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Chapter 1

Introduction

1.1 Nonlinear, Non-Gaussian, and Non-stationary

State Space Model and Economic and Finan-

cial Time Series

Financial markets and the economy are changing rapidly. On financial mar-

kets, many financial time series exhibit changes of volatility (variance) over

time. Moreover, many financial time series are well known to have non-

Gaussian heavy-tailed distributions. These facts indicate that a nonlinear

non-Gaussian time series analysis is needed. Regarding the economy, as one

example, the Japanese economy has the experience of the “bubble econ-

omy” in the late 1980s. After bursting of the “bubble economy”, the econ-

omy entered a decade of economic stagnation, which is often called “the

lost decade”. These facts indicate that conventional linear regression based

on ordinary least squares might be ineffective to analyze a non-stationary
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economy because the coefficients of linear regression are fixed. This paper

shows several statistical approaches based on nonlinear non-Gaussian state

space modeling and time-varying coefficient autoregressive modeling. These

approaches are novel studies of financial markets and the economy.

In this chapter 1, the Monte Carlo filter are introduced. It is a minimal

introduction to nonlinear non-Gaussian state-space modeling.

In chapter 2, we propose a method to seek initial distributions of pa-

rameters for a self-organizing state space model proposed by [Kit98]. Our

method is based on the simplex Nelder-Mead algorithm for solving nonlinear

and discontinuous optimization problems. We show the effectiveness of our

method by applying it to a linear Gaussian model, a linear non-Gaussian

model, a nonlinear Gaussian model, and a stochastic volatility model.

In chapter 3, we propose a smoothing algorithm based on the Monte

Carlo filter and the inverse function of a system equation (an inverse system

function). Our method is applicable to any nonlinear non-Gaussian state

space model if an inverse system equation is given analytically. Moreover, we

propose a filter initialization algorithm based on a smoothing distribution

obtained by our smoothing algorithm and an inverse system equation.

In chapter 4, we illustrate the effectiveness of our approach by applying

it to stochastic volatility models and stochastic volatility models with heavy-

tailed distributions for the daily return of the Yen/Dollar exchange rate.

In chapter 5, we propose a method that estimates a time-varying linear

system equation based on time-varying coefficients’ vector autoregressive

modeling (time-varying VAR), and which controls the system. In our frame-

work, an optimal feedback is determined using linear quadratic dynamic pro-

12



gramming in each period. The coefficients of time-varying VAR are assumed

to change gradually (this assumption is widely known as smoothness priors

of the Bayesian procedure). The coefficients are estimated using the Kalman

filter. In our empirical analyses, we show the effectiveness of our approach

by applying it to monetary policy, in particular, the inflation targeting of the

United Kingdom and the nominal growth rate targeting of Japan. Further-

more, we emphasize that monetary policy must be forecast-based because

transmission lags pertain from monetary policy to the economy. Our ap-

proach is convenient and effective for central bank practitioners when they

are unaware of the true model of the economy. Additionally, we find that the

coefficients of time-varying VAR change in response to changes of monetary

policy.

In chapter 6, we estimate the β of a single factor model that is often

used by financial practitioners. In this chapter, we assume that β changes

”gradually” over time; this assumption is identical to that in chapter 5.

Using our approach, we can estimate β, even if it is time varying. We apply

our approach to the Japanese Stock Markets and show its effectiveness.

Although we adopt a very restrictive method (we assume smoothness priors

and use the Kalman filter, which is based on linear state space modeling

and the Gaussian distribution), we can obtain good estimates of β.

13



1.2 Monte Carlo Filter

A nonlinear non-Gaussian state space model for the time series yt, t =

{1, 2, · · · , T} is defined as

xt = f(xt−1, ξs, vt),

yt = h(xt, ξm, ϵt),
(1.1)

where xt is an unknown nx × 1 state vector, vt is the nv × 1 system noise

vector with a density function q(v), ϵt is the nϵ × 1 observation noise vector

with a density function r(ϵ), ξs is the ns ×1 system parameter vector of the

function f , and ξm is the nm×1 observation parameter vector of the function

h. The function f : Rnx × Rnv → Rnx is a possibly nonlinear function and

the function h : Rnx × Rnϵ → Rny is a possibly nonlinear function. The

first equation of (1.1) is called a system equation and the second equation

is called a measurement equation. This nonlinear non-Gaussian state space

model specifies the two following conditional density functions:

p(xt|xt−1),

p(yt|xt).
(1.2)

We define a parameter vector θ as

θ =

 ξs

ξm

 . (1.3)

14



In the state estimation problem of a nonlinear non-Gaussian state space

model (e.g. [KG96]), the predictor, filter, and smoother are defined as

Predictor: p(xt|y1:(t−1)),

Filter: p(xt|y1:t),

Smoother: p(xt|y1:T ),

(1.4)

where y1:t = {y1, · · · , yt}. Most state estimation algorithms are Bayesian

recursive tracking; they are based on Bayes’ theorem (See [AMGC02]), which

is

P(xt|y1:t) =
P(yt|xt)P(xt|y1:(t−1))

P(yt|y1:(t−1))
, t ≥ 1, (1.5)

where P(xt|y1:t−1) is the prior probability, P(yt|xt) is the likelihood, P(xt|y1:t)

is the posterior probability, and P(yt|y1:t−1) is the normalizing constant.

We denote an initial probability P(x1) = P(x1|∅), where the empty set ∅

indicates that we have no observations. In the state estimation problem,

determining an initial probability P(x1), which is called filter initialization,

is important because a proper initial probability improves a posterior prob-

ability. In general, however, an initial probability is unknown.

In the Monte Carlo filter (the MC filter), the posterior density distribu-

tion at time t is approximated as

p(xt|y1:t) =
1∑M

i=1 wi
t

M∑
i=0

wi
tδ(xt − xi

t), (1.6)

where wi
t is the weight of a particle xi

t, M is the number of particles, and

15



δ is the Dirac’s delta function 1. The definition of wi
t is described below.

In the standard algorithm of the MC filter, particles are resampled with

sampling probabilities proportional to the weights wi
t at every time t. After

resampling, the weights are reset to wi
t = 1/M . Therefore, Eq. (1.6) is

rewritten as

p(xt|y1:t) =
1
M

M∑
i=1

δ(xt − x̂i
t) (1.7)

where x̂i
t are particles after resampling. Using Eq. (1.7), the predictor

p(xt|y1:(t−1)) can be approximated by

p(xt|y1:(t−1)) =
∫

p(xt|xt−1)p(xt−1|y1:(t−1))dxt−1

=
1
M

M∑
i=1

∫
p(xt|xt−1)δ(xt−1 − x̂i

t−1)dxt−1

=
1
M

M∑
i=1

p(xt|x̂i
t−1)

≃ 1
M

M∑
i=1

δ(xt − xi
t).

(1.8)

Note that xi
t are obtained from

xi
t ∼ p(xt|x̂i

t−1). (1.9)

1The Dirac delta function is defined as

δ(x) = 0, if x ̸= 0,
Z ∞

∞
δ(x)dx = 1.
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Substituting Eq. (1.8) to Eq. (1.5), we obtain the following equation.

p(xt|y1:t) ∝p(yt|xt)p(xt|xt−1)

∝ 1
M

p(yt|xt)
M∑
i=1

δ(xt − xi
t)

=
1
M

M∑
i=1

p(yt|xi
t)δ(xt − xi

t).

(1.10)

Comparing Eq. (1.6) and Eq. (1.10) indicates that weights wi
t are obtain by

wi
t ∝ p(yt|xi

t). (1.11)

Therefore, weight wi
t is defined as

wi
t ∝ p(yt|xi

t) = r(ψ(yt, x
i
t))

∣∣∣∂ψ

∂y

∣∣∣, i = {1, · · · ,M}, (1.12)

where ψ is the inverse function of the function h. The right hand side of

Eq. (1.12) is the likelihood function of a nonlinear non-Gaussian state space

model. The algorithm of the MC filter is shown as Algorithm 1.

Algorithm 1: The Monte Carlo Filter

[{xi
t, wi

t}
M
i=1, llk] = MCPfilter[{xi

t−1}
M

i=1
, yt]

{

FOR i=1,...M

Predict: xi
t ∼ p(xt|xi

t−1, v
i
t)

Weight: wi
t = p(yt|xi

t, ϵ)

ENDFOR

17



Sum of Weights: sw =
∑M

i=1 wi
t

Log-Likelihood: llk = log(sw/M)

FOR i=1,...,M

Normalize: w̃i
t = wi

t
sw

ENDFOR

Resampling: [{xi
t, wi

t}
M
i=1] =resample[{xi

t, wi
t}

M
i=1]

RETURN[{xi
t, wi

t}
M
i=1, llk]

}

MCPmain [{xi
0}

M
i=1, {yt}T

t=1] {

Initialize: llk = 0

FOR t=1,...,T

mcp = MCPfilter[{xi
t−1}

M

i=1
, yt]

llk = llk + (llk in mcp)

{xi
t, wi

t}
M
i=1 = ({xi

t, wi
t}

M
i=1 in mcp)

ENDFOR

RETURN[{{xi
t, wi

t}
M
i=1}

T

t=1, llk]

}

18



A precedent work, [Kit96], shows that the likelihood of the parameter

vector θ is approximated by

L(θ) =
T∏

t=1

p(yt|y1, · · · , yt−1, θ)

=
T∏

t=1

1
M

M∑
i=1

wi
t.

(1.13)

Therefore, the log-likelihood of the parameter vector θ is

l(θ) ≃
T∑

t=1

log(
M∑
i=1

wi
t) − T log M, (1.14)

where T is the number of observations. This approximation shows that the

log-likelihood is affected by sampling error from the Monte Carlo algorithm.

In addition, [Kit98] points out that numerous particles are necessary to

obtain a closely accurate log-likelihood result 2. The sampling error of Eq.

(1.14) prevents the calculation of accurate maximum likelihood estimates.

Moreover, we cannot use optimization algorithms that require derivations

of functions because Eq. (1.14) is approximated by the weights of particles.

Therefore, we require an alternative approach that allows the estimation of

parameters without maximizing the log-likelihood accurately.

If we have several statistical models, the goodness of fit of each model

is evaluated using the Akaike Information Criterion (AIC), proposed by

[Aka73]. The AIC is defined as

AIC = −2l(θ∗) + 2q, (1.15)

2[Hig95] reports the sampling error of Eq. (1.14) in some cases.

19



where θ∗ is the maximum likelihood estimate and q is the number of un-

known parameters.
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Chapter 2

A Self-Organizing State

Space Model and Simplex

Initial Distribution Search

2.1 Introduction

The Monte Carlo (MC) filter is proposed by [GSS93] and [Kit96]. The filter

is an algorithm to estimate states for a nonlinear non-Gaussian state space

model1. In recent years, the filter has been applied to various problems2. In

spite of its widespread practical application, a problem exists in parameter

estimation in the MC filter. It is difficult to estimate parameters accurately

using the MC filter. The problem results from the sampling error of the

likelihood of the MC filter from the Monte Carlo algorithm. Consequently,

1[AMGC02] is a readable tutorial on the Monte Carlo filter.
2See [DdFG01].
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it is very difficult to obtain accurate maximum likelihood estimates because

the likelihood is affected by the sampling error from the Monte Carlo algo-

rithm. [Kit98] points out that numerous particles are necessary to obtain

a close accurate likelihood. Moreover, the likelihood of the MC filter is ap-

proximated by “particles”. Therefore, the likelihood is not differentiable.

Therefore, we cannot use function optimization algorithms, which require

the derivatives of functions.

To solve the problem, [Kit98] proposes a self-organizing state space

model3. In [Kit98], a state vector is augmented to include states and param-

eters. The augmented state vector is estimated using the MC filter. There-

fore, states and parameters are estimated simultaneously without maximiz-

ing the likelihood of the MC filter. On a self-organizing state space model,

however, [HK01] points out a problem: determination of initial distributions

of parameters for a self-organizing state space model. The estimated param-

eters of a self-organizing state space model comprise a subset of the initial

distributions of parameters. We must know the posterior distributions of

parameters to estimate parameters adequately. However, the posterior dis-

tributions of the parameters are generally unknown. Parameter estimation

fails if we do not know appropriate their initial distributions. We propose a

method to seek initial distributions of parameters for a self-organizing state

space model using the simplex Nelder-Mead algorithm to solve the problem.

The algorithm solves nonlinear and discontinuous optimization problems.

In our approach, the simplex Nelder-Mead algorithm is used to minimize

the negative log-likelihood of a self-organizing state space model. Never-

3Another excellent approach is proposed by [DT03].
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theless, the negative log-likelihood is affected by sampling error from the

Monte Carlo algorithm, a self-organizing state space model is able to esti-

mate parameters because minimizing the negative log-likelihood renders the

initial distributions as close to “true” parameters. [LWH04] uses the simplex

Nelder-Mead method to maximize the likelihood of the MC filter. However,

we use the likelihood of a self-organizing state space model. Moreover, in

our approach, parameters are estimated using a self-organizing state space

model4.

The motivation of our algorithm is to improve the accuracy of the es-

timates of parameters rather than [LWH04]. In the algorithm of [LWH04],

they maximize the likelihood of the MC filter to obtain the estimates of

parameters. However, the likelihood is affected by sampling error from the

Monte Carlo algorithm. Thus, the simplex Nelder-Mead method in [LWH04]

may not be terminated well or less accurate estimates are obtained. This

problem is avoided by our alogrithm bacause parameters are estimated us-

ing a self-organizing state space model. In appendix B, we show that the

estimation of our algorithm are better than the estimation of [LWH04] .

This paper is organized as follows. In section 2, we describe a self-

organizing state space model and our initial distribution search algorithm.

In section 3, we show examples for some models. In section 4, we describe

this study’s salient conclusions.

4[Kit98] states that the difficulty of obtaining the close approximation of the likelihood
motivates the development of a self-organizing state space model.
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2.2 Model

2.2.1 Monte Carlo Filter

A nonlinear non-Gaussian state space model for the time series yt, t =

{1, 2, · · · , T} is defined as follows.

xt = f(xt−1, ξs, vt),

yt = h(xt, ξm, ϵt),
(2.1)

where xt is an unknown nx × 1 state vector, vt is nv × 1 system noise vector

with a density function q(v) 5, ϵt is nϵ × 1 observation noise vector with a

density function r(ϵ), ξs is the ns×1 system parameter vector of the function

f , and ξm is the nm×1 observation parameter vector of the function h. The

function f : Rnx × Rnv → Rnx is a possibly nonlinear function and the

function h : Rnx × Rnϵ → Rny is a possibly nonlinear function. The first

equation of (2.1) is called a system equation and the second equation is

called a measurement equation. This nonlinear non-Gaussian state space

model specifies the two following conditional density functions.

p(xt|xt−1, ξs),

p(yt|xt, ξm).
(2.2)

We define a parameter vector θ as follows.

θ =

 ξs

ξm

 . (2.3)

5The system noise vector is independent of past states and current states.
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We denote that θj is the jth element of θ and J(= ns + nm) is the number

of elements of θ.

This type of state space model (2.1) contains a broad class of linear, non-

linear, Gaussian, or non-Gaussian time series models. In spate space mod-

eling, estimating the state space vector xt is the most important problem.

For the linear Gaussian state space model, the Kalman filter, which is pro-

posed by [Kal60], is the most popular algorithm to estimate the state vector

xt. For nonlinear or non-Gaussian state space model, there are many algo-

rithms. For example, the extended Kalman filter ([Jaz70]) is the most pop-

ular algorithm and the other examples are the Gaussian-sum filter ([AS72]),

the dynamic generalized model ([WHM85]), and the non-Gaussian filter and

smoother ([Kit87]). In recent year, the MC filter for nonlinear non-Gaussian

state space model is a popular algorithm because it is easily applicable to

various time series models 6.

The MC filter is a variant of sequential Monte Carlo algorithms. In the

MC filter, a posterior density function is approximated as “particles” that

have weights, as

p(xt|y1:t) =
1∑M

i=1 wi
t

M∑
i=1

wi
tδ(xt − xi

t), (2.4)

where wi
t is the weight of a particle xi

t, M is the number of particles, and

δ is the Dirac delta function7. We define y1:t = {y1, · · · , yt}. Particle xi
t is

6Many applications are shown in [DdFG01].
7The Dirac delta function is defined as follow.

δ(x) = 0, if x ̸= 0,
Z ∞

∞
δ(x)dx = 1.
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sampled from a system equation:

xi
t ∼ p(xt|xi

t−1, ξs). (2.5)

Weight wi
t is obtained as follows8.

wi
t = r(ψ(yt, x

i
t))

∣∣∣ ∂ψ

∂yt

∣∣∣, (2.6)

where ψ is the inverse function of the function h. The posterior density

of Eq. (2.4) is obtained using resampling of particles of Eq. (2.5) with

sampling probabilities proportional to w1
t , · · · , wM

t . Resampling algorithms

are discussed in [Kit96].

[Kit96] shows that the log-likelihood of the MC filter is approximated by

l(θ) ≃
T∑

t=1

log(
M∑
i=1

wi
t) − T log M, (2.7)

where T is the number of observations. This approximation shows that the

log-likelihood is affected by sampling error from the Monte Carlo algorithm.

[Kit98] points out that numerous particles are necessary to obtain a closely

accurate log-likelihood result. The sampling error of Eq. (2.7) prevents

the calculation of accurate maximum likelihood estimates9. Moreover, we

cannot use optimization algorithms that require the derivatives of functions

because Eq. (2.7) is approximated by the weights of particles. Therefore,

we need to develop an alternative approach that allows the estimation of

8See [Kit96].
9[Hig95] reports the sampling error of Eq. (2.7) in some cases.
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parameters without maximizing a log-likelihood.

2.2.2 A Self-organizing State Space Model

The MC filter is problematic to estimate the parameter vector θ because

the likelihood of the filter contains error from the Monte Carlo method.

[Kit98] proposes a self-organizing state space model to solve the problem.

In [Kit98], an augmented state vector is defined as follows.

zt =

xt

θ

 , (2.8)

An augmented system equation and an augmented measurement equation

are defined as

zt = F (zt−1, vt, ξs),

yt = H(zt, ϵt, ξm),
(2.9)

where

F (zt−1, vt, ξs) =

f(xt−1, vt, ξs)

θ


and

H(zt, ϵt, ξm) = h(xt, ϵt, ξm).

This nonlinear non-Gaussian state space model is called a self-organizing

state space (SOSS) model. In our framework, the augmented state vector is

estimated using the MC filter. The weights of particles are obtained by Eq.

(2.6) and the log-likelihood of an SOSS model is approximated by Eq. (2.7).
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States and parameters are estimated simultaneously without maximizing

the log-likelihood of Eq. (2.9) because the parameter vector θ in Eq. (2.9)

is approximated by particles and it is estimated as the state vector in Eq.

(2.8) 10. However, the parameter vector θ in Eq. (2.1) is not approximated

by particles and it is estimated using maximizing the log-likelihood of Eq.

(2.1). It is the difference between Eq. (2.1) and Eq. (2.9).

The initial particles θi
0, {i = 1, · · · ,M} of a parameter vector θ are

sampled from the uniform distribution:

θi
j,0 ∼ Uniform(Pj − rj , Pj + rj), (2.10)

where θi
j,0 is the jth element of θi

0, Uniform(Pj − rj , Pj + rj) is uniform

distribution from Pj −rj to Pj +rj , Pj is the center of (Pj −rj , Pj +rj), and

rj is a real number. The algorithm of an SOSS model is shown as Algorithm

2 11.

Algorithm 2: A Self Organizing State Space

SOSS[{zi
t−1}

M

i=1
,yt]

{

FOR i=1,...M

Predict: zi
t ∼ p(zt|zi

t−1, v
i
t)

Weight: wi
t is obtained by Eq. (2.6)

ENDFOR

Sum of Weights: sw =
∑M

i=1 wi
t

10The justification of an SOSS model is described in [Kit98].
11The negative log-likelihood is defined in the next subsection.
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Log-Likelihood: llk = log(sw/M)

FOR i=1,...,M

Normalize: w̃i
t = wi

t
sw

ENDFOR

Resampling: [{zi
t, wi

t}
M
i=1] =resample[{zi

t, wi
t}

M
i=1]

RETURN[{zi
t, wi

t}
M
i=1, llk]

}

SOSSmain[{xi
0}

M
i=1, {y}T

t=1, P ]

{

Initialize the negative log-likelihood: Y = 0

θ0 ∼ uniform(P − r,P + r)

{zi
0}

M
i=1 = ({xi

0}
M
i=1, {θi

0}
M
i=1)

FOR t=1,...,T

soss = SOSS[{zi
t−1}

M

i=1
, yt]

Y = Y − (llk in soss)

{zi
t, wi

t}
M
i=1 = ({zi

t, wi
t}

M
i=1 in soss)

ENDFOR

RETURN[{{zi
t, wi

t}
M
i=1}

T

t=1, Y ]

}

On an SOSS model, [HK01] points out a problem: determination of ini-

tial distributions of a parameter vector θ of an SOSS model. The difficulty

of an SOSS model is that the filtered sample θ̂ is a subsample of the prior

sample θ0 because θ̂ has no noises (innovations). However, we do not gener-

ally know the location, spread, and shape of the posterior. For that reason,
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it is difficult to determine the initial prior distributions of parameter θ0. To

solve that problem, [LW01] proposes adding artificial noise to parameters.

The effectiveness of this approach is shown in [LW01] 12. However, it is

difficult to interpret the the artificial noise of invariant parameters. There-

fore, we propose a method to estimate invariant parameters without using

artificial innovations.

2.2.3 Simplex Initial Distribution Search

The Simplex Nelder-Mead (SNM) algorithm, which is proposed by [NM65],

minimizes a function of J variables without constraints. The algorithm

requires no derivatives of a function. Therefore, it works well for a non-

differentiable function. The log-likelihood of an SOSS model is not a differ-

entiable function because the log-likelihood is approximated by the weights

of particles. The SNM method is applicable to the non-differentiable log-

likelihood.

Vectors P = [P1, · · · , Pn, · · · ,PJ+1] are the (J+1) points in J-dimensional

space that define the current “simplex”13. Note that the elements of Pn are

the centers of the uniform distributions in Eq. (2.10) 14. We denote that

θj,n, (1 ≤ j ≤ J, 1 ≤ n ≤ J + 1), is the jth element of θ at the nth point

of the current “simplex”. We write Yn for the negative log-likelihood of an

SOSS model at Pn and define that h has the suffix such that Yh = max(Yn)

[h for “high”], s has the suffix the second highest Yn, and l has the suffix

such that Yl = min(Yn) [l for “low”]. We define the negative log-likelihood

12We compare our method with [LW01] in appendix A.
13Note that J is the number of elements of „.
14The determination of the initial “simplex” P is described in appendix A.
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as follows.

Yn(Pn) ≃ −
T∑

t=ts

log(
M∑
i=1

wi
t) + T log M, (2.11)

where ts is a positive integer. We set ts ≥ 1 because we would like to remove

the initial particles of parameters until the particles are degenerated 15. At

each stage of the SNM method, Ph is replaced by a new point using three

operations: reflection, expansion, and contraction. Reflection is defined as

Pref = (1 + α)Pcent − αPh, α > 1, (2.12)

where Pcent is the centroid of Pi, (i ̸= h). Expansion is defined as

Pexp = γPref + (1 − γ)Pcent, γ ≥ 1. (2.13)

Contraction is defined as

Pcontr = (1 + β)Ph − βPcent, β ∈ (0, 1). (2.14)

In our approach, we use the SNM algorithm to minimize the negative

log-likelihood of an SOSS model along with the SOSS model estimate pa-

rameters. Although the log likelihood is affected by sampling error from

the Monte Carlo algorithm, a self-organizing state space model can estimate

parameters because minimizing the negative log-likelihood makes the initial

distributions nearly equivalent to “true” parameters.

15We set ts = 20 in our examples. Furthermore, we try to set ts = 1. There exits a
very little difference between two cases because particles of parameters are degenerated
so rapidly.
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Our procedure is terminated when the condition below is satisfied:

√√√√ J∑
j=1

J+1∑
n=1

(θj,n − θ̄j)
2

J(J + 1)
< ϵh, (2.15)

where θ̄j is the average of the jth element of θ of J +1 points (the “simplex”

at time T) and ϵh is a small positive real number. The algorithm of the

simplex initial distribution search is shown in Algorithm 3 16. We denote

that l is the number of iteration until the SNM procedure is stopped by the

criterion given in Eq. (2.15).

[LWH04] adopts the simplex Nelder-Mead method to maximize the log-

likelihood of the MC filter. The gradient of the log-likelihood around “true

parameters” is nearly equal to zero in general. However, the log-likelihood

is affected by sampling error from the Monte Carlo algorithm. Thus, the

simplex Nelder-Mead method may not be terminated well because of the

sampling error. To avoid the problem, numerous particles are necessary

to obtain a closely accurate log-likelihood result. While, in our approach,

parameters are estimated using an SOSS model. Thus, we don’t need a

closely accurate log-likelihood result as in [LWH04] 17.

16The algorithm of [NM65] is shown in Fig. 2.1.
17We compare our method with [LWH04] in appendix A.
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Algorithm 3: Simplex Initial Distribution Search

SimplexSOSS[{y}T
t=1, P = [P1, · · · , PJ+1], J ]

{

WHILE (TRUE)

FOR i=1,...,J+1

Yi = SOSSMain({y}T
t=1, Pi)

ENDFOR

Set highest negative log-likelihood: Y h

Set second highest negative log-likelihood: Y s

Set lowest negative log-likelihood: Y l

Calculate the centroid Pcent of {Pi}, i ̸= h

Reflection: Pref = (1 + α)Pcent − αPh

Yref = SOSSMain(Pref )

FLAG=0

IF Yref < Yl

Expansion: Pexp = γPref + (1 − γ)Pcent

Yexp = SOSSMain(Pexp)

IF Yexp < Yl

Replace Ph by Pexp

FLAG=1

ENDIF

ELSE IF Yref <= Ys AND FLAG = 0
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Replace Ph by Pref

FLAG=1

ELSE IF Yref > Yh AND FLAG = 0

(Do nothing)

ELSE

Replace Ph by Pref

ENDIF

Contraction: Pcontr = βPh + (1 − β)Pcent

Ycontr = SOSSMain(Pcontr)

IF Ycontr <= Yh

Replace Ph by Pcontr

ELSE

Replace all Pi by (Pi + Pl)/2

ENDIF

IF Eq. (2.15) is satisfied THEN BREAK

ENDWHILE

RETURN[P ]

}

Section 3 describes the effectiveness of our method. In practice, the

procedure of minimizing a negative log-likelihood stops before reaching a

“true” parameter in some examples. That is, our initial distribution search

is trapped in a local minimum because of the log-likelihood sampling error.

This problem is solvable iteratively using our procedure. In other words,

even if our initial distribution search is stopped, we restart our procedure at

the stopped point. That restart is terminated when the parameter estimates
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Figure 2.1: The Simplex Nelder-Mead Algorithm

are almost invariant. The next section shows that the problem of local

minima is solvable if we iteratively use initial distribution searches two to

four times.

2.3 Examples

In this section, we apply an initial distribution search algorithm to a linear

Gaussian model, a linear non-Gaussian model, a nonlinear Gaussian model,

and a stochastic volatility model.

In the following subsections: (1) we generate artificial time series (T =

100) based on each model, and (2) we estimate states and parameters using
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a self-organizing state space model and initial distribution search iteratively.

In our examples, we presume that an initial state x0 is given. However, we

assume that initial parameters are unknown. Therefore, we set all initial

parameters zero as non-informative priors. We set the number of particles,

M , to 10000 to estimate parameters18.

2.3.1 Linear Gaussian State Space Model

In the case of two parameters, a linear Gaussian state space model is defined

as

xt = xt−1 + vt, x0 ∼ N(0, 1),

yt = xt + ϵt,

(2.16)

where vt ∼ N(0, σ2
s) and ϵt ∼ N(0, σ2

m). Parameters are ξs = σs and

ξm = σm. The augmented state vector of this model is defined as

zt =


xt

σs

σm

 . (2.17)

The parameter estimates and the average of each parameter estimate are

shown in Table 2.1 and the estimated state xt based on the first iteration

is shown in Fig. 2.2 (The dotted line is the estimated state xt. The solid

line is the real state). Table 2.1 shows that the parameter estimates are

18About the determination of M , we follow previous studies, for example, [Kit98]. We
set rj = 0.1, α = 2.0, γ = 2.0, β = 0.5, and ϵh = 1.0 × 10−4. We use rj = 0.1 to estimate
parameters to four places of decimals. Note that 0.1×2/10000 = 2.0×10−5. The centroid
of {Pi}, i ̸= h, is obtained from the averages of the positions of J points.
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close to the true parameter values in the first iteration. In Table 2.1, we

show the estimates based on the Kalman filter. The results are better than

our method, and it indicates the Kalman filter is better than our method

in linear Gaussian state space models. Moreover, Fig. 2.2 shows that the

estimated state is very similar to the true state.

Table 2.1: Linear Gaussian Model (2 Parameters)

Iteration log-likelihood σs σm M l
Initial Parameter 0 0
First Iteration -548.878 4.0280 2.4153 10000 33

-549.400 4.0279 2.4152
-549.718 4.0283 2.4154

Average 4.0281 2.4154
True Parameter Value 4 2

Kalman Filter 4.0121 2.267

2.3.2 Linear non-Gaussian State Space Model

In the case of two parameters, a linear non-Gaussian state space model is

defined as

xt = xt−1 + αvt, x0 ∼ N(0, 1),

yt = xt + ϵt,

(2.18)

where vt ∼ t(df = 1)[Cauchy distribution] and ϵt ∼ N(0, σ2
m). The parame-

ters are ξs = α and ξm = σm. The augmented state vector of this model is
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Figure 2.2: Linear Gaussian Model

defined as

zt =


xt

α

σm

 . (2.19)

The parameter estimates and the average of each parameter estimate are

shown in Table 2.2 and the estimated state xt based on the first iteration is

shown in Fig. 2.3. Table 2.2 shows that the parameter estimates are close

to the true parameter values in the first iteration. Moreover, Fig. 2.3 shows

that the estimated state is very close to the true state.
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Table 2.2: Linear Non-Gaussian Model

Iteration log-likelihood α σm M l
Initial Parameter 0 0
First Iteration -581.6198 1.2942 2.8583 10000 38

-582.1342 1.2941 2.8582
-582.5045 1.2939 2.8580

Average 1.2941 2.8582
True Parameter Value 1 3

2.3.3 Nonlinear Gaussian State Space Model

In the case of two parameters, a nonlinear Gaussian state space model is

defined as

xt =
1
2
xt−1 +

25xt−1

1 + x2
t−1

+ 8 cos(1.2(t − 1)) + vt, x0 ∼ N(0, 1),

yt =
x2

t

20
+ ϵt,

(2.20)

where vt ∼ N(0, σ2
s) and ϵt ∼ N(0, σ2

m). Parameters are ξs = σs and

ξm = σm. The augmented state vector of this model is defined as

zt =


xt

σs

σm

 . (2.21)

The parameter estimates and the average of each parameter estimate are

shown in Table 2.3 and the estimated state xt based on the fourth iteration

is shown in Fig. 2.4. Table 2.3 shows that the parameter estimates are close

to the true parameter values in the fourth iteration. Moreover, Fig. 2.4
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Figure 2.3: Linear Non-Gaussian Model

shows that the estimated state is a good fit for the true state.

In the case of three parameters, a nonlinear Gaussian state space model

is defined as

xt =
1
2
xt−1 +

αxt−1

1 + x2
t−1

+ 8 cos(1.2(t − 1)) + vt, x0 ∼ N(0, 1),

yt =
x2

t

20
+ ϵt.

(2.22)

Parameters are ξs = (σs, α) and ξm = σm. The augmented state vector of
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Table 2.3: Nonlinear Gaussian Model (2 Parameters)

Iteration log-likelihood σs σm M l
Initial Parameter 0 0
First Iteration -476.2196 2.6345 4.0271 10000 41

-477.5585 2.6343 4.0268
-477.814 2.6344 4.0269

Average 2.6344 4.0271
Initial Parameter 2.6344 4.0271
Second Iteration -387.3325 3.6087 7.8855 10000 27

-387.4781 3.6088 7.8857
-387.6288 3.6088 7.8857

Average 3.6087 7.8855
Initial Parameter 3.6087 7.8855
Third Iteration -383.2827 3.4785 10.2815 10000 15

-383.2889 3.4783 10.2816
-383.4200 3.4783 10.2815

Average 3.4783 10.2815
Initial Parameter 3.4785 10.2815
Fourth Iteration -382.1269 1.4654 10.5987 10000 12

-382.1665 1.4673 10.5985
-382.1712 1.4660 10.5984

Average 1.4660 10.5986
True Parameter Value 1 10

this model is defined as

zt =



xt

σs

α

σm


. (2.23)

The parameter estimates and the average of each parameter estimate are

shown in Table 2.4 and the estimated state xt based on the fourth iteration

is shown in Fig. 2.5. Table 2.4 shows that the parameter estimates are close
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Figure 2.4: Nonlinear Gaussian Model (2 Parameters)

to the true parameter values after the fourth iteration. Moreover, Fig. 2.5

shows that the estimated state is a good fit for the true state.

2.3.4 Stochastic Volatility Model

In the case of two parameters, a stochastic volatility model is defined as

xt = 0.8xt−1 + vt, x0 ∼ N(0, 1),

yt = βwt exp(
xt

2
),

(2.24)
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Figure 2.5: Nonlinear Gaussian Model (3 Parameters)

where vt ∼ N(0, σ2
s) and ϵt ∼ N(0, 1). Parameters are ξs = σs and ξm = β.

The augmented state vector of this model is defined as

zt =


xt

σs

β

 . (2.25)

The parameter estimates and the average of each parameter estimate are

shown in Table 2.5 and the estimated state xt based on the second iteration

is shown in Fig. 2.6. Table 2.5 shows that the parameter estimates are close
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to the true parameter values in the second iteration. Moreover, Fig. 2.6

shows that the estimated state is very close to the true state.
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Figure 2.6: Stochastic Volatility Model

2.3.5 Threshold AR Model

Threshold Autoregressive models (threshold AR models) are proposed by

[Ton90]. In the case of three parameters, a threshold AR(1) model 19 is

19See page 100, [Ton90].
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defined as

xt =

 1.0 + β1xt−1 + vt, if xt ≤ k,

−1.0 + β2xt−1 + vt, if xt > k,

yt = xt + ϵt,

(2.26)

where vt ∼ N(0, 1) and ϵt ∼ N(0, 1). Parameters are ξs = (k, β1, β2). In

this example, we set T to 200 because the threshold AR(1) model consists of

two AR(1) models.

zt =



xt

k

β1

β2


. (2.27)

The parameter estimates and the average of each parameter estimate are

shown in Table 2.6 and the estimated state xt based on the first iteration is

shown in Fig. 2.7. Table 2.6 shows that the parameter estimates are close

to the true parameter values in the first iteration. Moreover, Fig. 2.7 shows

that the estimated state is very close to the true state.

2.4 Conclusions

This paper proposes a method to seek initial distributions of parameters

based on the simplex Nelder-Mead algorithm for a self-organizing state space

model. Our method is applicable to any nonlinear non-Gaussian state space

model because the simplex Nelder-Mead algorithm solves nonlinear discon-

tinuous optimization problems. We demonstrate the effectiveness of our
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Figure 2.7: Threshold AR(1) Model

method by applying it to a linear Gaussian model, a linear non-Gaussian

model, a nonlinear Gaussian model, and a stochastic volatility model. In

practice, our initial distribution search is trapped in a local minimum in

some examples. Our analyses, however, show that our method, used itera-

tively, can solve the local minimum problem. For further study, we would

like to improve the iterative procedure by adopting a globalized Nelder-Mead

algorithm proposed by [LR04].

Appendix A: Initialization of “Simplex”

Following the appendix of [NM65], the initial “simplex” P is determined as
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follows.

P ′
1 =

[
P1, P2, P3, · · · Pj , · · · PJ−1, PJ

]
,

P ′
2 =

[
P1 + I, P2, P3, · · · Pj , · · · PJ−1, PJ

]
,

P ′
3 =

[
P1, P2 + I, P3, · · · Pj , · · · PJ−1, PJ

]
,

...
. . .

P ′
J =

[
P1, P2, P3, · · · Pj , · · · PJ−1 + I, PJ

]
,

P ′
J+1 =

[
P1, P2, P3, · · · Pj , · · · PJ−1, PJ + I

]
,

(2.28)

where ′ means transposition and I is a real number. In our simulation

studies, we set I to 1 20. Note that J is the number of elements of θ and Pj

is defined in Eq. (2.10). For example, in section 3.4, we use P ′
1 = [0, 0] in

the first iteration and P ′
1 = [3.1717, 2.0070] in the second iteration 21.

Appendix B: Comparing Parameter Estimation Meth-

ods

We compare our method with other methods ([LWH04] and [LW01]) in the

case of two parameters of a linear Gaussian state space model in section 3.1.

[LWH04] adopts the simplex Nelder-Mead (SNM) method to minimize

the negative log-likelihood of the MC filter. The SNM procedure is termi-

20In the three parameters case of the nonlinear Gaussian model (section 3.3), we set I
to 10.

21See Table 5.
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nated when the condition below is satisfied:√∑J+1
n=1 (Yn − Ȳ )2

J + 1
< ϵnm, (2.29)

where Yn is a negative log-likelihood given by Eq. (2.11), Ȳ is the average

of Yn, and ϵnm is a small positive real number. We set ϵnm to 1.0 × 10−3

because the SNM procedure is not terminated when we set ϵnm to 1.0×10−4.

We estimate σs and σm in Eq. (2.16) a hundred times using our method

and [LWH04]. In Table 2.7, we show the average and the variance of each

parameter estimate. Table 2.7 shows that the variances of σs and σm, which

are estimated by [LWH04], are larger than the variances of σs and σm, which

are estimated by our method. We conclude that our method is better than

[LWH04].

[LW01] proposes adding artificial noise to parameters. In [LW01], the

conditional evolution density of a time-varying parameter vector θt is defined

by

p(θt+1|θt) ∼ N(aθt + (1 − a)θ̄t, h
2Vt), (2.30)

where θ̄t is the mean vector of particles of θt, Vt is the variance matrix of

particles of θt, h2 = 1 − a2, a = (3δl − 1)/2δl, and δl is a discount factor

in (0, 1], typically around 0.95 − 0.99. The main feature of [LW01] is that

the variance matrix Vt shrinks step by step and it finally converges towards

0. In the case of two parameters of a linear Gaussian state space model in
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section 3.1, θt is defined by

θt =

σs,t

σm,t

 (2.31)

where σs,t and σm,t are time-varying parameters. The evolutions of σs,t

and σm,t are shown in Fig. 2.8 22. The right side of Fig. 2.8 shows σm,t

converges towards the true parameter value in Table 2.1. However, the

left side of Fig. 2.8 shows σs,t converges towards a wrong value because

the Vt converges towards 0 before reaching the true parameter value in

Table 2.1. This problem cannot be avoidable when we don’t have the prior

knowledge about parameters. However, our method does not require the

prior knowledge about parameters.

22In our simulation, we set V0 to 2 × 2 identity matrix, „̄0 to 0, and δ to 0.99.
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Table 2.4: Nonlinear Gaussian Model (3 Parameters)

Iteration log-likelihood σs α σm M l
Initial Parameter 0 0 0
First Iteration -389.4667 4.2020 1.6419 11.3944 10000 38

-389.4865 4.2020 1.6419 11.3946
-389.5318 4.2020 1.6419 11.3947
-389.5765 4.2020 1.6419 11.3946

Average 4.2020 1.6419 11.3946
Initial Parameter 4.2020 1.6419 11.3946
Second Iteration -388.1539 5.0995 7.6052 11.0038 10000 46

-388.1856 5.0995 7.6051 11.0036
-388.2527 5.0996 7.6052 11.0038
-388.3268 5.0995 7.6051 11.0036

Average 5.0995 7.6052 11.0037
Initial Parameter 5.0995 7.6052 11.0037
Third Iteration -387.6866 5.1796 13.6353 10.5188 10000 52

-387.7323 5.1798 13.6356 10.5191
-387.7649 5.1796 13.6353 10.5188
-387.8014 5.1797 13.6355 10.5190

Average 5.1797 13.6354 10.5189
Initial Parameter 5.1797 13.6354 10.5189
Fourth Iteration -385.8363 0.9657 23.9264 11.1893 10000 30

-385.8460 0.9656 23.9265 11.1894
-385.9190 0.9646 23.9268 11.1897
-385.9277 0.9659 23.9263 11.1893

Average 0.9655 23.9265 11.1894
True Parameter Value 1 25 10
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Table 2.5: Stochastic Volatility Model

Iteration log-likelihood σs σm M l
Initial Parameter 0 0
First Iteration -304.4514 3.1715 2.0069 10000 44

-304.5505 3.1718 2.0070
-304.6005 3.1718 2.0070

Average 3.1717 2.0070
Initial Parameter 3.1717 2.0070
Second Iteration -304.3197 3.2489 1.8379 10000 19

-304.4946 3.2492 1.8378
-304.5389 3.2486 1.8381

3.2489 1.8379
Average 3.2489 1.8379

True Parameter Value 3 1

Table 2.6: Threshold AR(1) Model

Iteration log-likelihood k β1 β2 M l

Initial Parameter 0 0 0
First Iteration -347.638 0.0574 0.5963 0.4407 10000 14

-347.904 0.0572 0.5963 0.4398
-348.010 0.0573 0.5961 0.4409
-348.177 0.0572 0.5963 0.4399

Average 0.0573 0.5963 0.4403
True Parameter Value 0 0.6 0.4

52



Table 2.7: Our Method and Lin et al. (2004)

Our Method
σs σm

Average 3.9488 1.7306
Variance 0.0132 0.0166

Lin et al. (2004)
σs σm

Average 3.9575 1.6428
Variance 0.0362 0.0559

53



54



Chapter 3

Smoothing and Filter

Initialization Based on an

Inverse System Equation

3.1 Introduction

The Monte Carlo (MC) filter was proposed by [GSS93] and [Kit96]. The

filter is an algorithm to estimate states for a nonlinear non-Gaussian state

space model 1. In recent years, the filter has been applied to various prob-

lems 2. In spite of the widespread practical application of the MC filter,

smoothing algorithms are less well established. The first smoothing algo-

rithm, proposed by [Kit96], is based on the storing state vector. In that

algorithm, the repetition of the resampling in the MC filter decreases the

1[AMGC02] is a readable tutorial on the Monte Carlo particle filter.
2see [DdFG01].
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number of different realizations of the state vector. To resolve that problem,

[Kit96] proposes to employ fixed L−lag smoothing. The paper recommends

not to make L too large (say, 10 or 20, or 50 at the largest). A persis-

tent problem is that the fixed L−lag smoothing cannot use all observations

when the number of observations is larger than 10–50. To realize fixed-

interval smoothing, researchers have developed alternative methods based

on the two-filter formula ([Kit96]), a forward filtering – backward smooth-

ing formula ([DGA00] and [GDW04]), and maximum a posteriori sequence

estimation ([GDW01].)

This paper proposes a simple MC smoothing algorithm based on the

inverse function of a system equation (an inverse system equation). Our

method is applicable to any nonlinear non-Gaussian state space model if

an inverse system equation is given analytically. This paper shows that

our algorithm is fundamentally equivalent to the MC filter. Therefore, the

computational complexity of our smoothing algorithm is equal to the com-

plexity of the MC filter. Moreover, our algorithm is easily implemented

because it can be realized by a minor modification of the MC filter. The

main advantage of our algorithm is its simplicity. Furthermore, we propose

a filter-initialization algorithm based on the smoothing distribution, which

is obtained by our algorithm and an inverse system equation. Filter initial-

ization is important to estimate a state vector of a nonlinear non-Gaussian

state space model in Bayesian tracking like the MC filter. In this paper,

we show the effectiveness of our method by applying it to a linear Gaussian

state space model, a linear non-Gaussian state space model, a stochastic

volatility model, and a stochastic volatility model with t-distribution.
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This paper is organized as follows. In section 2, we describe our smooth-

ing algorithm and filter initialization algorithm. In section 3, we show ex-

amples for some models. In section 4, we describe the salient conclusions of

the paper.

3.2 Model

3.2.1 Monte Carlo Filter

A nonlinear non-Gaussian state space model for the time series yt, t =

{1, 2, · · · , T} is defined as follows.

xt = f(xt−1, ξs, vt),

yt = h(xt, ξm, ϵt),
(3.1)

where xt is an unknown nx × 1 state vector, vt is the nv × 1 system noise

vector with a density function q(v), ϵt is the nϵ × 1 observation noise vector

with a density function r(ϵ), ξs is the ns ×1 system parameter vector of the

function f , and ξm is the nm×1 observation parameter vector of the function

h. The function f : Rnx × Rnv → Rnx and the function h : Rnx × Rnϵ →

Rny are possibly nonlinear functions. The first equation of (3.1) is called a

system equation and the second equation is called a measurement equation.

This nonlinear non-Gaussian state space model specifies the following two

conditional density functions.

p(xt|xt−1, ξs),

p(yt|xt, ξm).
(3.2)
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We define a parameter vector θ as

θ =

 ξs

ξm

 . (3.3)

We denote that θj is the jth element of θ and that J(= ns + nm) is the

number of elements of θ. In this paper, we suppose that the parameter θ is

known.

The MC filter is a variant of sequential Monte Carlo algorithms. In the

MC filter, a posterior density function is approximated as “particles” that

have weights, as

p(xt|y1:(t−1)) =
1∑M

i=1 wi
t

M∑
i=1

wi
tδ(xt − xi

t), (3.4)

where wi
t is the weight of a particle xi

t, M is the number of particles, and δ

is a delta function. We define y1:t = {y1, · · · , yt}. Weight wi
t is defined as

wi
t = r(ψ(yt, x

i
t))

∣∣∣ ∂ψ

∂yt

∣∣∣, (3.5)

where ψ is the inverse function of the function h. The right hand side

(RHS) of Eq. (3.5) is the likelihood function of a nonlinear non-Gaussian

state space model. In the standard algorithm of the MC filter, the particles

xi
t are resampled with sampling probabilities proportional to w1

t , · · · , wM
t .

Resampling algorithms are discussed in [Kit96]. After resampling, we have

58



wi
t = 1/M . Consequently, Eq. (3.4) is rewritten as

p(xt|y1:t) =
1
M

M∑
i=1

δ(xt − xi
t), i = {1, · · · ,M}. (3.6)

Particles xi
t are sampled from a system equation:

xi
t ∼ p(xt|xi

t−1, ξs). (3.7)

The algorithm of the MC filter is shown as Algorithm 1.

Actually, [Kit96] shows that the log likelihood of the MC filter is approx-

imated as

l(θ) ≃
T∑

t=1

log(
M∑
i=1

wi
t) − T log M, (3.8)

where T is the number of observations. This approximation shows that the

log likelihood is affected by sampling error from the Monte Carlo algorithm.

In addition, [Kit98] points out that numerous particles are necessary to

obtain an accurate log-likelihood.

3.2.2 Smoothing and Filter Initialization Based on an In-

verse System Equation

We propose a smoothing algorithm based on an inverse system function.

Our algorithm is applicable to any nonlinear non-Gaussian state space model

with an inverse system equation. We define an inverse system equation as:

xt−1 = g(xt, ξs, vt), (3.9)
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where g is the inverse function of f . The inverse system equation (3.9)

specifies the following conditional density function.

p(xt−1|xt) (3.10)

We derive the smoothing distribution p(xT−l|y1:T ) from the definition

of conditional probability. If the probability distribution P(y1:T ) > 0, then

the conditional probability of xt given y1:T is

P(xt|y1:T ) =
P(xt, y1:T )

P(y1:T )
, (3.11)

where t (1 ≤ t < T ) is an integer. We define y′
1:T = {y1, · · · , yt−1, yt+1, · · · ,yT }.

We rewrite the conditional probability as follows.

P(xt|y1:T )

=
P(xt, yt,y

′
1:T )

P(yt, y′
1:T )

=
P(xt, yt,y

′
1:T )

P(xt, y′
1:T )

P(xt, y
′
1:T )/P(y′

1:T )
P(yt, y′

1:T )/P(y′
1:T )

=
P(yt|xt, y

′
1:T )P(xt|y′

1:T )
P(yt|y′

1:T )

=
P(yt|xt)P(xt|y′

1:T )
P(yt|y′

1:T )
.

(3.12)

In the fourth equality of Eq. (3.12), we assume that the likelihood, P(yt|xt),

does not depend on y′
1:T . We assume that P(xt|y′

1:T ) is factorized as follows
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3.

P(xt|y′
1:T ) = P(xt|xt+1)P(xt+1|y′

1:T ) (3.14)

Particles xi
t are sampled from Eq. (3.9). If P(xt+1|y′

1:T ) is nearly equal to

P(xt+1|y1:T ), then the following equation is obtained by

P(xt|y1:T ) ∝ P(yt|xt)p(xt|xt+1)P(xt+1|y1:T ). (3.15)

Note that P(yt|y′
1:T ) is the normalizing constant. In the MC filter, the

smoothing distribution p(xt|y1:T ) is approximated by

p(xt|y1:T ) =
1∑M

i=1 wi
t

M∑
i=1

wi
tδ(xt − xi

t), (3.16)

Therefore, Eq. (3.15) can be rewritten as

wi
tδ(xt − xi

t) ∝ p(yt|xi
t)p(xi

t|xi
t+1)w

i
t+1δ(xt+1 − xi

t+1). (3.17)

In the standard algorithm of the MC filter, resampling is applied at every

time. After resampling at time t + 1, we have wi
t+1 = 1/M . Therefore, we

3This factorization is justified as follows.

P(xt|y′
1:T ) =

P(xt, y′
1:T )

P(xt+1)

P(xt+1)

P(y′
1:T )

= P(xt, y′
1:T |xt+1)P(xt+1|y′

1:T )

= P(xt, |xt+1)P(xt+1|y′
1:T )

(3.13)

In the third equality of Eq. (3.13), we use the property that xt depends only on xt+1 in
Eq. (3.9).
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can write

wi
tδ(xt − xi

t) ∝ p(yt|xi
t)p(xi

t|xi
t+1)

1
M

δ(xt+1 − xi
t+1). (3.18)

The weight wi
t is obtained as

wi
t ∝ p(yt|xi

t). (3.19)

In summary, the smoothing distribution, p(xt|y1:T ), can be obtained us-

ing the MC filter from time T to time 1 if the smoothing distribution,

p(xT |y1:T ), and an inverse system equation are given. Note that the smooth-

ing distribution, p(xT |y1:T ), can be obtained using the MC filter (Algorithm

1). The algorithm of smoothing based on an inverse system equation is

shown as Algorithm 2. The computational complexity for our smoothing

algorithm is O(MT ). It is equivalent to the computational complexity for

[GDW04]4. Furthermore, our smoothing algorithm requires O(M) storage

to save weights of particle because it requires only W i
T , {1, · · · ,M}. In con-

trast, [GDW04] requires O(MT ) storage to save weights of particle because

it requires W i
t , {1, · · · ,M}, {1, · · · , T}. In other words, the advantages of

our smoothing algorithm are its simplicity and small memory requirement.

Our algorithm is a minor modification of the “standard” MC filter. How-

ever, an obstacle exists. In general, the inverse function of a system function

cannot be obtained analytically.

We propose a filter initialization algorithm, which chooses an appropriate

4Computational complexities of the two-filter formula ([Kit96]) and the maximum
a posteriori sequence estimation ([GDW01]) are O(M2T ).
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initial probability (a prior probability) P(x0) of the MC filter. In general,

the initial probability P(x0) of the MC filter is unknown. State estimation

based on the MC filter is improved if one can choose an appropriate ini-

tial probability. We propose a filter initialization algorithm based on the

smoothing distribution P(x1|y1:T ) and an inverse system equation. We can

obtain an appropriate initial probability P̂(x0) as follows.

P̂(x0) ∝ P(x0|x1)P(x1|y1:T ). (3.20)

Furthermore, we propose the following steps to estimate smoother P(xi|y1:T ), {i =

1, 2, · · · , T} using Algorithm 2 and Eq. (3.20) as follows.

1. Choose an arbitrary initial distribution P(x0).

2. Use Algorithm 2 with P(x0).

3. Calculate the initial distribution P̂(x0) based on Eq. (3.20).

4. Use Algorithm 1 with P̂(x0).

Our filter initialization is suitable for “on-line” state estimation when new

observations are obtained in real-time. At the early stage of on-line state

estimation, steps 1–3, as proposed above, are executed; then the MC filter

estimates xt in real-time based on the whole observation and P̂(x0).

3.3 Examples

We apply our algorithms to a linear Gaussian state space model, a linear non-

Gaussian state space model, the stochastic volatility model, and a stochastic
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volatility model with t-distribution. In the following subsections: (1) we

generate an artificial time series (T = 100) based on each model (x0 ∼

N(0, 12)), (2) we estimate a state xt using our smoothing algorithm5, and

(3) we calculate p̂(x0). We set the number of particles, M , to 10000 to

estimate a state.

3.3.1 Linear Gaussian State Space Model

A linear Gaussian state space model is defined as

xt = xt−1 + vt,

yt = xt + ϵt,

(3.21)

where vt ∼ N(0, σ2
s) and ϵt ∼ N(0, σ2

m). We set {σs, σm} = {1, 3}. The

estimated state xt is shown in Fig. 3.1 In that figure, the thick black line

is the estimated state xt based on the inverse system equation smoothing.

The dotted line is the estimated state xt based on the MC filter; the thin

black line is the real state. Figure 3.1 shows that state estimation based on

our smoothing algorithm is improved at time points close to the start of the

series. The initial distribution p̂(x0) and the true initial distribution p(x0)

are shown in Fig. 3.2. That figure shows that p̂(x0) approximates p(x0) well.

Linear Gaussian state space models, which are most fundamental in state

spade models, are estimated using the Kalman filter. In this subsection, we

apply our algorithm to the model and compare Kalman smoothing and our

smoothing. We compare inverse system smoothing with Kalman smoothing.

5Initial particles are sampled from Uniform(10, 11).
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Figure 3.1: Linear Gaussian Model

Figure 3.3 shows that our algorithm realizes good state estimation as well

as Kalman smoothing. This result shows that our smoothing algorithm can

replace Kalman smoothing.

3.3.2 Linear Non-Gaussian State Space Model

In this subsection, we apply our algorithms to a simplest linear non-Gaussian

state space model with t−distribution. A simple linear non-Gaussian state
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Figure 3.2: Initial Distribution (Linear Gaussian Model)

space model with t−distribution is defined as

xt = xt−1 + vt,

yt = xt + ϵt,

(3.22)

where vt ∼ t(df)6 and ϵt ∼ N(0, σ2
m). We set {df, σm} = {8, 2}. The

estimated state xt is shown in Fig. 3.4. It shows that state estimation based

on our smoothing algorithm is improved at time points close to the start

of the series. The initial distribution p̂(x0) and the true initial distribution

p(x0) are shown in Fig. 3.5. It shows that p̂(x0) approximates p(x0) well.

6The acronym df represents degrees of freedom of the t−distribution.
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Figure 3.3: Compare inverse system smoothing with Kalman smoothing

3.3.3 Stochastic Volatility Model

The stochastic volatility model, which is introduced by [Tay86] is adopted

to model the autoregressive behavior of the volatility and non-Normality in

the returns that constitute a financial time series. The simplest stochastic

volatility model is defined as

xt = αsxt−1 + vt,

yt = ϵt exp(
xt

2
),

(3.23)
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Figure 3.4: Linear Non-Gaussian Model

where vt ∼ N(0, σ2
s), and ϵt ∼ N(0, σ2

m). We set {αs, σs, σm} = {0.8, 1, 1}.

The estimated state xt is shown in Fig. 3.6. It shows that state estimation

based on our smoothing algorithm is improved at time points close to the

start of the series. The initial distribution p̂(x0) and the true initial distri-

bution p(x0) are shown in Fig. 3.7. It shows that p̂(x0) approximates p(x0)

well.
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Figure 3.5: Initial Distribution (Linear Non-Gaussian Model)

3.3.4 Stochastic Volatility Model with t-distribution

A stochastic volatility model with a t-distribution, which is introduced by

[LJ00], is defined as

xt = αsxt−1 + vt,

yt = ϵt exp(
xt

2
),

(3.24)

where vt ∼ N(0, σ2
s) and ϵt ∼ t(df). We set {αs, σs, df} = {0.8, 1, 4}. The

estimated state xt is shown in Fig. 3.8. It shows that state estimation based

on our smoothing algorithm is improved at time points close to the start

of the series. The initial distribution p̂(x0) and the true initial distribution

p(x0) are shown in Fig. 3.9. It shows that p̂(x0) approximates p(x0) well.
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Figure 3.6: Stochastic Volatility Model

3.4 Conclusions

We proposed a smoothing algorithm based on the Monte Carlo filter and

an inverse system function. Our method is applicable to any nonlinear

non-Gaussian state space model if an inverse system equation is obtained

analytically. The advantage of our smoothing algorithm is its simplicity. It

is a minor modification of the “standard” MC filter. Moreover, our algo-

rithm requires little memory to store the weights of particles. Nevertheless,

an obstacle to its implementation remains: in general, the inverse function

of a system function cannot be obtained analytically. Moreover, we pro-
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Figure 3.7: Initial Distribution (Stochastic Volatility Model)

pose a filter initialization algorithm based on the smoothing distribution

p(x1|y1:T ) and an inverse system equation. Our filter initialization algo-

rithm is very simple to implement and realizes good approximation of a real

initial distribution.
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Figure 3.8: Stochastic Volatility Model with a t-distribution
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Chapter 4

Yen/Dollar Exchange Rate

and Stochastic Volatility

Models with Heavy-tailed

Distributions

4.1 Introduction

It is well known that the volatility of asset price return changes randomly

over time. This phenomenon is referred to as volatility clustering. In

[Man63], volatility clustering is noted: “large changes tend to be followed

by large changes and small changes tend to be followed by small changes.”

It is also widely recognized that the distribution of asset price returns has

fat-tails. There are many previous studies on these stylized facts of financial
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time series (see [CLM97] and references therein). Modeling these stylized

facts, continuous-time stochastic volatility models are often used in finance

theory, for example [HW87]. In empirical analysis, two types of discrete-time

stochastic volatility models are often used: the autoregressive heteroskedas-

tic (ARCH) and stochastic volatility (SV) models. In this paper, we focus

on SV models. A basic univariate SV model for the asset price return, yt,

is given by

xt = µ + ϕxt−1 + vt,

yt = ϵt exp(
xt

2
),

(4.1)

where vt ∼ N(0, σ2
s), ϵt ∼ N(0, 1), µ and ϕ are constants. We assume

|ϕ| < 1. The symbol xt is considered as the latent volatility of the asset

price return.

In recent years, Markov Chain Monte Carlo (MCMC) method is intro-

duced to estimate SV models by [JPR94] and MCMC techniques are further

developed by many studies (See [She05]). Furthermore, [LJ00] proposes a

method to estimate SV models with heavy-tailed distribution based on sim-

ulated maximum likelihood estimation. In the paper, ϵt is assumed to be

t-distribution or generalized error distribution. [WA03] analyze the daily re-

turn of Yen/Dollar exchange rate and TOPIX using SV models with heavy-

tailed distributions 1. Unlike previous studies using MCMC, we propose an

approach based on a self-organizing state space model, which is proposed

by [Kit98], and a method to seek initial distribution for the model, which

1[WA03] uses MCMC techniques to estimate SV models with heavy-tailed distributions.
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is proposed by [Yan07] to estimate parameters and volatility of SV models.

Our approach is based on the Monte Carlo (MC) filter, which is proposed by

[Kit96] and [GSS93]2. The main feature of our approach is parameters and

volatility are estimated simultaneously using a self-organizing state space

model with simplex initial distribution search.

This paper is organized as follows. In section 2, we describe the MC

filter, a self-organizing state space model, and simplex initial distribution

search. In section 3, we apply our method to the daily return of Yen/Dollar

exchange rate. In section 4, we describe conclusions and discussions.

4.2 Empirical Application

We apply our method to the daily return of Yen/Dollar exhange rate from

4th, January, 1990 to 28th, December, 1999. The daily returns are obtained

from

yt = 100 ×
{
log(Pt+1) − log(Pt)

}
, (4.2)

where Pt is the closing price of day t. The descriptive statistics are shown

in Table 4.1. In the following subsections, we estimate three types of SV

models. The distributions of error terms of SV models are listed in Table

4.2. EPD means the Exponential Power Distribution.

2[KSC98] proposes likelihood estimation based on the MC filter when parameters are
obtained using MCMC.
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Table 4.1: Descriptive Statistics of Daily Return (%) for the Yen/Dollar
Exchange Rate

Statistics Return of Yen/Dollar Rate
Sample Size 2510

Mean -0.0134
St. Dev. 0.7388
Kurtosis 4.4365
Skewness -0.5828

Table 4.2: SV, SVMT, and SVST models

Model ϵt vt

SV Normal distribution Normal distribution
SVMT t-distribution Normal distribution
SVST Normal distribution t-distribution
SVME EPD Normal distribution
SVSE Normal distribution EPD

4.2.1 Stochastic Volatility Model

A SV model is given by

xt = µ + ϕxt−1 + vt,

yt = ϵt exp(
xt

2
),

(4.3)

where vt ∼ N(0, σ2
s) and ϵt ∼ N(0, 1). The results of our estimation of SV

model are shown in Table 4.3 (the results of [WA03] are also shown). The

result of exp(xt
2 ) is shown in Fig. 4.13.

3This result is estimated based on our smoothing algorithm in chapter 3.
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Table 4.3: Results of SV model

Log-likelihood µ ϕ σs

Initial Value 0 0 0
Parameter Estimate -2564.82 0.0049 0.8544 0.3092

[WA03] – -0.9218 0.9583 0.2113

4.2.2 Stochastic Volatility Models with t-distributions

A SVMT model, which is introduced by introduced by [LJ00], is given by

xt = µ + ϕxt−1 + vt,

yt = ϵt exp(
xt

2
),

(4.4)

where vt ∼ N(0, σ2
s), ϵt ∼ t(ν), and ν is the degree of freedom of t-

distribution. The results of our estimation of the SVMT model are shown

in Table 4.4 (the results of [WA03] are also shown). The result of exp(xt
2 ) is

shown in Fig. 4.2.

Table 4.4: Results of SVMT Model

Log-likelihood µ ϕ σs ν

Initial Value 0 0 0 0
Parameter Estimate -2556.66 -0.0246 0.8984 0.2922 3.7892

[WA03] – -0.8606 0.9827 0.1234 8.1161

SVST model is given by

xt = µ + ϕxt−1 + χvt,

yt = ϵt exp(
xt

2
),

(4.5)
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Figure 4.1: Volatility of SV Model

where vt ∼ t(ν), ϵt ∼ N(0, 1), ν is the degree of freedom of t-distribution,

and χ is a constant. The results of our estimation of the SVST model are

shown in Table 4.5. The result of exp(xt
2 ) is shown in Fig. 4.3.

4.2.3 Stochastic Volatility Models With Exponential Power

Distribtuion

The Exponential Power Distribution has density function given by

fp(x) =
1

2p(1/p)Γ(1 + 1/p)σp
exp(−|x − µp|p

pσp
p

), (4.6)
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Figure 4.2: Volatility of SVMT model

where µp is the location parameter, σp is the scale parameter, and p is the

shape parameter. When p = 2 the EPD becomes the Gaussian distribution,

when p → ∞ the EPD becomes the uniform distribution (See [BT73] and

[MR05].). In this paper, we set µp to 0 and σp to 1.

A SVME model is given by

xt = µ + ϕxt−1 + vt,

yt = ϵt exp(
xt

2
),

(4.7)

where vt ∼ N(0, σ2
s) and ϵt ∼ EPD(p).
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Table 4.5: Results of SVST Model

Log-likelihood µ ϕ χ ν

Initial Value 0 0 0 0
Parameter Estimate -2574.24 -0.0028 0.9239 0.0131 2.1383

Table 4.6: Results of SVME Model

Log-likelihood µ ϕ σs p

Initial Value 0 0 0 2
Estimate -2577.67 -0.0021 0.9417 0.4521 1.3451
[WA03] 0.1197 0.9627 0.2154 1.6975

A SVSE model is given by

xt = µ + ϕxt−1 + vt,

yt = ϵt exp(
xt

2
),

(4.8)

where vt ∼ EPD(p) and ϵt ∼ N(0, σ2
s).

Table 4.7: Results of SVSE Model

Log-likelihood µ ϕ χ p

Initial Value 0 0 0 2
Estimate -2595.66 -0.0010 0.8656 0.3623 1.2302

4.2.4 Comparison of SV Models

The log-likelihood of each model appears in Table 4.8. It shows that SVMT

model is best, SV model is second best.
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Figure 4.3: Volatility of SVST Model

The AIC of each model appears in Table 4.9. It shows that SVMT model

is best, SV model is second best, and SVST is worst according to AIC.

4.3 Conclusions and Discussions

In this paper, we propose an approach based on a self-organizing state space

model, which is proposed by [Kit98] and a method to seek initial distribu-

tion for the model, which is proposed by [Yan07] to estimate parameters

and volatility of stochastic volatility models. We show the effectiveness of

our approach by applying it to stochastic volatility models and stochastic
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Table 4.8: Results of Log-likelihood

Model Log-likelihood
SVMT -2556.66

SV -2564.82
SVST -2574.24
SVME -2577.67
SVST -2595.66

Table 4.9: AIC

Model AIC
SV 5153.64

SVMT 5121.32
SVST 5156.48

volatility models with t-distributions.
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Chapter 5

Estimating Time Varying

Linear Systems and Control:

Applications to Monetary

Policy

5.1 Introduction

We propose a method to estimate a time varying linear system equation

based on time varying coefficients vector autoregressive modeling (time vary-

ing VAR) and control the system. In our framework, an optimal feedback

is determined by linear quadratic dynamic programming in each period. In

our empirical analyses, we apply our method to monetary policy because the

economy can be regarded as a time varying system. Recently, several re-
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searchers have focused on instrument rules and targeting regimes1. Various

types of instrument rules have been proposed in several studies. For exam-

ple, the Taylor rule, proposed by [Tay93], is the best-known simple instru-

ment rule, and there exist many variants of it. Additionally, in recent years,

targeting regimes, typically inflation targeting, have been adopted by many

central banks. For the central bank which must achieve some specific tar-

gets, we propose a method to construct instrument rules whose coefficients

are time varying. Our approach is a statistical tool for the practitioners in

the central bank. The approach consists of two elements: (1) time vary-

ing coefficients Vector Autoregressive modeling (time varying VAR) with

the vector of control variables (the control vector) and (2) linear quadratic

dynamic programming (LQDP). Time varying VAR is proposed by [JK93].

The coefficients of time varying VAR are assumed to change “gradually.”

This assumption is widely known as smoothness priors of the Bayesian pro-

cedure, proposed by [Kit83]. The coefficients are estimated by the Kalman

filer. The first improvement of this paper is that we include the vector of

control variables (the control vector) in time varying VAR. Another im-

provement is that we estimate the transmission lags from monetary policy

to the states of the economy (the monetary policy lags) based on Akaike

Information Criterion (AIC), proposed by [Aka73], because previous stud-

ies, for example, [CEE99] reports that there exist the monetary policy lags.

We combine the estimated time varying VAR with the control vector and

LQDP to construct instrument rules. This approach is a natural extension

1[Wal03] and [Woo03] is an excellent, comprehensive, and readable survey on monetary
theory and policy.
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of [Aka70] and [Aka89]. In our empirical analyses, we show the effective-

ness of our approach by applying it to the inflation target of the United

Kingdom and the nominal growth rate target of Japan. According to the

empirical analyses, we conclude that (1) our method can duplicate the ac-

tual monetary policies of the United Kingdom and Japan, (2) it minimizes

the fluctuations of control variables, (3) the optimal policy lags are time

varying, and (4) the changes of monetary policies affect the coefficients of

control variables.

The basic concept of this paper is that the central bank under targeting

regimes generates an instrument rule whose coefficients are time varying to

achieve its targets. We refer to the generated rule as the dynamic instrument

rule. The dynamic instrument rule is defined as follows:

U(s) = −F (s)(Y (ŝ) − Ỹ ), (5.1)

where U is a vector of control variables, Y is a vector of state variables,

Ỹ is a vector of targets, and F is a time varying vector (state variables,

control variables, and targets are discussed in the following paragraph) 2.

The s and ŝ are the time indices. U , Y , and F are time dependent. In the

first step to construct the dynamic instrument rule, the time varying VAR

with the control vector is estimated (we call the time varying VAR with the

control vector “time varying VAR” hereafter). The coefficients of time vary-

ing VAR are estimated based on the Kalman filter using recently updated

data. Therefore, the coefficients always reflect the newest conditions of the

2Vectors and matrices are bold-faced types in this paper.
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economy. In the second step, the dynamic instrument rule is derived based

on the estimated time varying VAR and standard LQDP. These two steps

are repeated in each period. The central bank can construct its own rule in

a flexible manner because we propose the generalized approach to construct

the dynamic instrument rule. Thus, our approach is convenient and effective

for the practitioners in the central bank when they are unaware of the true

model of the economy, due to the existence of model uncertainty which is

pointed out by [Sma] 3. Model uncertainty can be minimized based on AIC

which is an unbiased estimator of the Kullback-Leiber information. The

Kullback-Leiber information is a pseudo-distance between a true model and

a statistical model. Thus, we minimize model uncertainty based on AIC

The necessity of the dynamic instrument rules is explained. The most

influential instrument rule is the Taylor rule, proposed by [Tay93]. The rule

is expressed as follows:

Rt = R̄ + πt + fπ(πt − π∗) + fyỹt, (5.2)

where Rt is the short nominal interest rate, R̄ is the long average real rate

of interest, πt is an average of the recent inflation rates, π∗ is the target

inflation rate of a central bank, and ỹt is an output gap. fπ and fy are

coefficients. In the original formulation of [Tay93], fπ and fy are 0.5 and 0.5,

respectively, and the target inflation rate of the Federal reserve bank is set

at 2. [Tay93] demonstrates that the rule explains well the path of the federal

funds rate. However, there might exist many variants of targeting because

3[Sma] describes that there exist different views on the optimal monetary policy: Key-
nesian IS/LM, new classical equilibrium business cycle, monetarism, and public choice.
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several central banks might have several specific conditions of their own

countries. For example, the Japanese government has adopted a nominal

growth rate target of 2% from fourth quarter of 2003, and the Bank of Japan

must collaborate with the Japanese government to achieve the target. Thus,

there exists a practical problem to tune the coefficients of a instrument rule

for each country. Furthermore, the coefficients of instrument rules might

change in response to the changes of current and future policies because

[Luc76] points out that the changes of current and future policies might

affect the behaviors of economic agents. There is a possibility that the

changes of monetary policy affect the coefficients of the instrument rules.

The coefficients of the Taylor rule are assumed to be fixed. In contrast, the

coefficients of dynamic instrument rules are time varying to reflect the newly

updated condition of the economy.

The way to construct the dynamic instrument rules is described in terms

of the control theory. For the dynamic instrument rules, we need to deter-

mine the following four components.

• Targets: a specific rate of inflation, a specific growth rate of nominal

output, etc.

• State variables: the growth rate of the consumer price index, the

growth rate of nominal output, etc.

• Control variables: the raise in nominal short interest, the growth rate

of monetary base, etc.

• Policy Lags: quarters, months, etc.
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First, targets are set by the consolidated government (the central bank and

the government). Inflation targeting is considered as the most popular kind

of targeting in the world. For example, the original formulation of the

Taylor rule chooses the 2% inflation rate target. Second, state variables are

decided depending on the choice of targets. The growth rate of an price

index must be included in state variables, if inflation targeting is chosen.

Additionally, the other state variables should be chosen if required. In the

case of the Taylor rule, the long average real rate of interest, an average of

recent inflation rates and an output gap are chosen. Third, control variables

are chosen adequately in order to achieve the targets. The Taylor rule

adopts the nominal rate of interest. Fourth, policy lags should be chosen

in an appropriate statistical manner. In [Tay93], the problem of policy lags

is not explicitly discussed. We determine the policy lags based on AIC and

this problem is discussed in section 2.

[Lit] has the concepts that are similar to ours. [Lit] uses Bayesian vector

autoregressive modeling and LQDP for minimizing the fluctuations of the

money supply and the volatility of interest rates. The essential difference

between [Lit] and our study is that our method is designed for constructing

the dynamic instrument rule to achieve targets; however, the purpose of [Lit]

is to minimize the fluctuations of the monetary variables. Our method is

inspired from recent discussions of instrument rules and targeting regimes,

but [Lit] lacks of this point of view. In addition, we use estimate the goodness

of fit of a model based on AIC, and policy lags are also infered based on

AIC

This paper proceeds in the following manner. In section 2, the general
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formulation of the dynamic instrument rule is described. In section 3, we

apply empirical analyses to the inflation targeting of the United Kingdom

and the nominal growth rate targeting of Japan. In section 4, we describes

discussions and conclusions.

5.2 The Model

Our method has three steps:

1. Estimate time varying VAR with instantaneous response based on the

Kalman filter.

2. Derive time varying VAR and construct a state space model for LQDP.

3. Determine coefficients of a dynamic instrument rule.

These three steps are repeated in each period.

5.2.1 Time Varying VAR with Instantaneous Response

In the first step of our method, we define time varying VAR with instanta-

neous response and estimate it. In our environment, we assume that the time

series of discrete data. We particularly concentrate on the non-stationary

time series. We define time varying VAR with instantaneous response,

y(t) = B0(t)y(t) +
p∑

l=1

Bl(t)y(t − l) + D(t)u(t − κ) + ϵ(t), (5.3)

where ϵ(t) =
(
ϵ1(t), · · · , ϵk(t)

)T ∼ N(0, V ) with V = diag(σ1
1, σ

2
2, · · · , σ2

k),

y(t) is a (k× 1) vector of state variables at time t, u(t) is an (m× 1) vector
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of control variables at time t, and κ ≥ 1 is a policy lag4. The matrices of

time varying coefficients are

B0(t) =



0 0 · · · 0

b2,1,0(t) 0 · · · 0
...

. . . . . .
...

bk,1,0(t) · · · bk,k−1,0(t) 0


, (5.4)

Bl(t) =


b1,1,l(t) · · · b1,k,l(t)

...
. . .

...

bk,1,l(t) · · · bk,k,l(t)

 , (5.5)

D(t) =


d1,1(t) · · · d1,m(t)

...
. . .

...

dk,1(t) · · · dk,m(t)

 ,

l = 1, 2, · · · , p.

(5.6)

We assume that bi,j,l and di,n change gradually over time, and therefore,

the shift of bi,j,l and di,n is locally smooth. In our approach, we adopt

Bayesian smoothness priors, which are expressed in the form of a difference

equation excited by a Gaussian white noise. The time varying coefficients

are estimated by the Kalman filter. We define the difference equation on

4Time varying VAR with instantaneous response is very convenient for applying the
minimum AIC procedure on the ith component of equation (5.3) because it has the diag-
onal innovation matrix V . This type of VAR with instantaneous response is introduced
by [Aka68]. In recent years, structural VAR is used by economists. The structural VAR
has the same formulation of the VAR with instantaneous response. See subsection 2.3 and
[KG96].
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bi,j,l(t) as follows:

∆qbi,j,l(t) ≡ νi,j,l(t),

i, j = 1, 2, · · · , k, l = 0, 1, · · · , p,

(5.7)

where ∆q is the q-th order difference operator defined by

∆bi,j,l(t) = bi,j,l(t) − bi,j,l(t − 1),

∆qbi,j,l(t) = ∆(∆q−1bi,j,l(t)).
(5.8)

In general, νi,j,l(t) is assumed to be a Gaussian white noise with mean zero

and variance τ2
i,j,l. In this paper, we assume that τ2

i,j,l = τ2
i and νi,j,l(t) ∼

N(0, τ2
i ). This assumption is a key feature of time varying VAR because

it reduces the number of hyper parameters τ to be estimated5. We discuss

about our assumption in the subsection 2.4. In the same manner, we define

the difference equation on di,n(t),

∆qdi,n(t) ≡ ξi,n(t),

i = 1, 2, · · · , k, n = 0, 1, · · · ,m,

(5.9)

where ∆q is the q-th order difference operator defined by

∆di,n(t) = di,n(t) − di,n(t − 1),

∆qdi,n(t) = ∆(∆q−1
i,n (t)).

(5.10)

We assume ξi,n(t) ∼ N(0, ρ2
i ), where ρ2

i is variance.

5First order smoothness priors without this assumption are widely known as random
walk priors. Smoothness priors are generalized more than random walk priors. See [CP76].
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5.2.2 The Estimation of Time Varying Coefficients

The state space model for the Kalman filter algorithm is shown in this

subsection. The bi,j,l(t) and di,n(t) are estimated by using the Kalman filter.

The state space representation is given by

x(t) = Fx(t − 1) + Gw(t),

yi(t) = H(t)x(t) + ϵi(t),

i = 1, 2, · · · , k,

(5.11)

where F , G, H(t) are (M×M), (M×L), and (1×M) matrices, respectively.

x(t) is an (M × 1) vector of coefficients, w(t) is an (L× 1) vector, and yi(t)

is an observation. The detail of these vectors and matrices are explained in

the following paragraphs.

In particular, for the difference equation order q = 1, 2, the matrices F ,

G and the length M are given by

q = 1 : M = L, F = (IL), G = (IL),

q = 2 : M = 2L, F =

2IL −IL

IL 0

 , G =

IL

0

 ,
(5.12)

where IL is an L-dimensional identity matrix and L = kp + m + i − 1.
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For the convenience of the expression, we use the following notations:

νi,0(t) =
(
νi,1,0(t), · · · , νi,i−1,0(t)

)
,

νi(t) =
(
νi,1,1(t), νi,2,1(t), · · · , νi,k,1(t),

νi,1,2(t), · · · , νi,k,2(t), · · · , νi,1,p(t), · · · , νi,k,p(t)
)
,

ξi(t) =
(
ξi,1(t), ξi,2(t), · · · , ξi,m(t)

)
,

bi,0(t) =
(
bi,1,0(t), · · · , bi,i−1,0(t)

)
,

bi(t) =
(
bi,1,1(t), bi,2,1(t), · · · , bi,k,1(t),

bi,1,2(t), · · · , bi,k,2(t), · · · , bi,1,p(t), · · · , bi,k,p(t)
)
,

di(t) =
(
di,1(t), di,2(t), · · · , di,m(t)

)
,

ri(t) =
(
y1(t), y2(t), · · · , yi−1(t)

)
,

h(t) =
(
y1(t − 1), y2(t − 1), · · · , yk(t − 1), · · · ,

y1(t − p), y2(t − p), · · · , yk(t − p)
)
,

f(t) =
(
u1(t − κ), u2(t − κ), · · · , um(t − κ)

)
.

(5.13)

The vectors, x(t), H(t), and w(t), can be defined as follows. For the first

component of y(t), i = 1,

w(t) =
(
ν1(t), ξ1(t)

)T
. (5.14)

For q = 1 (the difference of bi,j,l(t) is first order),

x(t) =
(
b1(t), d1(t)

)T
,

H(t) =
(
h(t), f(t)

)
.

(5.15)
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For q = 2 (the difference of bi,j,l(t) is second order),

x(t) =
(
b1(t), d1(t), b1(t − 1), d1(t − 1)

)T
,

H(t) =
(
h(t), f(t),0L

)
,

(5.16)

where 0L is L variate zero vector. For the ith component of y(t), 1 < i ≤ k,

w(t) =
(
νi,0(t), νi(t), ξi(t)

)T
. (5.17)

For q = 1 (the difference of bi,j,l(t) is first order),

x(t) =
(
bi,0(t), bi(t), di(t)

)T
,

H(t) =
(
ri(t),h(t), f(t)

)
.

(5.18)

For q = 2 (the difference of bi,j,l(t) is second order),

x(t) =
(
bi,0(t), bi(t), di(t), bi,0(t − 1), bi(t − 1), di(t − 1)

)T
,

H(t) =
(
ri(t), h(t), f(t),0L

)
.

(5.19)

We suppose the white noise sequence is given by

w(t)

ϵi(t)

 ∼ N
(0

0

 ,

Q

σ2
i

)
, (5.20)

where

Q =

τ2
i Ikp+i−1 0

0 ρ2
i Im

 . (5.21)

We use the Kalman filter to estimate a predictor x(t|t−1) and a filter x(t|t)
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of the state vector x(t). The algorithm is expressed as follows:

Prediction:

x(t|t − 1) = Fx(t − 1|t − 1),

V (t|t − 1) = FV (t − 1|t − 1)F T + GQGT .

(5.22)

Filtering:

K(t) =V (t|t − 1)H(t)T {H(t)V (t|t − 1)H(t)T + σ2
i }

−1
,

x(t|t) =x(t|t − 1) + K(t){yi(t) − H(t)x(t|t − 1)},

V (t|t) ={I − K(t)H(t)}V (t|t − 1).

(5.23)

We suppose x(0|0) and v(0|0) are given.

5.2.3 Model Identification

We estimate the goodness of fit of a model based on AIC. AIC consists of

the log likelihood and the number of parameters to be estimated.

The log likelihood can be derived from the Kalman filter. For the ith

component, the joint distribution of {yi(1), · · · , yi(T )} is

f
(
yi(1), · · · , yi(T )|θi

)
=

T∏
t=1

f
(
yi(t)|yi(1), · · · , yi(t − 1);θi

)
, (5.24)

where T is the size of the observations, θi = {τi, ρi, σi}, and f
(
yi(t)|yi(1), · · · , yi(t−
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1);θi

)
is defined by

f
(
yi(t)|yi(1), · · · , yi(t − 1); θi

)
=

(
2πv2(t)

)−1/2 exp
[
− 1

2v2(t)
(
yi(t) − H(t)x(t|t − 1)

)2
]
,

(5.25)

where v2(t) = H(t)V (t|t − 1)H(t)T + σ2
i . Therefore, the log likelihood is

obtained by

l(θi) = −1
2

{
T log(2π) +

T∑
t=1

log v2(t)

+
T∑

t=1

1
v2(t)

(
yi(t) − H(t)x(t|t − 1)

)2
}

.

(5.26)

AIC for the ith component of y(t) is defined as follows:

AIC(i) = −2l(θ̂i) + 2(the dimension of θi), (5.27)

where the dimension of θi is three. Therefore, the total AIC of an entire

model is given by

AIC =
k∑

i=1

AIC(i). (5.28)

We estimate time varying coefficients and the optimal policy lags κ based

on the total AIC.

We discuss the necessity of the assumption, which we consider as τi,j,l =

τi. To estimate log-likelihood, nonlinear numerical minimization algorithm

must be used. The algorithm usually needs rich computational requirement.

Our assumption reduces the computational requirement to calculate numer-
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ical minimization which is the main merit of the assumption. Furthermore,

this assumption can be released if required.

5.2.4 Time Varying VAR and LQDP

In the second step of our method, we derive time varying VAR from time

VAR with instantaneous response,

y(t) =
p∑

l=1

Al(t)y(t − l) + E(t)u(t − κ) + η(t), (5.29)

where η(t) ∼ N(0,Σ),

Al(t) =
(
Ik − B0(t)

)−1
Bl(t),

E(t) =
(
Ik − B0(t)

)−1
D(t),

η(t) =
(
Ik − B0(t)

)−1
ϵ(t),

Σ(t) =
(
Ik − B0(t)

)−1
V

(
Ik − B0(t)

)−T
,

(5.30)

where Al(t), E(t), η(t), and Σ(t) are (k × k), (k ×m), (k × 1), and (k × k)

matrices, respectively. Ik is the k-dimensional identity matrix. The policy

lags, κ, are optimal lags according to AIC.

We plan to use data in T = (1, 2, · · · , t, · · · , T ) estimating equation

(5.29) and use the estimated functional form of (5.29) at time T for LQDP.

The system, which we consider below, is optimized in period S = (0, 1, · · · , s, · · · ,∞).

You can consider T as the past and S as the future (see Figure 5.1).

The third step of our method, we combine time varying VAR and LQDP.
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We define the system equation for LQDP,

Y (s) = ΨY (s − 1) + ΓU(s − 1) + Λ(s), (5.31)

where

Y (s) =



y(s)

y(s − 1)
...

y(s − p + 1)


, (5.32)

U(s) =



u(s)

0(1)
m

...

0(p−1)
m


, (5.33)

Λ(s) =



η(s)

0(1)
k

...

0(p−1)
k


, (5.34)

Ψ =



A1(T ) A2(T ) · · · Ap−1(T ) Ap(T )

Ik 0k×k · · · 0 0

0k×k Ik · · · 0 0
...

...

0 · · · · · · I 0


, (5.35)
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Γ =



E(T ) 0(1)
k×m 0(2)

k×m · · · 0(p−1)
k×m

0(1)
k×m 0(1)

k×m · · · · · · 0(1)
k×m

...

0(p−1)
k×m


, (5.36)

where Y (s) is a (kp×1) matrix, U(s) is a (mp×1) matrix, Λ(s) is a (kp×1)

matrix, Ψ is a (kp×kp) matrix, and Γ is a (kp×mp) matrix. 0k is a (k×1)

zero vector, 0k′×k′′ is a (k′ × k′′) zero matrix, and Ik is a k-variate identity

matrix. The loss function of the central bank is defined by

∞∑
s=0

βsE0

{(
Y (s + κ)

)T
R

(
Y (s + κ)

)
+ U(s)T QU(s)

}
, (5.37)

where E0 is the conditional expectation, given the information known at

period 0, Ỹ is the vector of targets, R is a (kp×kp) real positive semidefinite

matrix, Q is a (mp × mp) real symmetric positive definite matrix, and β ∈

(0, 1] is a discount factor or unity. The optimal feedback on U(0) can be

given by

U(0) = −F (E0[Y (κ − 1)])

= −F (E0[Ȳ (κ − 1)] − Ŷ ),
(5.38)

where

F = β(Q + βΓT PΓ)
−1

ΓT PΨ, (5.39)

where F , which is a (mp × kp) matrix, is generated in each period, Ȳ is

real time series, and Ŷ is a target. We refer to the optimal feedback as

the dynamic instrument rule. E0[Y (κ)] is an expectation of Y (κ) at time
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s = 0, which is generated by iterations on equation (5.29), and therefore, the

dynamic instrument rule is based on the forecast. This implies that optimal

monetary policies must be forecast-based. F in equation (5.39) is derived

in each period. This is the reason why we refer to equation (5.38) as the

“dynamic” instrument rule. P can be obtained by iterations on the matrix

Riccati equation 6 given by

P = R + βΨT PΨ − β2ΨT PΓ(Q + βΓT PΓ)
−1

ΓT PΨ. (5.40)

5.3 Empirical Analyses

5.3.1 Inflation Targeting: The United Kingdom

In this subsection, we simulate the optimal short nominal interest rate raises

from 2001 to 2003. The Bank of England (BOE) has adopted inflation

targeting from 1992, and the target was set to 2.5 % inflation based on the

RPIX (the retail price index excluding mortgage interest payments) from

from 1997 to 20037. [Eng] states, “The Bank (of England) aims to meet the

Government’s inflation target by setting short-term interest rates.” BOE

implicitly adopts the inflation of the RPIX as a state variable (from 1997 to

2003) and the short interest rate as a control variable. It is an ideal case for

our framework.

We use the year-on-year growth rate of the RPIX as a state variable

and the raise in the nominal interest rate of three-month treasury bill as a

6See [LS04].
7From 2004, BOE has adopted the inflation target of 2 %, measured by the 12-month

increase in the consumer price index.
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control variable. In this case, equation (5.31) can be written,

π(t) = a(t)π(t − 1) + b(t)i(t − κ) + η(t), (5.41)

where π(t) is the inflation rate, i(t) is the interest rate raise, η(t) is a residual.

We estimate the time varying coefficients a(t) and b(t), and calculate the

F of the dynamic instrument rule. The estimation of coefficients are based

on quarterly and seasonal adjusted data from 1987:I to 2003:IV. Optimal

monetary policy is simulated from 2001:II to 2003:IV. We determine opti-

mal estimates (a(t) and b(t)) and optimal policy lag κ (quarters) of equation

(5.41) based on AIC. Furthermore, we must check the stability of control.

[AHMS96] surveys that (Ψ − FΓ) is said to be a stable matrix if the eigen-

values of (Ψ − FΓ) are all less than unity in absolute value. Thus, we can

select R and Q in the loss function of a central bank [equation (5.37)] within

the region the eigenvalues of (Ψ − FΓ) are all less than unity in absolute

value. We try some sets of {R,Q} = {4000, 1}, {2000, 1}, {1000, 1}, and set

β = 1. AICs and policy lags are shown in Table 5.1, and indices in Table

5.1 are show in Table 5.4.2. The optimal raise in the interest rate and the

actual raise are shown in Figure 5.2. All results are shown in Table 5.3, 5.4,

and 5.5. These results indicate that our method can duplicate the actual

monetary policy. Moreover, we emphasize that the simulated raises of the

nominal short interest rate is less than the actual one, and these results are

consistent with [Lit]. Table 5.1 shows that the optimal policy lags are time

varying. This result indicates that the central bank must estimate an opti-

mal policy lag in each period. Additionally, F s of equation (5.38) are shown
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in Table 5.3, 5.4, and 5.5, and F s are also time varying. Table 5.3, 5.4, and

5.5 show that policy lags are 2 and bs and F s are positive from 2003:I to

2003:III. According to these results, equation (5.38) can be written,

i(t) = F̄ [Etπ̄(t + 1) − π̂], (5.42)

where i is an interest rate raise, F̄ (< 0) is −F , Etπ̄(t+1) is the inflation rate

expectation at time t + 1, and π̂ is the target of inflation. Equation (5.42)

shows that the inflation rate expectation over the target rate decreases the

nominal rate of short interest. This relation indicates that Fisher effect was

dominant from from 2003:I to 2003:III.

The shifts of coefficients a(t) and b(t) are shown in Figure 5.3 and Figure

5.4, respectively. These results are based on quarterly data from 1991:II to

2003:IV. The a(t), b(t), and κ are estimated based on AIC, the κ is 9 quar-

ters. The AICs are shown in Table 5.1. Figure 5.3 shows that the inflation

rate of the United Kingdom becomes stable step by step, and we conclude

that inflation targeting realizes price stability of the United Kingdom.

According to [McC], the Taylor rule explains well on monetary policy in

the United Kingdom. Thus, we apply our method to simulate the optimal

short nominal interest rate raises from 2001 to 2003 based on two state

variables: year-on-year inflation rate and output gap. The output gap is the

deviation from the trend of quarterly and seasonal adjusted real output8.

8The trend is generated by Hodrirck-Prescott filter proposed by [HP97].
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We use the R and Q as follows:

R =

R11 0

0 R22

 , Q = 1, (5.43)

where R11 ≥ 0 and R22 ≥ 0. In our analysis, we fix R11 = 2000 and try

R22 = 10, R22 = 5, and R22 = 2.5. The F [equation (5.39)] can be written,

F =
[
F1 F2

]
(5.44)

The optimal interest rate raise and the actual interest rate raise are shown

in Figure 5.5. The optimal policy lags, F1, and F2 are shown in Table 5.6,

5.7, and 5.8. The full list of AICs and policy lags is available on request.

Figure 5.5 shows that the fluctuation of the interest rate raise in this case

is relatively unstable rather than the fluctuation of the interest rate raise in

single state variable case.

5.3.2 Nominal Growth Rate Targeting: Japan

In this subsection, we simulate the optimal growth rate of the monetary base

from 2002:I to 2004:II9. From 1999, the inflation of the CPI (the consumer

price index excluding volatile food) is negative, and the Bank of Japan (BOJ)

has adopted the zero interest rate policy from February, 1999. Nevertheless,

the policy lead extremely low short interest rates, and the inflation rate did

not become positive. Additionally, BOJ has adopted “quantitative easing”

from March, 2001. Thus, from 2001, the control variable of BOJ is only

9The description in this paragraph is based on the [Jap] and [Mut].
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the growth rate of the monetary base. Moreover, the Japanese government

and the Liberal Democratic Party have committed to 2 % nominal growth

rate targeting from the fourth quarter of 2003. In our simulation, we adopt

the nominal growth rate as a state variable and the growth rate of the

monetary base as a control variable. BOJ has not adopted formally targeting

regimes. However we assume targeting regimes in the Japan’s case because

this assumption is convenient for our framework. Thus, our results of the

Japanese economy are experimental.

We use the growth rate of nominal GDP as a state variable and the

growth rate of monetary base as a control variable 10. In this case, equation

(5.31) can be written,

yg(t) = a(t)yg(t − 1) + b(t)mb(t − κ) + η(t), (5.45)

where yg(t) is the growth rate of nominal output, mb(t) is the growth rate of

monetary base, η(t) is a residual. We estimate time varying coefficients a(t)

and b(t), and calculate F of the dynamic instrument rule. The estimation

of coefficients based on quarterly and seasonal adjusted data from 1980:I

to 2004:III. Optimal monetary policy is simulated from 2002:IV to 2004:III.

We decide the optimal estimates (a(t) and b(t)) and the optimal policy lag κ

(quarters) of equation (5.45) based on AIC. AICs and policy lags are shown

in Table 5.9, and indices in Table 5.9 are shown in Table 5.10. Table 5.9

shows that AICs are monotonically decreasing in most cases. This indi-

10Estimating coefficients a(t) and b(t), the growth rate of monetary base is reduced by
the average the growth rate of monetary base, and the average is added to the estimated
optimal and actual growth rate of monetary base.
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cates the occurrence of overfitting in nonlinear optimization. In numerical

procedures, it is difficult to avoid overfitting; therefore, we must manually

eliminate overfitting. We found that the coefficient b(t) is negative in many

periods when lags are more than 5, and an example of this case is shown

in Figure 5.10. The negative b(t) implies that the increasing monetary base

causes decreasing nominal growth, and this can be problematic from the

point of view of economics. Thus, we eliminate the problematic cases. We

try some sets of {R,Q} = {100, 1}, {50, 1}, {25, 1}, and set β = 1. The opti-

mal growth rate of monetary base and the actual growth rate are shown in

Figure 5.6. All results are shown in Table 5.11, 5.12, and 5.13. These results

indicate that the simulated optimal growth rates of monetary base are rela-

tively stable as compared with the actual one and these are consistent with

[Lit]. Additionally, F s of equations (5.38) are shown in Table 5.11, 5.12,

and 5.13, and they are also time varying. Moreover, in 2005:I, the growth

rate of nominal GDP is 2.2 % (the real GDP growth rate is 4.6 %) based on

initial reporting values. It is caused by about the about 20 % growth rate of

monetary base from Jun. 2003, to Nov. 2003 because the monetary policy

lag is about 5 quarters.

The shifts of coefficients a(t) and b(t) are shown in Figure 5.7 and Figure

5.8, respectively. This simulation is based on quarterly data from 1986:II to

2004:III. The a(t), b(t), and κ are estimated based on AIC, optimal κ is 5

quarters. The AICs are shown in Table 5.9. Figure 5.8 shows the coefficient

b(t) change in the first quarter of 2001, and it can be considered that the

coefficient changes in response to the change of monetary policy of BOJ.

This result indicates that the coefficient b(t) depend on the expectation on
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future monetary policy and the past time series data,

b(t) = E[b(t)|Ip, If ], (5.46)

where Ip is the information on the past and If is the information on the

future. This is consistent with [Luc76]. We conclude that adopting time

varying VAR in our method can be justified.

According to [Mut], BOJ has committed to continue the “quantitative

easing” policy until the core CPI (Consumer Price Index) shows zero percent

or above on a year-on-year basis in a stable manner. This commitment can

be considered as zero inflation targeting.e Thus, we apply our method to

simulate the optimal growth rate of monetary base from 2003:IV to 2004:III

based on two state variables: the nominal growth rate and the year-on-

year inflation rate11. In our analysis, we fix R11 = 50 and try R22 = 100,

R22 = 50, and R22 = 1 in equation (5.43). The optimal growth rate of

monetary base and the actual growth of monetary base are shown in Figure

5.9. The optimal policy lags, F1, and F2 are shown in Table 5.14, 5.15, and

5.16. The full list of AICs and policy lags is available on request.

5.4 Discussions and Conclusions

5.4.1 Discussions

In this subsection we discuss two points: (1) correlation does not imply

causation, and (2) the problem of real-time data availability.

11In this analysis, we use the year-on-year GDP deflater as the year-on-year inflation
rate because [Shi99] point out that Japanese CPI is biased.
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Correlation does not imply causation. In our method, equation (5.29)

indicates autocorrelation of state variables and correlation between state

variables and control variables. Empirically, however, nominal short interest

rates and the growth of the monetary base are instruments of monetary pol-

icy. Furthermore, our empirical analysis of the United Kingdom indicates

that the short nominal interest rate raise can be considered as a control

variable to control the inflation rate, and in the case of Japan indicates the

growth rate of the monetary base can be considered as a control variable to

control the growth rate of nominal output. In general, the phrase “correla-

tion does not imply causation” is true. However, according to our empirical

analyses, it can be considered that equation (5.29) estimates causality in the

monetary policy.

Current economic data in period t could not be known until after the

end of period t, and the initial reporting values are often revised later. Using

the Taylor rule as an example, [Orp01] demonstrates that real-time policy

recommendations differ from those obtained with ex post revised data. Our

model is not affected by the problem indicated by [Orp01] because equation

(5.38) determines the optimal control variables based on forecasted state

values. In other words, our method does not require real-time data, but

forecasted data. In our analyses, forecasted data are generated by equation

(5.29) based on revised data. The practice of dynamic instrument rules

involves further study. However, we suggest that forecasted data in practice

can be calculated with equation (5.29) based on reliable and available data,

which the central bank can acquire at that time to decide the monetary

policy.
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5.4.2 Conclusions

This paper proposes a statistical and practical approach that time varying

coefficients monetary instrument rules are generated dynamically in each

period by the central bank which must achieve some specific targets. In the

empirical analyses of the United Kingdom and Japan, the simulation results

show the effectiveness of our method. According to the results, we conclude

(1) our method can duplicate the actual monetary policy, (2) it minimizes

the fluctuation of a control variable, (3) the optimal policy lags are time

varying and the optimal monetary policy must be forecast-based, and (4)

policy changes affect the coefficients of control variables. The second point

is consistent with [Lit] and the fourth point is consistent with [Luc76].
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Index Lag AIC Index Lag AIC Index Lag AIC

1 1 -327.6496 2 1 -327.5197 3 1 -340.2939

1 2 -327.9179 2 2 -327.5108 3 2 -340.0787

1 3 -333.6233 2 3 -340.3128 3 3 -337.7012

1 4 -331.0292 2 4 -333.4488 3 4 -339.5507

1 5 -330.9126 2 5 -333.4344 3 5 -338.1729

1 6 -328.0539 2 6 -328.2055 3 6 -340.8968

1 7 -331.1925 2 7 -333.9774 3 7 -339.0937

1 8 -331.1218 2 8 -333.5171 3 8 -337.7656

1 9 -333.1306 2 9 -335.5315 3 9 -340.129

1 10 -327.2614 2 10 -328.0284 3 10 -338.7564

1 11 -338.0636 2 11 -339.4807 3 11 -341.2442

1 12 -331.5835 2 12 -335.6497 3 12 -337.6603

1 13 -330.2634 2 13 -333.3606 3 13 -337.8531

Index Lag AIC Index Lag AIC Index Lag AIC

4 1 -337.6356 5 1 -335.9952 6 1 -336.2268

4 2 -337.4686 5 2 -336.5502 6 2 -337.2904

4 3 -335.6503 5 3 -334.6152 6 3 -334.8725

4 4 -337.5717 5 4 -336.1568 6 4 -336.6558

4 5 -336.5497 5 5 -335.7691 6 5 -336.4238

4 6 -339.1487 5 6 -338.4865 6 6 -338.3796

4 7 -340.9611 5 7 -340.4571 6 7 -340.4608

4 8 -335.3499 5 8 -334.3672 6 8 -334.6222

4 9 -337.0654 5 9 -336.0952 6 9 -337.6319

4 10 -336.3081 5 10 -335.3722 6 10 -335.7087

4 11 -338.6519 5 11 -337.1396 6 11 -338.1534

4 12 -335.663 5 12 -334.4059 6 12 -334.8127

4 13 -336.4856 5 13 -334.4459 6 13 -335.2489

Index Lag AIC Index Lag AIC Index Lag AIC

7 1 -331.4329 8 1 -338.5258 9 1 -340.8725

7 2 -332.6374 8 2 -340.8283 9 2 -342.9302

7 3 -330.0669 8 3 -336.8451 9 3 -338.9037

7 4 -333.415 8 4 -337.9999 9 4 -340.1443

7 5 -331.0479 8 5 -336.8701 9 5 -338.8961
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7 6 -333.5343 8 6 -338.9371 9 6 -339.9156

7 7 -335.9789 8 7 -339.0327 9 7 -340.111

7 8 -329.8088 8 8 -336.6994 9 8 -338.8253

7 9 -332.193 8 9 -338.506 9 9 -340.5519

7 10 -330.5314 8 10 -336.9317 9 10 -338.9329

7 11 -332.8134 8 11 -337.004 9 11 -338.9499

7 12 -329.6473 8 12 -336.8695 9 12 -340.0735

7 13 -330.1105 8 13 -336.5539 9 13 -338.6627

Index Lag AIC Index Lag AIC

10 1 -342.625 11 1 -343.4828

10 2 -344.2918 11 2 -344.2531

10 3 -339.9875 11 3 -342.4577

10 4 -341.3353 11 4 -343.4962

10 5 -339.979 11 5 -342.4616

10 6 -340.7122 11 6 -343.1587

10 7 -340.3404 11 7 -342.6803

10 8 -340.0299 11 8 -343.013

10 9 -342.493 11 9 -346.2899

10 10 -340.3458 11 10 -342.918

10 11 -339.9809 11 11 -342.7529

10 12 -341.4635 11 12 -344.334

10 13 -340.1753 11 13 -342.8376

Table 5.1: AICs and policy lags of models of the United Kingdom
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Table 5.2: Indices in table 1
Index (UK) Data

1 1991:I-2001:II
2 1991:II-2001:III
3 1991:III-2001:IV
4 1991:IV-2002:I
5 1992:I-2002:II
6 1992:II-2002:III
7 1992:III-2002:IV
8 1992:IV-2003:I
9 1993:I-2003:II
10 1993:II-2003:III
11 1993:III-2003:IV

Data Optimal Policy Lag Actual Optimal a b F

2001:II 11 -0.3633 -0.0340 0.9453 -0.00008 -2.66284
2001:III 11 -0.3100 -0.2510 0.9562 -0.00073 -26.33202
2001:IV 11 -0.7967 -0.0676 0.9522 -0.00013 -5.06418
2002:I 7 -0.0333 -0.1476 0.9758 -0.00088 -40.24875
2002:II 7 0.0767 -0.2743 0.9803 -0.00050 -34.30706
2002:III 7 -0.1667 -0.2611 0.9805 -0.00065 -39.24066
2002:IV 7 -0.0033 0.2611 0.9904 -0.00315 -54.51951
2003:I 2 -0.2067 -0.1426 0.9893 0.00153 53.92889
2003:II 2 -0.1367 -0.1884 0.9948 0.00150 59.61648
2003:III 2 -0.0433 -0.1411 0.9990 0.00153 57.09896
2003:IV 9 0.3533 -0.0561 0.9833 -0.00134 -49.77213

Table 5.3: Optimal and actual short interest raises of the United Kingdom
(R = 4000)
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Data Optimal Policy Lag Actual Optimal a b F

2001:II 11 -0.3633 -0.0170 0.9453 -0.00008 -1.33274
2001:III 11 -0.3100 -0.1377 0.9562 -0.00073 -14.44196
2001:IV 11 -0.7967 -0.0339 0.9522 -0.00013 -2.54105
2002:I 7 -0.0333 -0.0897 0.9758 -0.00088 -24.45517
2002:II 7 0.0767 -0.1582 0.9803 -0.00050 -19.78973
2002:III 7 -0.1667 -0.1567 0.9805 -0.00065 -23.55361
2002:IV 7 -0.0033 0.1863 0.9904 -0.00315 -38.90766
2003:I 2 -0.2067 -0.0978 0.9893 0.00153 36.95990
2003:II 2 -0.1367 -0.1346 0.9948 0.00150 42.56660
2003:III 2 -0.0433 -0.0989 0.9990 0.00153 40.02637
2003:IV 9 0.3533 -0.0371 0.9833 -0.00134 0.35333

Table 5.4: Optimal and actual short interest raises of the United Kingdom
(R = 2000)

Data Optimal Policy Lag Actual Optimal a b F

2001:II 11 -0.3633 -0.0085 0.9453 -0.00008 -0.66670
2001:III 11 -0.3100 -0.0728 0.9562 -0.00073 -7.63846
2001:IV 11 -0.7967 -0.0170 0.9522 -0.00013 -1.27279
2002:I 7 -0.0333 -0.0520 0.9758 -0.00088 -14.16625
2002:II 7 0.0767 -0.0872 0.9803 -0.00050 -10.90822
2002:III 7 -0.1667 -0.0897 0.9805 -0.00065 -13.48194
2002:IV 7 -0.0033 0.1307 0.9904 -0.00315 -27.30437
2003:I 2 -0.2067 -0.0655 0.9893 0.00153 24.76758
2003:II 2 -0.1367 -0.0955 0.9948 0.00150 30.21156
2003:III 2 -0.0433 -0.0684 0.9990 0.00153 27.68588
2003:IV 9 0.3533 -0.0237 0.9833 -0.00134 0.35333

Table 5.5: Optimal and actual short interest raises of the United Kingdom
(R = 1000)
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Data Optimal Policy Lag Actual Optimal F1 F2

2001:II 11 -0.3633 0.1160 -1.0373 1.6626
2001:III 11 -0.3100 -0.0160 2.2850 1.4208
2001:IV 3 -0.7967 0.3971 -14.3442 -1.6803
2002:I 3 -0.0333 0.3122 -20.2490 -1.5837
2002:II 3 0.0767 -0.2309 -18.3543 -1.7524
2002:III 3 -0.1667 0.0384 -18.7268 -1.6642
2002:IV 3 -0.0033 -0.2488 -19.9407 -1.6875
2003:I 3 -0.2067 -0.5326 -19.8521 -1.7919
2003:II 2 -0.1367 0.7050 27.0128 1.6671
2003:III 2 -0.0433 0.1038 27.5902 1.2775
2003:IV 9 0.3533 0.0243 -36.6125 -0.3188

Table 5.6: Optimal and actual short interest raises of the United Kingdom
(R11 = 2000, R22 = 10)

Data Optimal Policy Lag Actual Optimal F1 F2

2001:II 11 -0.3633 0.0912 0.7277 1.1026
2001:III 11 -0.3100 -0.0074 1.9298 0.8501
2001:IV 3 -0.7967 0.2524 -19.0149 -1.2454
2002:I 3 -0.0333 0.2057 -24.6744 -1.1377
2002:II 3 0.0767 -0.2488 -22.7322 -1.2660
2002:III 3 -0.1667 -0.0256 -23.3301 -1.2084
2002:IV 3 -0.0033 -0.2099 -24.6491 -1.2469
2003:I 3 -0.2067 -0.4007 -24.8366 -1.3510
2003:II 2 -0.1367 0.4395 31.5519 1.1149
2003:III 2 -0.0433 0.0317 32.3514 0.8467
2003:IV 9 0.3533 0.0064 -35.5141 -0.1904

Table 5.7: Optimal and actual short interest raises of the United Kingdom
(R11 = 2000, R22 = 5)
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Data Optimal Policy Lag Actual Optimal F1 F2

2001:II 11 -0.3633 0.0784 2.5343 0.6946
2001:III 11 -0.3100 -0.0023 1.6299 0.4872
2001:IV 3 -0.7967 0.1345 -23.1821 -0.8971
2002:I 3 -0.0333 0.1258 -28.2073 -0.8048
2002:II 3 0.0767 -0.2650 -26.3072 -0.9061
2002:III 3 -0.1667 -0.0757 -27.0812 -0.8619
2002:IV 3 -0.0033 -0.1802 -28.5297 -0.9042
2003:I 3 -0.2067 -0.2934 -29.0278 -0.9924
2003:II 2 -0.1367 0.2453 35.1541 0.7122
2003:III 2 -0.0433 -0.0237 36.0716 0.5169
2003:IV 9 0.3533 -0.0027 -34.9374 -0.1252

Table 5.8: Optimal and actual short interest raises of the United Kingdom
(R11 = 2000, R22 = 2.5)
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Index Lag AIC Overfit Index Lag AIC Overfit

1 1 314.9525 2 1 314.9922

1 2 314.8504 2 2 314.9326

1 3 314.5938 2 3 314.8149

1 4 314.3304 2 4 314.5622

1 5 314.2739 2 5 314.2865

1 6 314.2739 overfitting 2 6 314.2468 overfitting

1 7 314.2625 overfitting 2 7 314.2542 overfitting

1 8 314.1945 overfitting 2 8 314.2502 overfitting

1 9 314.1767 overfitting 2 9 314.1751 overfitting

1 10 314.1634 overfitting 2 10 314.1488 overfitting

1 11 314.1665 overfitting 2 11 314.1388 overfitting

1 12 314.1302 overfitting 2 12 314.1443 overfitting

Index Lag AIC Overfit Index Lag AIC Overfit

3 1 314.9636 4 1 314.9449

3 2 314.9573 4 2 314.9197

3 3 314.8815 4 3 314.8977

3 4 314.7799 4 4 314.8425

3 5 314.5172 4 5 314.7254

3 6 314.2604 overfitting 4 6 314.4756 overfitting

3 7 314.2202 overfitting 4 7 314.2197 overfitting

3 8 314.2285 overfitting 4 8 314.1841 overfitting

3 9 314.218 overfitting 4 9 314.1856 overfitting

3 10 314.1391 overfitting 4 10 314.1708 overfitting

3 11 314.1152 overfitting 4 11 314.0928 overfitting

3 12 314.1054 overfitting 4 12 314.0706 overfitting

Index Lag AIC Overfit Index Lag AIC Overfit

5 1 314.9708 6 1 314.969

5 2 314.911 6 2 314.9377
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5 3 314.8672 6 3 314.8606

5 4 314.8688 6 4 314.8383

5 5 314.7986 6 5 314.8209

5 6 314.694 overfitting 6 6 314.7666 overfitting

5 7 314.4446 overfitting 6 7 314.6624 overfitting

5 8 314.1944 overfitting 6 8 314.419 overfitting

5 9 314.1517 overfitting 6 9 314.1632 overfitting

5 10 314.149 overfitting 6 10 314.1198 overfitting

5 11 314.1348 overfitting 6 11 314.1185 overfitting

5 12 314.0585 overfitting 6 12 314.1027 overfitting

Index Lag AIC Overfit Index Lag AIC Overfit

7 1 314.946 8 1 314.9297

7 2 314.9321 8 2 314.9235

7 3 314.878 8 3 314.8813

7 4 314.8184 8 4 314.8579

7 5 314.784 8 5 314.7913

7 6 314.7765 overfitting 8 6 314.7642 overfitting

7 7 314.715 overfitting 8 7 314.7598 overfitting

7 8 314.617 overfitting 8 8 314.7081 overfitting

7 9 314.3693 overfitting 8 9 314.604 overfitting

7 10 314.1154 overfitting 8 10 314.3545 overfitting

7 11 314.0714 overfitting 8 11 314.0999 overfitting

7 12 314.0694 overfitting 8 12 314.0555 overfitting

Table 5.9: AICs and policy lags of models of Japan
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Index (Japan) Data
1 1984:III-2002:IV
2 1984:IV-2003:I
3 1985:I-2003:II
4 1985:II-2003:III
5 1985:III-2003:IV
6 1985:IV-2004:I
7 1986:I-2004:II
8 1986:II-2004:III

Table 5.10: Indices in table 5

Data Optimal Policy Lag Actual Optimal a b F

2002:IV 5 0.1877 0.1243 0.8796 0.0097 3.2451
2003:I 5 0.1164 0.1321 0.8724 0.0095 3.0369
2003:II 5 0.1473 0.1282 0.8629 0.0198 4.5780
2003:III 5 0.1865 0.1347 0.8628 0.0144 3.8441
2003:IV 5 0.1573 0.1235 0.8590 0.0200 4.5176
2004:I 5 0.1300 0.0620 0.8476 0.0359 5.3175
2004:II 5 0.0582 0.1073 0.8554 0.0308 5.2549
2004:III 5 0.0456 0.1260 0.8499 0.0309 5.1633

Table 5.11: Optimal and actual growth rates of the monetary base of Japan
(R = 100)

Data Optimal Policy Lag Actual Optimal a b F

2002:IV 5 0.1877 0.1022 0.8796 0.0097 1.7387
2003:I 5 0.1164 0.1062 0.8724 0.0095 1.6150
2003:II 5 0.1473 0.1067 0.8629 0.0198 2.6620
2003:III 5 0.1865 0.1089 0.8628 0.0144 2.1309
2003:IV 5 0.1573 0.1039 0.8590 0.0200 2.6208
2004:I 5 0.1300 0.0674 0.8476 0.0359 3.3877
2004:II 5 0.0582 0.0959 0.8554 0.0308 3.2783
2004:III 5 0.0456 0.1074 0.8499 0.0309 3.2069

Table 5.12: Optimal and actual growth rates of the monetary base of Japan
(R = 50)
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Data Optimal Policy Lag Actual Optimal a b F

2002:IV 5 0.1877 0.0932 0.8796 0.0097 0.9043
2003:I 5 0.1164 0.0920 0.8724 0.0095 0.8359
2003:II 5 0.1473 0.0933 0.8629 0.0198 1.4691
2003:III 5 0.1865 0.0939 0.8628 0.0144 1.1339
2003:IV 5 0.1573 0.0917 0.8590 0.0200 1.4434
2004:I 5 0.1300 0.0712 0.8476 0.0359 2.0261
2004:II 5 0.0582 0.0880 0.8554 0.0308 1.9237
2004:III 5 0.0456 0.0947 0.8499 0.0309 1.8730

Table 5.13: Optimal and actual growth rates of the monetary base of Japan
(R = 25)

Data Optimal Policy Lag Actual Optimal F1 F2

2002:IV 5 0.1877049 0.077643856 2.75836 3.905424
2003:I 5 0.11638155 0.13782743 2.689216 3.062527
2003:II 5 0.14727208 0.10361342 3.219914 2.989277
2003:III 5 0.186525 0.13052853 3.001859 1.862189
2003:IV 4 0.15732312 0.11070252 3.230283 -0.5292883
2004:I 4 0.13002511 0.06911243 3.335563 -0.7308527
2004:II 4 0.05820084 0.09330736 3.193513 -0.958046
2004:III 4 0.04558158 0.11100831 3.123806 -0.96308

Table 5.14: Optimal and actual growth rates of the monetary base of Japan
(R22 = 100)

Data Optimal Policy Lag Actual Optimal F1 F2

2002:IV 5 0.1877049 0.08971726 2.80734 2.67537
2003:I 5 0.11638155 0.13501813 2.619805 2.081702
2003:II 5 0.14727208 0.10561177 3.193653 2.022997
2003:III 5 0.186525 0.12752814 2.901009 1.375564
2003:IV 4 0.15732312 0.12054111 3.352131 0.2043558
2004:I 4 0.13002511 0.074957944 3.443055 -0.02609152
2004:II 4 0.05820084 0.10395511 3.352056 -0.09655746
2004:III 4 0.04558158 0.11925632 3.282215 -0.1071787

Table 5.15: Optimal and actual growth rates of the monetary base of Japan
(R22 = 50)
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Data Optimal Policy Lag Actual Optimal F1 F2

2002:IV 5 0.1877049 0.10439074 2.874283 1.19116
2003:I 5 0.11638155 0.13186864 2.539471 1.020998
2003:II 5 0.14727208 0.10775704 3.163565 0.9772133
2003:III 5 0.186525 0.12446506 2.797158 0.8838948
2003:IV 4 0.15732312 0.13079583 3.478565 0.9696484
2004:I 4 0.13002511 0.081050666 3.554323 0.7084306
2004:II 4 0.05820084 0.11518348 3.519045 0.8120633
2004:III 4 0.04558158 0.12792758 3.448801 0.7925574

Table 5.16: Optimal and actual growth rates of the monetary base of Japan
(R22 = 25)
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Figure 5.1: Recursive estimations of the dynamic instrument rule

122



Optimal and Actual Interest Rate Rises of 
the United Kingdom
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Figure 5.2: Optimal and actual monetary policy of the United Kingdom
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The Coefficient of the Inflation Rate of The United Kingdom
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Figure 5.3: The Coefficient of the inflation rate of the United Kingdom
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Figure 5.4: The coefficient of the interest rate raise of the United Kingdom
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Optimal and Actual Interest Rate Rises of 
the United Kingdom
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Figure 5.5: Optimal and actual monetary policy of the United Kingdom
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Optimal and Actual Growth Rates of 
the Monetary Base of Japan
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Figure 5.6: Optimal and actual monetary policy in Japan
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Figure 5.7: The coefficient of the growth rate of monetary base of Japan

128



The Coeffcient of the Nominal 
Growth Rate of GDP of Japan

Time

a(
t)

1990 1995 2000 2005

0.
4

0.
5

0.
6

0.
7

0.
8

Figure 5.8: The coefficient of the nominal growth rate of Japan
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Optimal and Actual Growth Rates of 
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Figure 5.9: Optimal and actual monetary policy in Japan

130



0 10 20 30 40 50 60 70

−
0.

25
−

0.
20

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05

Overfitting

Index

b(
t)
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Chapter 6

Single Factor Model

Estimation Based On The

Kalman Filter

6.1 Introduction

In financial econometrics, a single factor model is often used to analyze the

relation between the market portfolio and a stock price. In financial theory,

the modern portfolio theory is proposed by [Mar52]. the Capital Asset

Pricing Model (CAPM) is developed by [Sha64] and [Lin65]. The CAPM

is the model of the single factor β. The single factor model in financial

econometrics is similar with the CAPM, however, it is a purely statistical

model. The single factor model is the linear relation between the return of
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the market portfolio and the return of a security.

E[Ri] − Rf = βi(E[Rm] − Rf )

βi =
Cov[Ri, Rm]

V ar[Rm]
,

(6.1)

where Ri is the return of a security i, Rm is the return of the market portfolio,

Rf is the return of a risk free asset. βi is only a systematic risk factor of

a security in the CAPM, therefore we concentrate on estimating βi in this

paper.

In financial econometric text books, for example, [CLM97], βi is esti-

mated by using ordinary least square and maximum likelihood method. In

these studies it is often implicitly assumed that βi is very stable. In a real

stock markets, however, βi may be time varying over time. Althoug there

are many studies of discussing about the perfect market assumption of the

CAPM, it is interestingly very few reseaches whether βi is unstable and

time varying. In this paper, we assume Bayesian smoothness proirs which is

expressed in the form of a difference equation excited by a Gaussian white

noise. Under our assumption, βi changes gradually, and we estimate the

time varying βi(t) by using the Kalman filter. The Kalman filter is an algo-

rithm estimate a state vector of a linear system. Because equation (6.1) is

a linear system on βi, the Kalman filter can be used to estimate βi(t) of the

CAPM. We adopt our method to the Japanse Stock Markets and discuss

the the effectiveness of our method using residual analysis. According to our

results, we conclude that our method is very effective in the cases the rapid

changes of βi are not happen. It is a significant finding of us, although we
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use only “linear” frameworks (the linear relations of the CAMP, smoothness

priors, and the Kalman filter). Because the nonlinearity of the financial

markets is often discussed recently. We find the residuals of equation (6.1)

are Gaussian in the most cases of us (even when the rapid changes of β).

6.2 Theoretical Background

The single factor model of security i can be shown by

Zi(t) = βi(t)Zm(t) + αi(t) (6.2)

where Zi(t) is E[Ri −Rf ], Zm(t) is E[Rm −Rf ] and αi(t) is the intercept of

security i. In the theory of the CAPM, αi(t) is zero and βi(t) is a only risk

factor of a security. In our empirical analysis, we suppose the α(t) is zero,

and we concentrate on estimating βi(t). We assume βi changes gradually

over time, therefore, the shift of βi is locally smooth. Our assumption is

widely known as smoothness priors of Bayesian procedure 1. We define the

stochastic difference equation of βi(t) as follows,

The smoothiness prior of first order is

νi,1(t) = βi(t) − βi(t − 1), (6.3)

where νi,1(t) ∼ N(0, τi). We suppose τi is a constant of a security i. The

stochastic difference equation (6.3) is considered as the Gaussian smoothnss

priors the time series varying coefficients in autoregressive model in [Kit83].

1See [Shi73] and [Kit83]
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Equation (6.2), equation (6.3) can be rewritten to the state space represen-

tation.

The smoothness prior of first order is

βi(t) = βi(t − 1) + νi,1(t), (6.4)

Zi(t) = Zm(t)βi(t) + ϵi(t), (6.5)

where Zi(t) is E[Ri −Rf ], Zm(t) is E[Rm −Rf ], and ϵi(t) is a residual. We

suppose ϵi(t) ∼ N(0, σi), and σi is a constant of a security i. Equation (6.4)

is a system equation and equation (6.5) is a measurement equation.

We use the Kalman filter2 to estimate βi(t). Kalman filter which was

proposed by Kalman (1960) is an algorithm for solving the linear filtering

problem based on the state space reperesentaion. The linear filtering prob-

lem in the Kalman filer is formulated as state estimation. The βi(t) of the

CAPM can be considered as a state in the financial market. Therefore we

can use the state space representation described above to estimate βi(t) by

using the Kalman filter. The Kalman filter consists of three components,

(1) prediction, (2) filtering, and (3) smoothing. In this paper prediction and

filtering are used. We denote x(t|t − 1) as a predictor of x(t) and x(t|t) as

a filter of x(t). The algorithm of the Kalman filter is shown as follows.

Prediction algorithm:

βi(t|t − 1) = βi(t − 1|t − 1),

V (t|t − 1) = V (t − 1|t − 1) + τ2
i ,

(6.6)

2See [KG96].
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Filtering algorithm:

K(t) =V (t|t − 1)Zm(t){Zm(t)V (t|t − 1)Zm(t) + σ2
i }

−1
,

βi(t|t) =βi(t|t − 1) + K(t){Zi(t) − Zm(t)βi(t|t − 1)},

V (t|t) ={1 − K(t)Zm(t)}V (t|t − 1),

(6.7)

where V (t|t−1) = E[{βi(t|t) − βi(t|t − 1)}2]. We suppose β(0|0) is zero and

V (0|0) is a arbitrary huge number.

In our method, it is necessary to choose the best fit of βi in the formula-

tion described above. The state space representation and the Kalman filter

yields an efficient algorithm for computing the likelihood of a time series

model. For security i, the joint distribution of {Zi(1), · · · , Zi(T )} is

f(Zi(1), · · · , Zi(T )|θi) =
T∏

t=1

f(Zi(t)|Zi(1), · · · , Zi(t);θi), (6.8)

where θi = (σi, τi) and f(Zi(t)|Zi(1), · · · , Zi(t);θi) is the conditional distri-

bution defined by

f(Zi(t)|Zi(1), · · · , Zi(t);θi)

=
1√

2πv2(t)
exp

[
− 1

2v2(t)
(Zi(t) − Zm(t)βi(t|t − 1))2

] (6.9)

Thus, we use the maximum log likelihood method to estimate the goodness
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of the fit of a model. The log likelihood for θi is obtain by

l(θi) = −1
2

{
T log(2π) +

T∑
t=1

log v2(t)

+
T∑

t=1

1
v2(t)

(Zi(t) − Zm(t)βi(t|t − 1))2
}

,

(6.10)

where v2(t) = Zm(t)V (t|t − 1)Zm(t) + σ2
i . The maximum likelihood esti-

mate of parameter, θ̂i is obtained by maximizing l(θi) with respect to those

parameters. In our program, we use the optimization function nlm in R,

which use a Newton-type algorithm.

6.3 The Application to the Japanese Stock Mar-

kets

6.3.1 The Data of the Japanese Stock Markets

We use the monthly closed price data of securities in the first section of

Tokyo Stock Exchange (TSE) from January, 1998 to December, 2003. The

TSE domestic stock market is divided into the first and second sections. The

first section is the market for stocks of relatively large companies. We choose

2 securities from 33 industry sectors of the first section of TSE (Toushou

33 gyoushu), and use the monthly closed prices of them. We adopt TOPIX

which include all first section listed shares in TSE as a proxy of the market

portfolio. TOPIX provides a comprehensive measure of stock price changes.

We choose data period from 1998 to 2003 (6 years), and the data size is 72
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Data (monthly closed price) Periods
25 companies in the first sector of TSE 1998/01 - 2003/12

TOPIX 1998/01 - 2003/12
Libor Yen (3 month) 1998/01 - 2003/12

Table 6.1: The List of Data

(the size of monthly returns is 71) 3. On calculating the returns of securities,

we ignore the effects of dividends, because TOPIX does not include the

effects of divideneds. Moreover, we don’t adjust stock prices to inflation

rates, because the inflation rates of recent Japan is relatively small. The

inflation rates from 1998 to 2003 are from -0.8 to -1.6 based on the enterprise

price index. At the choosing the securities, the liquidity and the credit risks

of them are unconsidered. We adopt LIBOR Yen 3 month as a proxy of

short term risk free rate, bacause LIBOR Yen 3 month is relatively stable

rather than call rate 1 month in most cases. The list of data is shown in

table 6.1.

The monthly returns of securities is defined by

Ri = log
Pt

Pt−1
, (6.11)

where Pt is a monthly closed price of a security. The monthly returns of

TOPIX are caluculated in the same way. We make Zi(t) = Ri(t) − Rf (t)

from equation (6.11) and LIBOR 3 month in the same period.

In our program, the log likelihood function [equation (6.10)] is maximized

by optimization function nlm in R by using data sets described above, and

3Single foctor model is commonly estimated using 5 years of monthly data [ pp. 184,
Campbell, Lo, and MacKinlay (1996)].
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the program returns the estimated βi(t), residuals of equation (6.5), τi, σi,

AIC [is equal to the negative log likelihood in our case], and nlm return

code [2 and 3 mean optimization is successful, and 4 means optimization is

failed4]. The residual analysis is made based on the results of our program.

We made the diagnostic checking for normality and serial correlation as

residual analysis.

6.3.2 The Results of our Estimation

We show the the results of our estimation in Figure 1-25. We show the

actual returns and estimated returns of securities and the estimated βi(t) in

the upper panels of figure 1-25. The results of estimated values are shown

in table 6.2. In table 6.2, “code” is a return code from nlm. It shows τi

and σi is very small in successeful cases. Therefore, we conclude βi(T ) is a

very good proxy of β in successful cases. However, in some cases, βi(t) is

changing rapidly and the optimizations of nlm are failed.

6.3.3 Residual Analysis

We show the results of residual analysis. The assumption of Kalman fil-

ter the disturbance of νi(t) and ϵi(t) are normally distributed and serially

independent with constant variance. We made the diagnostic checking for

normality and serial correlation as follows.

1. Quantile-Quantile plot

4We consider optimization is failed on the 500 loops of calculation of nlm. In most
susseccful cases, the loops of calculation of nlm are less than 200.
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NAME(No.) Code AIC τ σ

NTT 0 -149.3359 0.07534621 0.05882475
SONY 0 -64.40624 0.1435226 0.03899718
Tokyo Electric Power Co. 0 -170.9791 0.0643951 0.06440982
Nishimatsu 0 -119.4261 0.09381163 0.004122669
Ito-Yokado 0 -105.2728 0.1038671 0.03153384
Toyota 0 -152.0062 0.0730043 0.02377539
Takeda Pharmaceutical Co. 4502 0 -158.2433 0.0709385 0.02374597
Panasonic 6752 0 -142.9274 0.07851107 0.02417267
Sharp 6753 0 -119.2637 0.09456484 0.02551953
Denso 6902 0 -175.7362 0.06173184 0.02517676
Nissan 7201 0 -90.45424 0.1159477 0.03341797
Cannon 7751 0 -146.1517 0.07626406 0.02624219
Mitsubishi Co. 8058 0 -142.2841 0.07883462 0.02532104
JR East 9020 0 -170.8066 0.06367031 0.02346094
JR Tokai 9022 0 -201.2063 0.05186767 0.02268473
KDDI 9433 0 -72.4038 0.1305883 0.03283984
JT 2914 0 -140.844 0.08041787 0.02553174
Kao 4452 0 -180.9324 0.05882841 0.02141521
NEC 6701 0 -115.7291 0.09526309 0.02877051
Kyocera 6971 0 -89.49805 0.1159477 0.03341797
Nintendo 7974 0 -108.1091 0.1029107 0.03000534
Kanebo 3102 0 -93.36037 0.1159477 0.03341797

Table 6.2: Estimated Values
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Name Residuals Coefficients
Bowman-Shenton Ljung-Box Bowman-Shenton Ljung-Box
(p value) ( p value) (p value) (p value)

NTT 0.8300 0.0065 *** 0.0000 *** 0.1588
SONY 0.4734 0.0951 0.0016 ** 0.6258
Tokyo Elec. Power Co. 0.4734 0.0951 0.0016 ** 0.6258
Nishimatsu 0.4671 0.5509 0.0000 *** 0.2269
Ito-yokado 0.0000 *** 0.4553 0.0000 *** 0.9637
Toyota 0.0000 *** 0.0027 *** 0.0000 *** 0.1711
Takeda Pharm. Co. 0.9370 0.1464 0.0000 *** 0.3193
Panasonic 0.8450 0.5210 0.0000 *** 0.6653
Sharp 0.2481 0.4699 0.0000 *** 0.4783
Denso 0.7662 0.3247 0.0000 *** 0.0344 **
Nissan 0.0855 0.1385 0.0000 *** 0.3584
Cannon 0.0583 0.3719 0.0000 *** 0.5045
Mitsubishi Co. 0.0035 *** 0.3101 0.0000 *** 0.0772
JR East 0.7622 0.9843 0.0000 *** 0.5211
JR Tokai 0.1577 0.5774 0.0000 *** 0.8257
KDDI 0.1739 0.5256 0.0000 *** 0.0071 ***
JT 0.1515 0.6817 0.0000 *** 0.9975
Kao 0.9811 0.6888 0.0000 *** 0.0871
NEC 0.8509 0.5885 0.0000 *** 0.6851
Kyocera 0.0000 *** 0.6516 0.0000 *** 0.2925
Nintendo 0.8155 0.5098 0.0000 *** 0.2006
Kanebo 0.0000 *** 0.7953 0.0000 *** 0.7606

Table 6.3: Residual Analysis

2. Bowman-Shenton (Jarque-Bera) test: Tests the null hypothesis of nor-

mality

3. Ljung-Box test: Tests the null hypothesis of independence

The results of Bowman-Shenton test and Ljung-Box test are shown in table

6.3. The results of quantile-quantile plot are shown in lower panels of figure

1-25 [The left sides of lower panels ].
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6.4 Conclusion and Discussion

We conclude as follws.

1. The last estimate of βi(t) is a good proxy of β in successful cases.

2. the results of Bowman-Shenton test and Ljung-Box test on residuals

are relatively good rather than the results of same tests on coefficients.

We think that we can improve our method of βi estimation changing from

the Kalman filter to non-Gaussinan filters, for example, the Monta Carlo

filter proposed by Kitagawa (1996).
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Figure 6.1: NTT
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Figure 6.2: SONY
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Figure 6.3: Tokyo Electric Power Co.
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Figure 6.4: Nishimatsu
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Figure 6.5: Ito-Yokado

148



0 10 20 30 40 50 60 70

−
0

.2
0

.0
0

.2

Actual Returns and Estimated Returns

Index

R
e

tu
rn

s
 o

f 
a

 S
e

c
u

ri
ty

Actual Return
Estimated Return

0 10 20 30 40 50 60 70
0

.8
5

0
.9

5
1

.0
5

Estimated Betas

Index

B
e

ta

−2 −1 0 1 2

−
0

.2
0

.0
0

.2

Measurement Equation Residuals

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

−2 −1 0 1 2

−
0

.1
0

0
.0

0
0

.1
0

System Equation Residuals

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Figure 6.6: Toyota
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Figure 6.7: Takeda Pharmaceutical Co.
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Figure 6.8: Panasonic
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Figure 6.9: Sharp
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Figure 6.10: Denso
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Figure 6.11: Nissan
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Figure 6.12: Cannon
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Figure 6.13: Mitsubishi Co.
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Figure 6.14: JR East
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Figure 6.15: JR Toukai
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Figure 6.16: KDDI
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Figure 6.17: JT
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Figure 6.18: Kao
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Figure 6.19: NEC
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Figure 6.20: Kyocera
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