x) <

2 ε1
1− 2 ε1

× g(1)
n (x) <

2 ε1
1− 2 ε1

× f(x)
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and hence ∫
xk g(2)

n (x) dx <
2 ε1

1− 2 ε1
×

∫
xk f(x) dx =

2 ε1
1− 2 ε1

×M .

Choosing ε1 < 1/4, the right side of Eq (3.8) becomes less than 2ε1(1+2M). Therefore,

starting with any ε > 0 and setting

ε1 = min{1

4
,

ε

2(1 + 2M)
} ,

we attain |
∫
xk gn(x) dx−M | < ε with the constructed gn.
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Chapter 4

Symmetric Unimodal Densities

In Chapter 2, we proved Theorem 2.1, which states that all uniform densities are

M-undecomposable. In this chapter, we shall extend M-undecomposable densities

to include a more general class of densities.

Theorem 4.1 (Inequality on Symmetric Unimodal Densities) Let f be a

symmetric unimodal density with finite variance. Then, for any decomposition pair

{g, h},

σf ≤ σg + σh .

Proof From Theorem 3.1, it is possible to approximate f as a mixture of uniform

components as shown below, such that the variances converge:

f(x) =
k1

k1 + . . .+ kn

U(x| − k1, k1) + . . .+
kn

k1 + . . .+ kn

U(x| − kn, kn) . (4.1)

Without loss of generality, we have set the mean m to 0. As f and all uniforms

appearing in Eq (4.1) above have means fixed at 0, the variance of f is computed to

be

σ2
f =

∫
x2 f(x) dx =

k3
1 + . . .+ k3

n

3 (k1 + . . .+ kn)
. (4.2)
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As a result of f being decomposed into a mixture of two densities g and h, each

uniform component is consequently broken up into a mixture of two densities as well.

The ith uniform component becomes

U(x| − ki, ki) = αi vi(x) + (1− αi)wi(x) , (4.3)

where αi’s are real numbers such that 0 ≤ αi ≤ 1. Here, we allow some but not all of

αi’s to assume the trivial values of 0 or 1 to ensure the generality of the separation

of f . Using Eqs (4.1) and (4.3), we can rewrite f in terms of ui’s and vi’s as follows:

f(x) = { k1 α1

k1 + . . .+ kn

v1(x) + . . .+
kn αn

k1 + . . .+ kn

vn(x)}

+ { k1 (1− α1)

k1 + . . .+ kn

w1(x) + . . .+
kn (1− αn)

k1 + . . .+ kn

wn(x)} .

Assigning α g(x) and (1− α)h(x) the first and second terms respectively, we have

α g(x) =
k1 α1

k1 + . . .+ kn

v1(x) + . . .+
kn αn

k1 + . . .+ kn

vn(x) ,

(1− α)h(x) =
k1 (1− α1)

k1 + . . .+ kn

w1(x) + . . .+
kn (1− αn)

k1 + . . .+ kn

wn(x) ,

or more compactly,

g(x) ∝ k1α1 v1(x) + . . .+ knαn vn(x) = l1 v1(x) + . . .+ ln vn(x) , (4.4)

h(x) ∝ k1(1− α1)w1(x) + . . .+ kn(1− αn)wn(x) = m1w1(x) + . . .+mnwn(x)

where li ≡ kiαi and mi ≡ ki(1− αi). Note that

li +mi = ki (4.5)

for all 1 ≤ i ≤ n. By the choice of α’s, we circumvent the trivial situation where

g(x) = 0 or h(x) = 0 as at least one l must be neither 0 nor 1. The same applies to

m’s.

Next, using Eq (4.3) and Theorem 2.1, we obtain

σvi
≥ kiαi√

3
=

li√
3

and σwi
≥ ki(1− αi)√

3
=
mi√

3
.
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From Eq (4.4), µg, the mean of g can be expressed in terms of means of vi’s as

µg =
l1 µv1 + . . .+ ln µvn

l1 + . . .+ ln
.

Consequently, the variance of g becomes

σ2
g =

∫
x2 g(x) dx− µ2

g

=
l1σ

2
v1

+ . . .+ lnσ
2
vn

l1 + . . .+ ln
+ {

l1µ
2
v1

+ . . .+ lnµ
2
vn

l1 + . . .+ ln
− (

l1 µv1 + . . .+ ln µvn

l1 + . . .+ ln
)2}

≥
l1σ

2
v1

+ . . .+ lnσ
2
vn

l1 + . . .+ ln
≥ l31 + . . .+ l3n

3 (l1 + . . .+ ln)
.

(4.6)

The first inequality in Eq (4.6) is the result of Jensen’s inequality, ensuring that

l1µ
2
v1

+ . . .+ lnµ
2
vn

l1 + . . .+ ln
≥ (

l1 µv1 + . . .+ ln µvn

l1 + . . .+ ln
)2 . (4.7)

Similarly, the variance of h can be bounded from below as

σ2
h ≥

m3
1 + . . .+m3

n

3 (m1 + . . .+mn)
, (4.8)

yielding,

σg + σh ≥
1√
3
· { (

l31 + . . .+ l3n
l1 + . . .+ ln

)
1
2 + (

m3
1 + . . .+m3

n

m1 + . . .+mn

)
1
2 }.

From Eq (4.2), we have

σf =
1√
3
· (k

3
1 + . . .+ k3

n

k1 + . . .+ kn

)
1
2 .

Therefore, Lemma 4.1 which follows immediately below is a sufficient condition for

the inequality σf ≤ σg + σh to hold. We are now only left with proof of Lemma 4.1

to complete the proof of Theorem 4.1.

Lemma 4.1 Let ai, bi, ci be sequences of non-negative real numbers such that for all

i, ai = bi + ci and ai > 0. Then the following inequality holds for any positive integer

n:

(
a3

1 + . . .+ a3
n

a1 + . . .+ an

)
1
2 ≤ (

b31 + . . .+ b3n
b1 + . . .+ bn

)
1
2 + (

c31 + . . .+ c3n
c1 + . . .+ cn

)
1
2 .

Equality holds if and only if the sequences ai, bi and ci are linearly dependent.
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Proof We prove the inequality in the spirit of [Hardy et al., 1988] and [Pòlya and

Szegö, 1972].

Set x ≡ [x1, · · · , xn]T , y ≡ [y1, · · · , yn]T and z ≡ [z1, · · · , zn]T and similarly for

a,b, c. Let x = ty + (1− t) z, i.e. xi = t yi + (1− t) zi for all i. Furthermore, define

the function ψ as follows:

ψ(x) = (
x3

1 + . . .+ x3
n

x1 + . . .+ xn

)
1
2 (4.9)

and set φ(t) = ψ(ty + (1 − t) z) ≡ ψ(x) where 0 ≤ t ≤ 1. It suffices to prove that

φ′′(t) ≥ 0 for 0 ≤ t ≤ 1. This is an immediate consequence of Jensen’s inequality as

φ′′(t) ≥ 0 implies φ(t) ≤ t φ(0) + (1− t)φ(1). Setting t = 1/2, we have

ψ(
y

2
+

z

2
) ≤ 1

2
ψ(y) +

1

2
ψ(z).

Denoting by y = b, z = c, this becomes 2ψ(a/2) ≤ ψ(b) + ψ(c). Using Eq (4.9),

ψ(
a

2
) = (

1

2
)(3−1)· 1

2 · ψ(a) =
1

2
· ψ(a).

Therefore φ′′(t) ≥ 0 implies ψ(a) ≤ ψ(b) + ψ(c) as required. Equality holds if and

only if φ′′(t) = 0.

We define φ as

φ(t) = ψ(x) = (Σx3
i )

1
2 (Σxj)

− 1
2 . (4.10)

Differentiating once with respect to t, we have

φ′(t) = (
3

2
) · φ(t) · [Σ x3

i ]
−1 · [Σ x2

k (yk − zk)]

− (
1

2
) · φ(t) · [Σxj]

−1 · [Σ(yk − zk)] .

(4.11)
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Differentiating again with respect to t, we have

φ′′(t) = (
3

2
) · φ′(t) · [Σ x3

i ]
−1 · [Σ x2

k (yk − zk)]

+ (
3

2
) · φ(t) · (−1) · [Σ x3

i ]
−2 · (3) · [Σ x2

k (yk − zk)]
2

+ (
3

2
) · φ(t) · [Σ x3

i ]
−1 · (2) · [Σ xk (yk − zk)

2]

− (
1

2
) · φ′(t) · [Σxj]

−1 · [Σ(yk − zk)]

− (
1

2
) · φ(t) · (−1) · [Σxj]

−2 · [Σ(yk − zk)]
2 .

(4.12)

After some rearrangements, we have

φ′′(t)

φ(t)
=

3

4
· { [Σxj]

−1 · [Σ(yk − zk)]− [Σx3
i ]
−1 · [Σx2

k (yk − zk)] }2︸ ︷︷ ︸
A

+ (3) · [Σx3
i ]
−2 · { [Σx3

i ] · [Σxj(yj − zj)
2]− [Σx2

k (yk − zk)]
2 }︸ ︷︷ ︸

B

.

(4.13)

Here, term A is a square and therefore A ≥ 0. To prove that B ≥ 0, set p2
i = x3

i and

q2
j = xj(yj − zj)

2, and therefore we obtain

B = [Σp2
i ] · [Σq2

j ]− [Σpk qk]
2 ≥ 0, (4.14)

as an immediate consequence of Cauchy-Schwarz’s inequality. As such, φ′′(t)/φ(t) ≥ 0

and therefore φ′′(t) ≥ 0, due to the non-negativeness of xi, yi and zi.

Next, for B = 0 to hold in Eq (4.14), there must exist a real number s such

that pi = s qi for all i, implying that xi = s (yi − zi). When this happens, term A in

Eq (4.13) becomes 0 as well. Combining with the initial condition xi = t yi + (1−t) zi,

we have (s − t) yi = (s − t + 1) zi, i.e. the sequence yi and zi (and hence bi and ci)

must be linearly dependent to ensure that A = B = 0, resulting in φ′′(t) = 0. Hence

Lemma 4.1 is proven and that consequently proves Theorem 4.1.

The following theorem spells the condition for equality in Theorem 4.1 to hold.

Theorem 4.2 In Theorem 4.1, σf = σg + σh holds if and only if f is uniform and

f(x) = U(x|a, b), g(x) = U(x|a, c), h(x) = U(x|c, b) where a < c < b.
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Proof To ensure that σf = σg + σh, identities must hold in Eqs (4.6) and (4.8). In

Eq (4.6), identity in the first inequality is achievable only if µv1 = . . . = µvn . Similarly,

we must have µw1 = . . . = µwn . As for the second inequality in Eq (4.6), identity

holds if and only if vi(x) = U(x| − ki, Ki) and wi = U(x|Ki, ki) for all i. When this

occurs, we have |µvi
− µwi

| = li + mi = ki (or µvi
− µwi

= ±ki) for all i. The only

possible solution is k1 = . . . = kn and K1 = . . . = Kn. Hence, the necessary condition

is that f is uniform with the prescribed decomposition. The sufficient condition is

trivial.

The results in this chapter can be summarized as follows: “The uniform density

is M-undecomposable. All other symmetric unimodal densities with finite variances

are strictly M-undecomposable.”
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Chapter 5

Transition from One to

d-Dimensions

In Chapter 2, the notion of M-decomposability in one-dimension was introduced.

Then, through Chapter 4, we proved that all symmetric unimodal densities in one-

dimension with finite variances are M-undecomposable.

The chapters that proceed further contribute to M-decomposability both in

the theoretical and practical aspects. Theoretically, we extend the concept of M-

decomposability to apply to d-dimensions, where d may assume any positive integer

value. As the main result of this thesis, we prove that, using a suitable extension,

the inequality on symmetric unimodal densities derived originally for one-dimension

applies to higher dimensions. Furthermore, we provide a theoretical justification for

using M-decomposability for statistical applications, e.g. clustering, mode-finding

and density estimation.
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5.1 Notations and Theorems for d-Dimensions

For the proceeding chapters, we adopt the following notations. We assume that all

probability density functions are defined on the d-dimensional support. Rd denotes

the (d× 1) vector of real numbers, The (d× 1) mean vector of a probability density

function f is denoted by µf , and Σf denotes the (d× d) covariance matrix of f . For

any square matrix M , the determinant of M is represented by |M |. The zero matrix

or zero vector is denoted by 0; the identity matrix of order d is denoted by Id. A real

d× d matrix Q is said to be orthogonal if the product of Q and its transpose is equal

to the identity matrix, i.e. if

Q ·QT = Id .

From the above, it is clear that all orthogonal matrices take 1 or −1 as determinants.

The subset of orthogonal matrices, whose determinant is 1, is known as special or-

thogonal. We denote the group of d × d orthogonal matrices and special orthogonal

matrices by O(d) and SO(d) respectively. The indicator function, IA, is defined as

follows:

IA =


1 if A is true;

0 otherwise.

On top of the above, the following list of definitions and theorems are used in the

proceeding chapters. Proofs of theorems listed in this chapter can be found in many

statistics textbooks and are hence omitted.

Definition 5.1 (Spherical Densities) We say that f is spherical if there exists

x0 ∈ Rd such that

|x1 − x0| = |x2 − x0| ⇒ f(x1) = f(x2)

Remark One alternative equivalent definition is that there exists a function f̃ such
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that

f(x) = f̃(|x− x0|) .

Definition 5.2 (Undirectional Densities) We say that f is undirectional if the

covariance matrix of f is a multiple of the identity matrix, i.e. there exists k > 0

such that

Σf = k Id .

Definition 5.3 (Uniform Densities) We say that f is uniform if there exists a

subset A ⊂ Rd such that

f(x) ∝ Ix∈A .

The constant of proportionality, which has been omitted for clarity, is computed as

(

∫
x∈A

Ix∈A dx)−1 .

This term can be physically interpreted as the reciprocal of the hypervolume of the

subset A.

If f is of the form

f(x) ∝ I(x−x0)T M (x−x0)<r2 , (5.1)

where M is an positive semidefinite symmetric matrix, then we say f is elliptical

uniform. If, on top of that, M is undirectional, then M = k Id and

f(x) ∝ I(x−x0)T (x−x0)<r′2 = I|x−x0|<r′ , (5.2)

we say f is spherical uniform. (r′2 = r2/k).

Theorem 5.1 (Change of Variables) Let fx be a probability density function de-

fined on x ∈ Rd. Let M be an invertible d × d matrix and y = M x define a linear

transformation of x. Then y has a probability density function given by

fy(y) = fx(x)/|M | = fx(M
−1 y)/|M | . (5.3)
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Under the linear transformation M , we have

µfy = M · µfx (5.4)

and

Σfy = M · Σfx ·MT . (5.5)

Corollary 5.1 (Orthogonal Invariance and Undirectionality) Let f be an

undirectional density and O(d) denote the group of d × d orthogonal matrices. If

an operation H ∈ O(d) is applied onto the support, the covariance matrix of the

transformed density remains invariant;

H · Σf ·HT = H · (k Id) ·HT = k H HT = k Id = Σf .

Definition 5.4 (Hyperspherical Coordinates) We define a coordinate system in

a d-dimensional Euclidean space (d > 2) in which the coordinates consist of a radial

coordinate r and d − 1 angular coordinates φ1, . . . , φd−1. If xi are the Cartesian

coordinates, then we may define

x1 = r cos(φ1)

x2 = r sin(φ1) cos(φ2)

x3 = r sin(φ1) sin(φ2) cos(φ3)

...

xd−1 = r sin(φ1) · · · sin(φd−2) cos(φd−1)

xd = r sin(φ1) · · · sin(φd−2) sin(φd−1) .

The hyperspherical element can be derived from the Jacobian transformation:

dx1 · · · dxd = | det
∂(xi)

∂(r, φi)
| dr dφ1 · · · dφd−1

= rd−1 sind−2(φ1) sind−3(φ2) · · · sin(φd−2) dr dφ1 · · · dφd−1 .
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Integrating the element of hypervolume, we obtain the next theorem.

Theorem 5.2 (Volume of d-Dimensional Hypersphere) The volume of a d-

dimensional hypersphere with radius r is given as

Vd,r =
π

d
2 rd

Γ(d
2

+ 1)
, (5.6)

where Γ is the Gamma function.

Theorem 5.3 (Covariance of Spherical Uniform Densities) ud,r(x) is a

spherical uniform density defined on Rd with radius r centred at c and whose

probability density function is given by

ud,r(x) =
Γ(d

2
+ 1)

π
d
2 rd

I‖x−c‖<r

using the indicator function.

The covariance of ud,r(x) is given as follows:

Σud,r
=

r2

(d+ 2)
Id,

and therefore

|Σud,r
| = [

r2

(d+ 2)
]d |Id| =

r2d

(d+ 2)d
.

Using Theorem 5.2, an alternative expression of the above in terms of hyper-volume

is as follows:

|Σud,r
| =

[Γ(d
2

+ 1)]2

(d+ 2)d πd
V 2

d,r ∝ V 2
d,r.

The constant of proportionality depends only on the dimension d.

The next two inequalities are taken from [Cover and Thomas , 1988]. K1 and K2

are non-negative definite symmetric d× d matrices.

Theorem 5.4 (Theorem 2, Cover and Thomas)

|K1 +K2| ≥ |K1| . (5.7)
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Theorem 5.5 (Minkowski’s Inequality)

|K1 +K2|
1
d ≥ |K1|

1
d + |K2|

1
d . (5.8)

Identity holds if and only if K1 and K2 are proportional to each other.

The next theorem, which is related to the representation of special orthogonal

matrices (SO(d)), is brought to the attention to the author from [Bernstein, 2005]

Theorem 5.6 Let A ∈ Rn×n, where n ≥ 2. Then A ∈ SO(d) if and only if there

exist m such that 1 ≤ m ≤ d(d − 1)/2, θ1, . . . , θm ∈ R, and j1, . . . , jm, k1, . . . , km ∈

{1, . . . , d} such that

A =
m∏

i=1

P (θi, ji, ki),

where

P (θ, j, k) ≡ Id + (cos θ − 1)(Ej,j + Ek,k) + (sin θ)(Ej,k − Ek,j)

and Ei,j denotes the n×n matrix with one at the (i, j)-th element and zero everywhere

else.

The proof is given in [Farebrother and Wrobel , 2002].

Remark P (θ, j, k) is a plane or Givens rotation.

Remark Theorem 5.6 is an extension of Euler’s rotation theorem, which is the case

when n = 3.
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Chapter 6

M-Decomposability in

d-Dimensions

The definition ofM-decomposability given in Chapter 2 involves only the standard

deviation of the probability density functions involved. Here, we present an updated

version which generalizes to d-dimensions where d ≥ 1.

We begin with decomposition pairs. As finite mixture models apply to d-

dimensional densities in general, Definition 2.1, which is introduced in Chapter 2,

applies henceforth to densities in d-dimensions as well.

6.1 Definitions

In the first part of the thesis, we are concerned with the standard deviations of the

densities involved. In one-dimension, the standard deviation is a natural measure of

scatter of a given distribution. When considering higher dimensions, it is possible to

consider the square-root of the determinant of the covariance structure of the distri-

bution involved as a corresponding measure of scatter. Henceforth, we shall define the
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above measure the pseudo-volume of the distribution. When a linear transformation

is applied to the axes such that the support space is magnified, the pseudo-volume

of the new distribution is increased by the same ratio. Hence, “pseudo-volume” is a

consistent measure of volume of scatter.

Definition 6.1 (Pseudo-volume) Let f be a probability density function. Define

the pseudo-volume of f as |Σf |
1
2 , the square-root of the determinant of the covariance

matrix of f .

Remark In one-dimension, the pseudo-volume is simply the standard deviation.

Definition 6.2 (M-Decomposability in d-Dimensions) For a given probability

density function f , if there exists a decomposition pair {g, h} such that

|Σf |
1
2 > |Σg|

1
2 + |Σh|

1
2 ,

then f is defined to be M-decomposable. Otherwise, f is M-undecomposable. If for

all decomposition pairs {g, h},

|Σf |
1
2 < |Σg|

1
2 + |Σh|

1
2 ,

then f is strictly M-undecomposable.

Remark It is trivial to verify that when d = 1, Definition 6.2 coincides with Defini-

tion 2.2 presented in Chapter 2. In d-dimensions, the definition ofM-decomposability

can be described compactly using pseudo-volumes.

In the proceeding chapters of this thesis, our goal is to show that corresponding to

the one-dimensional case, we have a theorem that says that all “symmetric unimodal

densities” in d-dimension are M-undecomposable. The uniform density is trivially
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defined in one-dimension, but in higher dimensions, the uniform density may as-

sume many different shapes. As the fundamental building block of the d-dimensional

extension of symmetric unimodal densities, we define the elliptical uniform as the

corresponding d-dimensional uniform density in this thesis. We prove below that all

elliptical uniforms are M-undecomposable.

6.2 Elliptical Uniform

Theorem 6.1 (Inequality on Elliptical Uniform Densities) All elliptical uni-

form densities defined on Rd are M-undecomposable for d = 1 and strictly M-

undecomposable for d ≥ 2.

The proof of Theorem 6.1 proceeds the following lemma.

Lemma 6.1 (Density with Minimum Pseudo-volume) Let f be a probability

density function defined on x ∈ Rd such that f(x) ≤Mf for all x. Then

|Σf |
1
2 ≥

Γ(d
2

+ 1)

Mf [π (d+ 2)]
d
2

.

Identity holds if and only if f is elliptical uniform with max(f) = Mf .

Remark When d = 1, we recover σf ≥ 1/(Mf

√
12), the result obtained in

Lemma 2.1.

Proof We shall denote by u, the density of elliptical uniforms that satisfy max(f) =

max(u). Without loss of generality, we set µu = µf = 0. Our goal is to prove

that |Σf | ≥ |Σu|, with identity holding if and only if f = u. As f may assume any

analytical form, it is generally non-trivial to compare the determinant of covariances

of f and u. To circumvent the difficulties incurred by the incompatibility of functional
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forms, we adopt the following strategy by creating proxies of f and u, both of which

are spherical. The steps are detailed as follows.

1. Construct undirectional densities (see Definition 5.2) fw and uw where |Σfw | =

|Σf | and |Σuw | = |Σu|.

2. Construct spherical densities (see Definition 5.1) f s and us where Σfs = Σfw

and Σus = Σuw .

3. Consequently, we have |Σfs | = |Σf | and |Σus | = |Σu|. Therefore, an equivalent

statement of our goal is |Σfs | ≥ |Σus |.

First, we construct undirectional densities that conform to the conditions set in

item 1. Being covariance matrices, both Σf and Σu must be positive definite and

hence expressable using eigenvalues and eigenvectors as

Σf = P ·D · P T .

(For simplicity, we only show the case of Σf as the same arguments apply to Σu.)

Here P ∈ SO(d) ⊂ O(d) and hence satisfies |P | = 1 and P P T = Id, whereas

D is a diagonal matrix with diagonal elements {λ2
1, · · · , λ2

d}. All λ’s are positive.

We consider the following linear transformation on the support space. The matrix

representation of the linear transformation is of the form Q = Dl P
T . The first matrix

Dl is diagonal with diagonal elements {l1, · · · , ld}, each li satisfying

li =
λ

1
d
1 · · ·λ

1
d
d

λi

> 0 .

As the result of the linear transformation Q on the support space, the original covari-

ance matrix Σf is transformed to

Σfw = Q · Σf ·QT = Dl ·D ·DT
l = (λ

2
d
1 · · ·λ

2
d
d ) · Id ,
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using Eq (5.5) of Theorem 5.1. Hence Σfw is undirectional. Next, it is easy to check

that the determinants of covariance of both the original covariance matrix Σf and

the transformed covariance matrix Σfw are equal to λ2
1 · · ·λ2

d. The determinant of Q

is calculated as

|Q| = |Dt| = l1 · · · ld = 1 .

Using Eq (5.3) of Theorem 5.1, since |Q| = 1, the maximum densities of f and fw

must have the same values, i.e. max(fw) = max(f). Similarly, using a suitable linear

transformation, it is possible to find a density uw such that Σuw is undirectional and

|Σuw | = |Σu|. On top of these, the linear transformation leaves max(uw) = max(u).

From Eqs (5.1) and (5.2), uw must be spherical uniform. Furthermore, fw is spherical

uniform if and only if f is elliptical uniform.

Next, starting from undirectional densities fw and uw, we construct spherical

densities f s and us which satisfy item 2. Let fj denote the resultant probability

density function when a rotation operator Rj ∈ SO(d) is applied onto the support

space of fw. Then using the result from Corollary 5.1, we have

Σfj
= Σfw .

Furthermore, from Eq (5.4) of Theorem 5.1, we have

µfj
= Rj µfw = 0 = µfw .

In other words, the mean and covariance of fw are invariant to rotation. For any

rotation operators Ri, Rj ∈ SO(d), we shall demonstrate below that any mixture of

fi and fj will have the same mean and covariance structure again. Denoting the

mixture by g, we have

g(x) = αfi(x) + (1− α)fj(x), (6.1)

where 0 < α < 1. The covariance of g is given by

Σg = αΣfi
+ (1− α)Σfj

+ α(1− α)(µfi
− µfj

)(µfi
− µfj

)T = Σfw . (6.2)
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In two dimensions, a rotation operator can be represented as

Rθ =

 cos θ − sin θ

sin θ cos θ

 .

From Theorem 5.6, it is possible to represent any rotation in d-dimensions as a product

of D Given’s rotations shown below.

R = Rθ1
1 · · ·R

θD
D

where D = d (d − 1)/2. Some of the Given rotations may be equal to the identity

matrix, i.e. there may exist j (1 ≤ j ≤ D) such that

R
θj

j = Id .

Now, let us define a density, f s, as follows:

f s(x) = (
1

2π
)D

∫ 2π

0

· · ·
∫ 2π

0︸ ︷︷ ︸
D times

fw(Rθ1
1 · · ·R

θD
D x) dθ1 · · · dθD . (6.3)

f s is therefore the uniform mixture of all possible rotations of the probability density

function f in d-dimension. To show that Σfs = Σfw , note that

Σfs =

∫
xxT f s(x) dx

= (
1

2π
)D

∫ 2π

0

· · ·
∫ 2π

0︸ ︷︷ ︸
D times

{
∫

xxT fw(Rθ1
1 · · ·R

θD
D x) dx} dθ1 · · · dθD .

The term in braces {} is simply the covariance matrix of the density after application

of rotation operator Rθ1
1 · · ·R

θD
D . As Σfw is invariant to rotation, the result remains

as Σfw . Therefore,

Σfs = (
1

2π
)D{

∫ 2π

0

· · ·
∫ 2π

0︸ ︷︷ ︸
D times

dθ1 · · · dθD}Σfw = Σfw .

Furthermore, f s must be spherical by construction, as one can easily verify that

f s(Rx) = f s(x) for any R ∈ SO(d) ⊂ O(d). On top of these, from Eq (6.3), we have
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f s(x) ≤ (
1

2π
)D

∫ 2π

0

· · ·
∫ 2π

0︸ ︷︷ ︸
D times

max(fw) dθ1 · · · dθD = max(fw) = max(f) . (6.4)

We have therefore constructed a spherical density f s. It is apparent that us = uw,

which is spherical uniform. Now we are left with item 3, i.e. to prove that |Σfs | ≥

|Σus | to complete the proof of the lemma.

It is also obvious that the densities f s and us are undirectional. This can be seen

from Σfs = Σfw and Σus = Σuw . Hence, it is possible to find kf > 0 and ku > 0

such that Σfs = kf Id and Σus = ku Id. Our goal will be accomplished if we can prove

that kf ≥ ku. From Eq (6.4), we have f s(x) ≤ max(f) = Mf , and the followings are

straightfoward:

1. us(x) ≥ f s(x) for |x| ≤ R, where u(x) = Mf throughout.

2. us(x) ≤ f s(x) for |x| > R, where u(x) = 0 throughout.

Here, R represents the radius of the spherical uniform us, and

Rd =
Γ(d

2
+ 1)

Mf π
d
2

.

Moreover, as f s and us are both spherical and have means 0, there exist functions f̃ s

and ũs such that

f s(x) = f̃ s(|x|) = f̃ s(r); us(x) = ũs(|x|) = ũs(r) ,

using Definition 5.1 and representation in the hyperspherical coordinates. Further-

more, we define h(x) ≡ f s(x) − us(x). Note that h(x) is not a probability density

function as h(x) takes negative values and∫
h(x) dx = 0. (6.5)
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Using the hyperspherical coordinate representation, there must exist a function h̃

such that h(|x|) = h̃(r), and

h̃(r)


≤ 0 for r ≤ R;

≥ 0 for r > R.

(6.6)

Note that h̃ is identically 0 if and only if f s = us, or equivalently, f is elliptical

uniform. Now,

kf − ku = e1
T (Σfs − Σus) e1

=

∫
e1

TxxTe1{f s(x)− us(x)} dx

=

∫
|e1

Tx|2 h(x) dx .

Here, e1 is the unit vector parallel to the first axis. Representation via spherical

coordinates yields

kf − ku =

∫
· · ·

∫
x2

1 h̃(r) r
d−1 sind−2(φ1) · · · sin(φd−2) dr dφ1 · · · dφd−1

=

∫ ∞

0

rd+1 h̃(r) dr × Φ1 × · · · × Φd−1 ,

with

Φ1 =

∫ π

0

cos2(φ1) sind−2(φ1) dφ1, Φd−1 = 2 π ,

and the rest of Φi’s (2 ≤ i ≤ d− 2) satisfying

Φi =

∫ π

0

sind−i−1(φi) dφi .

Apparently, all Φi’s are strictly positive and we only need to prove that∫ ∞

0

rd+1 h̃(r) dr ≥ 0 (∗)

to arrive at the conclusion that kf ≥ ku. Representing equation (6.5) via hyperspher-

ical coordinates, we have∫ ∞

0

rd−1 h̃(r) dr ×
∫ π

0

sind−2(φ1) dφ1 × Φ2 × · · · × Φd−1 = 0
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and therefore ∫ ∞

0

rd−1 h̃(r) dr = 0 . (6.7)

To prove (∗), we break up the integral into as follows:∫ ∞

0

rd+1 h̃(r) dr =

∫ R

0

rd−1 r2 h̃(r)︸︷︷︸
≤0

dr +

∫ ∞

R

rd−1 r2 h̃(r)︸︷︷︸
≥0

dr

≥
∫ R

0

rd−1R2 h̃(r) dr +

∫ ∞

R

rd−1R2 h̃(r) dr

= R2 ×
∫ ∞

0

rd−1 h̃(r) dr = 0 .

Equality holds if and only if h̃ = 0 identically, in other words if and only if f is

elliptical uniform. This proves kf ≥ ku and consequently completes the proof for the

Lemma 6.1.

We are ready to prove Theorem 6.1.

Proof of Theorem 6.1 Let u be an elliptical uniform density on x ∈ Rd (d > 1).

We need to prove that for any decomposition pair {v, w} of u,

|Σv|
1
2 + |Σw|

1
2 > |Σu|

1
2 .

(The case of d = 1 has already been proven in Theorem 2.1.) Without loss of

generality, set max(u) = M and therefore

|Σu|
1
2 =

Γ(d
2

+ 1)

M [π(d+ 2)]
d
2

.

Since u(x) = α v(x) + (1− α)w(x), we have

v(x) ≤ u(x)

α
≤ M

α
; w(x) ≤ u(x)

1− α
≤ M

1− α
. (6.8)

Using Lemma 6.1, the determinants of covariances of v and w are evaluated as follows:

|Σv|
1
2 ≥

αΓ(d
2

+ 1)

M [π (d+ 2)]
d
2

= α |Σu|
1
2 ;

|Σw|
1
2 ≥

(1− α) Γ(d
2

+ 1)

M [π (d+ 2)]
d
2

= (1− α) |Σu|
1
2 .

(6.9)
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with equalities holding only if the density in question is elliptical uniform. Now,

for d > 1, we can have at most one but never both of v, w to be elliptical uniform

satisfying equation (6.9). Therefore,

|Σv|
1
2 + |Σw|

1
2 > |Σu|

1
2 .
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Chapter 7

Elliptical Unimodal Densities

7.1 Definition and Representation

In this section, we provide a definition for elliptical unimodal densities. Elliptical

densities in d-dimension have been treated in detail by many researchers, see e.g.

[Fang et al., 1990] and references within. Symmetry in d-dimensions is depicted via

ellipticity. Here, we adopt the ideas in [Fang et al., 1990] and modify them to define

elliptical unimodal densities in the d-dimensional space.

Definition 7.1 (Elliptical Unimodal Densities) We say that f is elliptical uni-

modal if there exist µ ∈ Rd×1, Σ ∈ Rd×d and non-decreasing function g on R+ ∪ {0}

such that

{x|f(x) = g(r)} = {x|(x− µ)T Σ−1 (x− µ) = r2} .

According to the definition above, elliptical unimodal densities are those whose cross-

sections are elliptical, and with mean (µ) and covariance structure (Σ). The above

definition encompasses most general densities including d-dimensional Gaussian, lo-

gistic, Laplace, Von Mises, beta(k, k), student-t and many other artifical densities.
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Theorem 7.1 Let f be an elliptical unimodal density with mean µ and covariance

Σ. Then f can be represented as follows:

f(x) ∝ kd
1 u1(x) + · · ·+ kd

n un(x)

where ui is elliptical uniform such that

ui(x) ∝ I(x−µ)T Σ−1 (x−µ)<k2
i
. (7.1)

Remark From the above representation, each elliptical uniform component is

weighted proportionally to the hypervolume of its cross-section. The original ellipti-

cal unimodal density is “sliced longitudinally” into elliptical uniforms with a prefixed

constant “thickness”.

Proof Refer to Theorem 3.1.

7.2 Main Results

Theorem 7.2 (Inequality on Elliptical Unimodal Densities) Let f be an el-

liptical unimodal density with finite second moments. Then, for any decomposition

pair {g, h},

|Σf |
1
2 ≤ |Σg|

1
2 + |Σh|

1
2 .

Identity is possible only when f is uniform in one-dimension.

Proof From Theorem 7.1, we can express f as a finite mixture of elliptical uniform

densities as

f(x) =
n∑

i=1

ai · ui(x), ai ∝ kd
i

where ui’s, as described in Eq (7.1), are uniform ellipsoidal densities sharing the same

mean and aligned in the same direction. We can express g and h as follows:

g(x) =
n∑

i=1

bi · vi(x), h(x) =
n∑

i=1

ci · wi(x).
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which satisfies f(x) = α g(x) + (1− α)h(x), yielding

ai · ui(x) = α bi · vi(x) + (1− α) ci · wi(x),

ai = α bi + (1− α) ci

for all 1 ≤ i ≤ n. Following the argument presented in Theorem 6.1, we have

|Σvi
|
1
2 ≥ αbi

ai

|Σui
|
1
2 , |Σwi

|
1
2 ≥ (1− α)ci

ai

|Σui
|
1
2 ,

At the same time, we shall define the following two new densities, corresponding to

g and h respectively:

g̃(x) =
n∑

i=1

bi · ṽi(x), h̃(x) =
n∑

i=1

ci · w̃i(x).

Here, all ṽi’s and w̃i’s are ellipsoidal uniforms. ṽi’s have the same means and the same

applies to w̃i’s. Meanwhile, the determinant of covariance of g is given as follows:

|Σg| = |(b1Σv1 + · · ·+ bnΣvn) + (b1µv1µ
T
v1

+ · · ·+ bnµvnµ
T
vn

)|

≥ |b1Σv1 + · · ·+ bnΣvn|

≥ (b1|Σv1|
1
d + · · ·+ bn|Σvn|

1
d )d

≥ (b1|Σṽ1|
1
d + · · ·+ bn|Σṽn|

1
d )d

= |b1Σṽ1 + · · ·+ bnΣṽn|

= |Σg̃|.

The first two inequalities are the direct result of Theorem 5.4 and Theorem 5.5 given

in [Cover and Thomas , 1988]. The third inequality holds as we must have

|Σvi
| ≥ |Σṽi

| ,

as a direct result of Theorem 6.1. The equality that follows the third inequality is

again a result of Theorem 5.5, as all Σṽi
’s are proportional. We obtain |Σg̃| as

|Σg̃| =
1

(d+ 2)d
· [b

1+ 2
d

1 + · · ·+ b
1+ 2

d
n

b1 + · · ·+ bn
]d.
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Similarly, we must have

|Σh̃| =
1

(d+ 2)d
· [c

1+ 2
d

1 + · · ·+ c
1+ 2

d
n

c1 + · · ·+ cn
]d,

and

|Σf | =
1

(d+ 2)d
· [a

1+ 2
d

1 + · · ·+ a
1+ 2

d
n

a1 + · · ·+ an

]d

where ai = bi + ci for all i.

|Σg|
1
2 + |Σh|

1
2

≥|Σg̃|
1
2 + |Σh̃|

1
2

=
1

(d+ 2)
d
2

· ([b
1+ 2

d
1 + · · ·+ b

1+ 2
d

n

b1 + · · ·+ bn
]

d
2 +

c
1+ 2

d
1 + · · ·+ c

1+ 2
d

n

c1 + · · ·+ cn
]

d
2 ),

and

|Σf |
1
2 =

1

(d+ 2)
d
2

· [a
1+ 2

d
1 + · · ·+ a

1+ 2
d

n

a1 + · · ·+ an

]
d
2 .

Therefore, Lemma 7.1 below provides a sufficient condition for Theorem 7.2.

Lemma 7.1 Let ai, bi, ci be sequences of non-negative real numbers such that for all

i, ai = bi +ci and ai > 0. Then the following inequality holds for any positive integers

d and n.

[
a

1+ 2
d

1 + · · ·+ a
1+ 2

d
n

a1 + · · ·+ an

]
d
2 ≤ [

b
1+ 2

d
1 + · · ·+ b

1+ 2
d

n

b1 + · · ·+ bn
]

d
2 + [

c
1+ 2

d
1 + · · ·+ c

1+ 2
d

n

c1 + · · ·+ cn
]

d
2 .

Equality holds if and only if the sequences ai, bi and ci are linearly dependent.

Proof The proof is similar to that of Lemma 4.1, with the only difference being in

d. Set x ≡ [x1, · · · , xn]T , y ≡ [y1, · · · , yn]T and z ≡ [z1, · · · , zn]T and similarly for

a,b, c. Let x = ty + (1− t) z, i.e. xi = t yi + (1− t) zi for all i. Furthermore, define

the function f as follows:

f(x) = [
x

1+ 2
d

1 + · · ·+ x
1+ 2

d
n

x1 + · · ·+ xn

]
d
2
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and set φ(t) = f(ty + (1 − t) z) ≡ f(x) where 0 ≤ t ≤ 1. It suffices to prove that

φ′′(t) ≥ 0 for 0 ≤ t ≤ 1. This is an immediate consequence of Jensen’s inequality as

φ′′(t) ≥ 0 implies φ(t) ≤ t φ(0) + (1 − t)φ(1). Setting t = 1
2
, we have f(y

2
+ z

2
) ≤

1
2
f(y) + 1

2
f(z). Denoting by y = b, z = c, this becomes 2 f(a

2
) ≤ f(b) + f(c).

However, from the definition of f , we must have

f(
a

2
) = [

1

2
](1+

2
d
−1)· d

2 f(a) =
1

2
f(a) .

Therefore φ′′(t) ≥ 0 implies f(a) ≤ f(b) + f(c) as required. Equality holds if and

only if φ′′(t) = 0.

We shall begin from the definition of φ as follows:

φ(t) = f(x) = [Σx
1+ 2

d
i ]

d
2 [Σ xj]

− d
2 . (7.2)

Differentiating once with respect to t, bearing in mind xi = t yi + (1− t) zi, we have

φ′(t) = (
d

2
) · [Σ x1+ 2

d
i ]

d
2
−1 · (1 +

2

d
) · [Σ x

2
d
k (yk − zk)] · [Σ xj]

− d
2

+ [Σx
1+ 2

d
i ]

d
2 · (−d

2
) · [Σxj]

− d
2
−1 · [Σ(yk − zk)]

= (
d+ 2

2
) · φ(t) · [Σ x1+ 2

d
i ]−1 · [Σ x

2
d
k (yk − zk)]

− (
d

2
) · φ(t) · [Σxj]

−1 · [Σ(yk − zk)]

(7.3)

Differentiating again with respect to t, we have

φ′′(t) = (
d+ 2

2
) · φ′(t) · [Σ x1+ 2

d
i ]−1 · [Σ x

2
d
k (yk − zk)]

+ (
d+ 2

2
) · φ(t) · (−1) · [Σ x1+ 2

d
i ]−2 · (d+ 2

d
) · [Σ x

2
d
k (yk − zk)]

2

+ (
d+ 2

2
) · φ(t) · [Σ x1+ 2

d
i ]−1 · (2

d
) · [Σ x

2
d
−1

k (yk − zk)
2]

− (
d

2
) · φ′(t) · [Σxj]

−1 · [Σ(yk − zk)]

− (
d

2
) · φ(t) · (−1) · [Σxj]

−2 · [Σ(yk − zk)]
2

(7.4)

Replacing the φ′(t) terms in equation (7.4) with equation (7.3) and rearranging, we
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have

φ′′(t)

φ(t)
=
d (d+ 2)

4
· [Σxj]

−2 · [Σ(yk − zk)]
2

− d (d+ 2)

2
· [Σx1+ 2

d
i ]−1 · [Σxj]

−1 · [Σx
2
d
k (yk − zk)] · [Σ(yl − zl)]

+ (d+ 2)2 · (1
4
− 1

2 d
) · [Σx1+ 2

d
i ]−2 · [Σx

2
d
k (yk − zk)]

2

+ (
d+ 2

d
) · [Σx1+ 2

d
i ]−1 · [Σx

2
d
−1

k (yk − zk)
2]

=
d (d+ 2)

4
· { [Σxj]

−1 · [Σ(yk − zk)]− [Σx
1+ 2

d
i ]−1 · [Σx

2
d
k (yk − zk)] }2︸ ︷︷ ︸

A

+ (
d+ 2

d
) · [Σx1+ 2

d
i ]−2 · { [Σx

1+ 2
d

i ] · [Σx
2
d
−1

j (yj − zj)
2]− [Σx

2
d
k (yk − zk)]

2 }︸ ︷︷ ︸
B

(7.5)

The term A is expressible as a square and therefore greater or equal to 0. Evaluating

B, setting p2
i = x

1+ 2
d

i and q2
j = x

2
d
−1

j (yj − zj)
2, we have

B = [Σx
1+ 2

d
i ] · [Σx

2
d
−1

j (yj − zj)
2]− [Σx

2
d
k (yk − zk)]

2

= [Σp2
i ] · [Σq2

j ]− [Σpk qk]
2

≥ 0.

(7.6)

Inequality holds via Cauchy-Schwarz’s inequality. Therefore we must have

φ′′(t) ≥ 0

due to the non-negativeness of xi, yi and zi. Hence Lemma 7.1, and consequently,

theorem 7.2 is proved.
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Chapter 8

Applications

The main result of the theoretical aspects of M-decomposability in the preceding

chapters is the demonstration of M-undecomposability of one large class of densi-

ties: the class of elliptical unimodals densities with finite second moments. In this

chapter, we present Theorem 8.1 and demonstrate the potential applications of M-

decomposability.

Theorem 8.1 (M-Decomposability and Kullback-Leibler Divergence) Let

f be probability density functions defined on x ∈ Rd. Let {g, h} be a decomposition

pair of f such that f(x) = α g(x) + (1− α)h(x). Then the following result applies:

|Σf |
1
2 > |Σg|

1
2 + |Σh|

1
2

⇒ KL[f ‖ f̃ ] > KL[f ‖α g̃ + (1− α) h̃] .

Here, KL[ p ‖ q ] denotes the Kullback-Leibler divergence given as

KL[ p ‖ q ] =

∫
p(x) log

p(x)

q(x)
dx ,

f̃ denotes the Gaussian density with µf̃ = µf , Σf̃ = Σf ; while g̃ and h̃ are similarly

defined.
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Proof We shall prove that∫
f(x) log f̃(x) dx <

∫
f(x) log{α g̃(x) + (1− α) h̃(x)} dx (∗)

which is an equivalent statement to KL[ f ‖ f̃ ] > KL[ f ‖α g̃ + (1 − α) h̃ ]. We have

the followings:

RHS of (∗) =

∫
[α g(x) + (1− α)h(x)] log[α g̃(x) + (1− α) h̃(x)] dx

> α

∫
g(x) log[α g̃(x)] dx

+ (1− α)

∫
h(x) log[(1− α) h̃(x)] dx

= α [logα+

∫
g(x) log g̃(x) dx ]

+ (1− α) [log(1− α) +

∫
h(x) log h̃(x) dx ].

From definitions, the probabilitiy density function of g̃(x) is given as follows

g̃(x) = (2π)−
d
2 |Σg|−

1
2 exp[−1

2
(x− µg)

T Σ−1
g (x− µg)];

from which we obtain the followings

log g̃(x) = −d
2

log(2π)− 1

2
|Σg| −

1

2
(x− µg)

T Σ−1
g (x− µg);∫

g(x) log g̃(x) dx = −d
2

log(2π)− 1

2
|Σg| −

1

2

∫
(x− µg)

T Σ−1
g (x− µg) g(x) dx

= −d
2

log(2π)− 1

2
|Σg| −

d

2
,

and similarly applies for
∫
f(x) log f̃(x) dx and

∫
h(x) log h̃(x) dx. We can therefore

say that

RHS of (∗) > α [logα+

∫
g(x) log g̃(x) dx ]

+ (1− α) [log(1− α) +

∫
h(x) log h̃(x) dx ]

= α [logα− d

2
log(2π)− 1

2
log |Σg| −

d

2
]

+ (1− α) [log(1− α)− d

2
log(2π)− 1

2
log |Σh| −

d

2
]

= α [ logα− 1

2
log |Σg| ] + (1− α) [ log(1− α)− 1

2
log |Σh| ]

− d

2
log(2π)− d

2
.
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Meanwhile, applying similarly to f , we have

LHS of (∗) = −d
2

log(2π)− 1

2
|Σf | −

d

2
.

To complete the prove of the theorem, it suffices to demonstrate that

α [ logα− 1

2
log |Σg| ] + (1− α)[ log(1− α)− 1

2
log |Σh| ] > −

1

2
log |Σf |,

or equivalently,

α [log
|Σg|

1
2

α
] + (1− α) [log

|Σh|
1
2

(1− α)
] < log |Σf |

1
2 . (∗∗)

Using Jensen’s inequality, we have

LHS of (∗∗) ≤ log{α |Σg|
1
2

α
+ (1− α)

|Σh|
1
2

(1− α)
}

= log(|Σg|
1
2 + |Σh|

1
2 )

≤ log |Σf |
1
2 = RHS of (∗∗).

Hence, the proof of Theorem 8.1 is complete.

Theorem 8.1 says that if one finds a pair of mixture components {g, h} of f such

that the sum of pseudo-volumes of the mixture components is less than the pseudo-

volume of the original density then in Kullback-Leibler sense, the Gaussian mixture

obtained by g̃ and h̃ makes a better estimate of the original f than the Gaussian

f̃ . In practice, it is possible to further relax the conditions to adapt to applicational

needs. In the following sections, we demonstrate the use of Theorems 7.2 and 8.1 to

statistical applications, namely clustering and density estimation.

51



8.1 Clustering via M-Decomposability

Clustering is the subject of active research for more than fifty years. It has been

applied in several fields, such as statistic, pattern recognition and machine learning.

Many clustering techniques and algorithms have been developed. The survey paper

[Berkhin, 2002] provides a detail reference of most of the popular techniques and

algorithms in use today.

In this thesis, we show that it is straightfoward to apply M-decomposability to

cluster analysis. Here, we demonstrate a clustering strategy using both Theorem 7.2

and Theorem 8.1. Our strategy is non-parametric and hence it is possible to locate

clusters without prior knowledge of the function structure of clusters. Furthermore,

the number of clusters does not have to be known beforehand.

Given a sample of size n, {X1, · · · , Xn}. The task in cluster analysis is to sub-

divide the original sample into distinct groups such that members of each group are

close to each other, and distant from members of different groups. There exist many

approaches to cluster analysis. One popular approach is to assume that each under-

lying cluster is drawn from a Gaussian, or some other known parametric distribution.

In other words, the sample is assumed to generated a mixture distribution of known

functional form. The problem becomes one of parameter estimation, and the unknown

parameters are approximated via maximum likelihood. Here, the EM algorithm is

extensively used. This approach via finite mixture is described in detail in [McLach-

lan and Peel , 2000]. Besides the necessity for prior knowledge of distribution of each

cluster, one additional difficulty in this approach is that the total number of clusters

has to be set beforehand. The unknown number of clusters can be evaluated via a

Bayesian approach, or independently via AIC.
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Our approach assumes that each cluster is approximately symmetric unimodal. As

such, there is no need to know the functional structure of the underlying distribution

beforehand. From the given sample F = {X1, · · · , Xn}, we are interested to know if

the original sample can be decomposed into two groups, such that the sum of pseudo-

volumes of the groups is less than that of the original sample. We denote any two

subgroups as G,H such that

G = {Y1, · · · , Ym}, H = {Ym+1, · · · , Yn}

and G ∪ H = F , with Y ’s being a regrouping of X. We further denote the sample

covariance matrix of F,G,H as SF , SG and SH . Our task is to find the optimal

grouping (or approximation of decomposition pair) {G,H} such that

|SG|
1
2 + |SH |

1
2

is minimized and test this value against |SF |
1
2 . If

|SG|
1
2 + |SH |

1
2 < |SF |

1
2 ,

then, from Theorem 7.2, we conclude that F is not symmetric unimodal and from

Theorem 8.1, a Gaussian mixture of G and H provides a better estimation of the

underlying density that F . We conclude that it is better to break F up into G and

H. However, if

|SG|
1
2 + |SH |

1
2 ≥ |SF |

1
2 ,

then there is no reason to decompose F as F is M-undecomposable.

When one arrives at the conclusion that F is M-undecomposable, it is possible

to stop the cluster analysis process with one cluster. However, if F is found to be

M-decomposable with subgroups (decomposition pair) {G,H}, one may repeat the

decomposition process with G and H, until all subgroups are M-undecomposable.

When that happens, the “splitting” process of our strategy ends.
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To prevent overclustering, our strategy also includes “merging” of clusters. At the

point when all splitted subclusters are M-undecomposable, we take two subclusters

at a time and perform the following test. Now, let Q,R denote the two chosen

subclusters and P be the union of the two subclusters, i.e. P = Q ∪ R. We then

check the sum of the pseudo-volumes of Q and R and compare against that of P . If

|SQ|
1
2 + |SR|

1
2 ≥ |SP |

1
2 ,

then we conclude that Q and R should be merged to form a larger cluster P . This

process is repeated until there are no more mergeable subclusters left.

We have described the concept of using M-decomposability to perform cluster

analysis. As for the algorithm, the crucial point is to find the optimal decomposition

{G,H} such that |SG|
1
2 + |SH |

1
2 is minimized. There are many possible approaches

to this task. To perform this task rigorously to find the global minimum is compu-

tationally difficult and may be equivalent to a NP-hard class of problem. Here, we

propose a computationally simpler approach. At each spitting stage, starting from

F , we fit a two-mixture Gaussian and use the EM algorithm to obtain the decompo-

sition pair {G,H}. We present an example of cluster analysis using this more feasible

alternative.
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8.1.1 Simulation Example

The example provided here is a sample F drawn from a three-mixture of logistic

distribution as shown in Fig 8.1. Neither the number of clusters nor the functional

form of the clusters are know beforehand. At the first splitting, we assume that F is

generated from a two-Gassian mixture, and perform EM to obtain the approximate

decomposition pair of {G,H}, which is shown in Fig 8.2. It turns out that with this

decomposition pair,

|SG|
1
2 + |SH |

1
2 < |SF |

1
2

and therefore F is splitted into G and H. The splitting process is repeated for G and

H and the results are shown in Figs 8.3 and 8.4. At this point, all four subclusters

are M-undecomposable.

Finally, we begin the merging process and find that two clusters Q and R (shown

in blue and green in Fig 8.5) satisfy

|SQ|
1
2 + |SR|

1
2 ≥ |SP |

1
2 ,

where P = Q ∪ R. The two clusters are then merged and we are left with three

clusters shown in Fig 8.6.

8.1.2 Analysis of Iris Dataset via M-Decomposability

Next, we attempt to analyze the famous Iris dataset using M-decomposability.

The dataset is first provided by [Anderson, 1935] and has been extensively used

over the years by many researchers, including [Fisher , 1936]. It is also available

electronically at the University of California at Irvine (UCI) machine learning group

[Newman et al., 1998]. The dataset consists of 150 four-dimensional data. The four

attribute information given are sepal length, sepal width, petal length and petal
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width, all given in centimetres. There are altogether three classes, namely “Setosa”,

“Versicolor” and “Virginica”, given in the proportion of 50 : 50 : 50.

Starting from the 150 four-dimensional data and assuming that the number of

underlying classes are unknown, we perform cluster analysis via M-decomposability.

We are able to confirm that there are altogether three underlying clusters, in the pro-

portion of 50 : 45 : 55. The first 50 data coincide with “Setosa” (0 misspecification).

For “Versicolor” and “Virginica”, there are altogether five misspecifications. (Five

“Versicolor” are mislabeled as “Virginica”). UsingM-decomposability, we achieve 0%

misspecification for the “Setosa” class and 5% misspecification for the more challeng-

ing “Versicolor” and “Virginica” classes. The original data, true class, and the class

estimated via M-decomposability are given in Table 8.1. The data is also depicted

graphically in Fig 8.7 (true class) and Fig 8.8 (estimated class).

Despite the fact that our analysis results in five cases of misspecifications, it should

be noted that given the four attribute information, our allocation of “Versicolor” and

“Virginica” achieves a tighter pseudo-volume than the “true underlying”. Denoting

the classes of “Versicolor” and “Virginica” by v1 and v2 respectively, our estimation

yields

|Σ̂v1|
1
2 + |Σ̂v2|

1
2 ≈ 0.01563 ,

as compared to

|Σv1|
1
2 + |Σv2|

1
2 ≈ 0.01587

of the true underlying. Furthermore, refering to Fig 8.7 and 8.8, we see that the

five misspecified data lie in the vicinity of the “boundary” between “Versicolor” and

“Virginica”.
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Table 8.1: Iris Data

sepal length sepal width petal length petal width true class estimated class

5.1 3.5 1.4 0.2 Setosa Setosa

4.9 3.0 1.4 0.2 Setosa Setosa

4.7 3.2 1.3 0.2 Setosa Setosa

4.6 3.1 1.5 0.2 Setosa Setosa

5.0 3.6 1.4 0.2 Setosa Setosa

5.4 3.9 1.7 0.4 Setosa Setosa

4.6 3.4 1.4 0.3 Setosa Setosa

5.0 3.4 1.5 0.2 Setosa Setosa

4.4 2.9 1.4 0.2 Setosa Setosa

4.9 3.1 1.5 0.1 Setosa Setosa

5.4 3.7 1.5 0.2 Setosa Setosa

4.8 3.4 1.6 0.2 Setosa Setosa

4.8 3.0 1.4 0.1 Setosa Setosa

4.3 3.0 1.1 0.1 Setosa Setosa

5.8 4.0 1.2 0.2 Setosa Setosa

5.7 4.4 1.5 0.4 Setosa Setosa

5.4 3.9 1.3 0.4 Setosa Setosa

5.1 3.5 1.4 0.3 Setosa Setosa

5.7 3.8 1.7 0.3 Setosa Setosa

5.1 3.8 1.5 0.3 Setosa Setosa

5.4 3.4 1.7 0.2 Setosa Setosa

5.1 3.7 1.5 0.4 Setosa Setosa

4.6 3.6 1.0 0.2 Setosa Setosa

continued on next page
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continued from previous page

sepal length sepal width petal length petal width true class estimated class

5.1 3.3 1.7 0.5 Setosa Setosa

4.8 3.4 1.9 0.2 Setosa Setosa

5.0 3.0 1.6 0.2 Setosa Setosa

5.0 3.4 1.6 0.4 Setosa Setosa

5.2 3.5 1.5 0.2 Setosa Setosa

5.2 3.4 1.4 0.2 Setosa Setosa

4.7 3.2 1.6 0.2 Setosa Setosa

4.8 3.1 1.6 0.2 Setosa Setosa

5.4 3.4 1.5 0.4 Setosa Setosa

5.2 4.1 1.5 0.1 Setosa Setosa

5.5 4.2 1.4 0.2 Setosa Setosa

4.9 3.1 1.5 0.1 Setosa Setosa

5.0 3.2 1.2 0.2 Setosa Setosa

5.5 3.5 1.3 0.2 Setosa Setosa

4.9 3.1 1.5 0.1 Setosa Setosa

4.4 3.0 1.3 0.2 Setosa Setosa

5.1 3.4 1.5 0.2 Setosa Setosa

5.0 3.5 1.3 0.3 Setosa Setosa

4.5 2.3 1.3 0.3 Setosa Setosa

4.4 3.2 1.3 0.2 Setosa Setosa

5.0 3.5 1.6 0.6 Setosa Setosa

5.1 3.8 1.9 0.4 Setosa Setosa

4.8 3.0 1.4 0.3 Setosa Setosa

5.1 3.8 1.6 0.2 Setosa Setosa

continued on next page
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continued from previous page

sepal length sepal width petal length petal width true class estimated class

4.6 3.2 1.4 0.2 Setosa Setosa

5.3 3.7 1.5 0.2 Setosa Setosa

5.0 3.3 1.4 0.2 Setosa Setosa

7.0 3.2 4.7 1.4 Versicolor Versicolor

6.4 3.2 4.5 1.5 Versicolor Versicolor

6.9 3.1 4.9 1.5 Versicolor Versicolor

5.5 2.3 4.0 1.3 Versicolor Versicolor

6.5 2.8 4.6 1.5 Versicolor Versicolor

5.7 2.8 4.5 1.3 Versicolor Versicolor

6.3 3.3 4.7 1.6 Versicolor Versicolor

4.9 2.4 3.3 1.0 Versicolor Versicolor

6.6 2.9 4.6 1.3 Versicolor Versicolor

5.2 2.7 3.9 1.4 Versicolor Versicolor

5.0 2.0 3.5 1.0 Versicolor Versicolor

5.9 3.0 4.2 1.5 Versicolor Versicolor

6.0 2.2 4.0 1.0 Versicolor Versicolor

6.1 2.9 4.7 1.4 Versicolor Versicolor

5.6 2.9 3.6 1.3 Versicolor Versicolor

6.7 3.1 4.4 1.4 Versicolor Versicolor

5.6 3.0 4.5 1.5 Versicolor Versicolor

5.8 2.7 4.1 1.0 Versicolor Versicolor

6.2 2.2 4.5 1.5 Versicolor Virginica

5.6 2.5 3.9 1.1 Versicolor Versicolor

5.9 3.2 4.8 1.8 Versicolor Virginica

continued on next page
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continued from previous page

sepal length sepal width petal length petal width true class estimated class

6.1 2.8 4.0 1.3 Versicolor Versicolor

6.3 2.5 4.9 1.5 Versicolor Virginica

6.1 2.8 4.7 1.2 Versicolor Versicolor

6.4 2.9 4.3 1.3 Versicolor Versicolor

6.6 3.0 4.4 1.4 Versicolor Versicolor

6.8 2.8 4.8 1.4 Versicolor Versicolor

6.7 3.0 5.0 1.7 Versicolor Virginica

6.0 2.9 4.5 1.5 Versicolor Versicolor

5.7 2.6 3.5 1.0 Versicolor Versicolor

5.5 2.4 3.8 1.1 Versicolor Versicolor

5.5 2.4 3.7 1.0 Versicolor Versicolor

5.8 2.7 3.9 1.2 Versicolor Versicolor

6.0 2.7 5.1 1.6 Versicolor Virginica

5.4 3.0 4.5 1.5 Versicolor Versicolor

6.0 3.4 4.5 1.6 Versicolor Versicolor

6.7 3.1 4.7 1.5 Versicolor Versicolor

6.3 2.3 4.4 1.3 Versicolor Versicolor

5.6 3.0 4.1 1.3 Versicolor Versicolor

5.5 2.5 4.0 1.3 Versicolor Versicolor

5.5 2.6 4.4 1.2 Versicolor Versicolor

6.1 3.0 4.6 1.4 Versicolor Versicolor

5.8 2.6 4.0 1.2 Versicolor Versicolor

5.0 2.3 3.3 1.0 Versicolor Versicolor

5.6 2.7 4.2 1.3 Versicolor Versicolor

continued on next page
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continued from previous page

sepal length sepal width petal length petal width true class estimated class

5.7 3.0 4.2 1.2 Versicolor Versicolor

5.7 2.9 4.2 1.3 Versicolor Versicolor

6.2 2.9 4.3 1.3 Versicolor Versicolor

5.1 2.5 3.0 1.1 Versicolor Versicolor

5.7 2.8 4.1 1.3 Versicolor Versicolor

6.3 3.3 6.0 2.5 Virginica Virginica

5.8 2.7 5.1 1.9 Virginica Virginica

7.1 3.0 5.9 2.1 Virginica Virginica

6.3 2.9 5.6 1.8 Virginica Virginica

6.5 3.0 5.8 2.2 Virginica Virginica

7.6 3.0 6.6 2.1 Virginica Virginica

4.9 2.5 4.5 1.7 Virginica Virginica

7.3 2.9 6.3 1.8 Virginica Virginica

6.7 2.5 5.8 1.8 Virginica Virginica

7.2 3.6 6.1 2.5 Virginica Virginica

6.5 3.2 5.1 2.0 Virginica Virginica

6.4 2.7 5.3 1.9 Virginica Virginica

6.8 3.0 5.5 2.1 Virginica Virginica

5.7 2.5 5.0 2.0 Virginica Virginica

5.8 2.8 5.1 2.4 Virginica Virginica

6.4 3.2 5.3 2.3 Virginica Virginica

6.5 3.0 5.5 1.8 Virginica Virginica

7.7 3.8 6.7 2.2 Virginica Virginica

7.7 2.6 6.9 2.3 Virginica Virginica

continued on next page
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continued from previous page

sepal length sepal width petal length petal width true class estimated class

6.0 2.2 5.0 1.5 Virginica Virginica

6.9 3.2 5.7 2.3 Virginica Virginica

5.6 2.8 4.9 2.0 Virginica Virginica

7.7 2.8 6.7 2.0 Virginica Virginica

6.3 2.7 4.9 1.8 Virginica Virginica

6.7 3.3 5.7 2.1 Virginica Virginica

7.2 3.2 6.0 1.8 Virginica Virginica

6.2 2.8 4.8 1.8 Virginica Virginica

6.1 3.0 4.9 1.8 Virginica Virginica

6.4 2.8 5.6 2.1 Virginica Virginica

7.2 3.0 5.8 1.6 Virginica Virginica

7.4 2.8 6.1 1.9 Virginica Virginica

7.9 3.8 6.4 2.0 Virginica Virginica

6.4 2.8 5.6 2.2 Virginica Virginica

6.3 2.8 5.1 1.5 Virginica Virginica

6.1 2.6 5.6 1.4 Virginica Virginica

7.7 3.0 6.1 2.3 Virginica Virginica

6.3 3.4 5.6 2.4 Virginica Virginica

6.4 3.1 5.5 1.8 Virginica Virginica

6.0 3.0 4.8 1.8 Virginica Virginica

6.9 3.1 5.4 2.1 Virginica Virginica

6.7 3.1 5.6 2.4 Virginica Virginica

6.9 3.1 5.1 2.3 Virginica Virginica

5.8 2.7 5.1 1.9 Virginica Virginica

continued on next page
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continued from previous page

sepal length sepal width petal length petal width true class estimated class

6.8 3.2 5.9 2.3 Virginica Virginica

6.7 3.3 5.7 2.5 Virginica Virginica

6.7 3.0 5.2 2.3 Virginica Virginica

6.3 2.5 5.0 1.9 Virginica Virginica

6.5 3.0 5.2 2.0 Virginica Virginica

6.2 3.4 5.4 2.3 Virginica Virginica

5.9 3.0 5.1 1.8 Virginica Virginica

Table 8.1: True Iris data
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8.2 Density Estimation

Density estimation is an important statistical tool that has seen wide applications

in many scientific and engineering fields. Given raw measurements or data, the task

is to reconstruct or estimate the underlying density from which the original data is

presumed to be generated. The problem statement is as follows. Given {X1, · · ·Xn}

which is assumed to be generated from an unknown distribution with density f , the

task is to estimate f . For simplicity, we consider only univariate density estimation.

In density estimation, one of the greatest difficulty occurs when the underlying

density is rich in modal structures. Theorem 8.1, in its own right, can be utilized

as a strategy for parametric density estimation using Gaussian mixtures. Besides

density estimation via Gaussian mixtures, a popular approach is via the kernel density

estimator, and is treated in detail in [Scott , 1992], [Silverman, 1986], [Wand and

Jones , 1995]. The formula for the kernel density estimator, given data {X1, · · ·Xn}

is

f̂(x; b) = (nb)−1

n∑
i=1

K{(x−Xi)/b} , (8.1)

taken directly from [Wand and Jones , 1995]. Usually K is chosen to be a unimodal

density that is symmetric about zero, and is called the kernel. The positive number

b is called the bandwidth. Such a formulation ensures that f̂(x; b) is also a density.

One property of the kernel density estimator is that the choice bandwidth is more

important than the choice of the kernel itself. The optimal choice of the bandwidth

ensures that the density estimate becomes optimally smoothed. One popular choice

of the bandwidth is

b = n−
1
5 σ̂ , (8.2)

where σ̂ is the sample standard deviation of the given data and n denotes the sample

size. One known problem of the bandwidth given in Eq (8.2) is that it works well for
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densities that are approximately symmetric unimodal. For multimodal densities, the

bandwidth tends produce an oversmoothed density.

Here, we propose an algorithm using M-decomposability to improve the kernel

density estimator via the bandwidth given in Eq (8.2). As we are only dealing with

the univariate case, we consider just the sorted data F = {X[1], · · ·X[n]}. Similar to

Section 8.1, we perform clustering of F via splitting and merging. In one-dimension,

the splitting process becomes much simpler as we just have to find m (2 < m < n−1)

such that (σG + σH) is minimized.

In general, the original data may be divided into many subclusters. For clar-

ity of explanation, we assume that the original data F has two subclusters G =

{X[1], · · ·X[m]} and H = {X[m+1], · · ·X[n]} after cluster analysis. By relaxing the

strict condition of Gaussianity on Theorem 8.1 and applying a weaker condition of

approximate symmetric unimodality instead, it is possible to use to improve the den-

sity estimation of F . We can expect the density estimation via the mixture of the

decomposition pair to be better than that of the original data set, since σG+σH < σF .

Therefore, one may propose an mixture kernel density estimator f̂1 of F given as fol-

lows:

f̂1(x) =
m

n
ĝ(x; bg) +

1−m

n
ĥ(x; bh)

where

bg = m− 1
5 σ̂G , bh = (n−m)−

1
5 σ̂H ,

and

ĝ(x; bg) = (mbg)
−1

m∑
i=1

K{(x−X[i])/bg} ,

ĥ(x; bh) = [(n−m)bh]
−1

n∑
i=m+1

K{(x−X[i])/bh} .

The original kernel density estimator f̂ of F is given in Eq (8.1).

As an experiment, we generate a sample of size 1000 from a bimodal density shown
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in black in Fig 8.9. By simply computing one single bandwith b on the whole sample

set, we obtain a kernel density estimator (computed using f̂). The result is shown

in blue. By using M-decomposability and splitting the data into two clusters, we

obtain a mixture kernel density estimator (computed using f̂1). The result is shown

in red. From Fig 8.9, it is clear that the kernel density estimator which is incorporated

using M-decomposability is nearer to the truth. As mentioned earlier, the effect of

oversmoothing (blue line) is apparent in this example for the plain kernel density

estimator with a single bandwidth. This is because the original density is bimodal

with modes well separated. The undesirable effect of oversmoothing is alleviated by

implementing M-decomposability.
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Figure 8.1. Original data from multimodal density.
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Figure 8.2. Decomposition pair of original density.
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Figure 8.3. Decomposition pair of first mixture component from Fig 8.2.
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Figure 8.4. Decomposition pair of second mixture component from Fig 8.2.
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Figure 8.5. All M-undecomposable subclusters.

71



-15 -10 -5 0 5 10 15
-80

-60

-40

-20

0

20

40

60

80
Final Cluster Allocation

Figure 8.6. Final cluster allocation.
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Figure 8.7. True Iris data: setosa(green), versicolor(blue), virginica(red). The circles
denote data that are misspecified by M-decomposability.
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Figure 8.8. Iris data recovered via M-decomposability: setosa(green), versi-
color(blue), virginica(red). The circles denote data that are misspecified by M-
decomposability.
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Figure 8.9. True density in black; kernel estimate with one bandwith in blue; kernel
estimate with M-decomposbility in red.
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Chapter 9

Concluding Remarks

In this thesis, there are two main contributions. First of all, we introduce the idea

of M-decomposability, a novel concept that applies to probability density functions

in any dimension. We build the theoretical foundations of M-decomposability from

ground up, from the very definition to the derivation of two theorems pertaining to

M-decomposability. As the concept of M-decomposability is closely linked to the

modality of probability density functions, the theoretical results attained from this

thesis should be of interest to theoreticians and practitioners alike.

Secondly, we demonstrate the possible practical applications of the theoretical

results derived from this thesis to statistical data analysis. One example of using

the idea of M-decomposability in practice is non-parametric clustering, whereby the

determination of the number of underlying clusters is automatic. Another example is

density estimation. We demonstrate a scheme for the refinement of kernel bandwidth

to ameliorate kernel density estimation.
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9.1 M-Decomposability as a Criterion for Classi-

fication

In the thesis, we adopt a divide-and-conquer approach to analysis of probability

density functions. Let f, g, h be probability density functions defined on x ∈ Rd. We

say that {g, h} is a decomposition pair of f if there exists α ∈ (0, 1) such that

f(x) = α g(x) + (1− α)h(x) .

The following definition and results are derived from the thesis:

1. According to Definition 6.2, a density f is said to be M-decomposable if there

exists a decomposition pair {g, h} such that

|Σf |
1
2 > |Σg|

1
2 + |Σh|

1
2 . (9.1)

Otherwise, we say that f is M-undecomposable.

Note that there are no restrictions imposed on the functional forms of the mix-

ture components g and h, as compared to parametric methods like finite mixture

models. M-decomposability can therefore be used as a flexible, non-parametric

criterion for clustering or discriminant analysis. We then provide further evi-

dence of the validity of M-decomposability as a criterion for classification via

the Theorem 7.2.

2. All elliptical unimodal densities with finite second moments defined on x ∈ Rd

are M-undecomposable. (Theorem 7.2)

Theorem 7.2 applies to a wide class of commom probability density functions.

These include and are not limited to Gaussian, Laplace, logistic, Student’s t

(with degrees of freedom greater than 2 to ensure the finiteness of second mo-

ments), Von Mises, elliptical uniform and many others, natural or artificial,
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mixture or otherwise. The class of elliptical unimodal densities (or symmetric

unimodal densities in one-dimension) is much larger and more flexible than any

parametric class and hence Theorem 7.2 can potentially have a far reaching

impact both theoretically and practically. Theoretically, Theorem 7.2 implies a

certain inherent fundamental optimality in elliptical unimodal densities, as op-

posed to densities which are M-decomposable. In practical terms, if a density

f is found to be M-decomposable, one immediately concludes that f cannot

belong to the class of elliptical unimodal densities. It is then probable that f

is multimodal and should be subdivided into structurally simpler mixture com-

ponents g and h. One natural, non-parametric criterion for cluster analysis or

discrimination is to decompose a multimodal density into a mixture of elliptical

unimodal densities. In this respect, M-decomposability provides an intuitive

solution to clustering.

The third result shown below, which relates M-decomposable to Kullback-

Leibler divergence, provides a stronger justification for M-decomposability.

3. Given any probability density function f , if there exists a decomposition pair

{g, h} such that equation (9.1) holds, then

KLD[f‖f̃ ] > KLD[f‖α g̃ + (1− α) h̃] .

Here, KLD[·‖·] denotes the Kullback-Leibler divergence between the respective

pdf’s; f̃ denotes the Gaussian distribution which has the same mean and co-

variance structure as pdf f , the same applies to g and h. (Theorem 8.1)

Theorem 8.1 basically says that if an unknown pdf f is M-decomposable, the

mixture components g and h (which are apparently analytically unknown as

well) can be used to improve estimation of f via Gaussian approximation. The

mixture of the Gaussian approximates of the components, expressed in terms of

α g̃ + (1− α) h̃, provides a better estimation of the original density f than the
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Gaussian approximate of f , in Kullback-Leibler sense. With Theorem 8.1, f no

longer needs to be multimodal to benefit from the ideas ofM-decomposition. As

long as f is M-decomposable, it is guaranteed, in Kullback-Leibler sense, that

one cannot go wrong with decomposition into the mixture components. Apart

from cluster analysis, another straightforward application of Theorem 8.1 is

density estimation. In Chapter 8, we demonstrate a strategy to improve kernel

density estimation via M-decomposability.

9.2 Future Work

The theoretical groundwork in this thesis has been shown to be directly applicable

to cluster analysis as well as density estimation. As cluster analysis is also related to

statistical learning, it is forseeable that further scientific and statistical applications of

M-decomposability may include principal component analysis, independent compo-

nent analysis, machine learning, etc. Furthermore, as M-decomposability has been

demonstrated to improve density estimation, a direct application in this direction

may be the improvement of particle filtering and MCMC methodologies.
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