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Abstract

This thesis summarizes a dynamic modeling approach for financial topics. Practi-
tioners often use mathematical approaches for solving financial issues using statis-
tical models, however, these models are almost always static.

The aim of this thesis is to consider model requirements for practical dynamic
models with academic and practical applications. To this end, I studied the statisti-
cal nature of actual market data. Next, I constructed models for practical financial
issues and applied these to actual market data.

The main contribution of this thesis is that I point out conditions for the use
of dynamic models for practitioners, and study statistical methods. One necessary
condition is the time-varying volatility of an asset. The other is Poisson jumps of
states. I use the conventional GARCH model and the market microstructure model
for estimating the former. I devise a new model from a market microstructure model
the latter. I provide the statistical methods for dealing with Poisson jumps in these
models. I model typical behavior patterns of market traders and construct a delay
van der Pol type price model. This model can explain price jumps.

Another contribution of the thesis is that I point out the limitations of the solving
frame work used by conventional static models. For this purpose, estimating the
style drift of investment managers is employed as a practical problem. The time-
varying exposure of managers can be estimated by this simple dynamic model. The
results suggest that dynamic models have significant potential for practical use. I
believe that the development of a dynamic modeling approach can lead to innovative
changes in finance.
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1 Introduction

The purpose of investment is to increase asset value. However, asset price fluctua-
tions can not be avoided. Unexpected changes in asset value, specially falls, have a
significant negative impact. Hence the need to effectively manage assets.

Recent interest in investment management has spurred a great deal of research.
Financial engineering (also known as computational finance) is the scientific tool for
this. Financial engineering tries to solve financial issues using a variety of math-
ematical models. For the purpose of asset management, appropriate investment
decisions are needed, taking into account dynamic market changes. I believe dy-
namic models are needed for this purpose. However, dynamic modeling has not yet
entered the mainstream business world. There are a number of reasons why this is
the case. Financial engineering uses mathematical models for two purposes. One
purpose is pricing, the other is for decisions related to investment action. One of the
best-known models for pricing is the Black-Scholes model, which is the basic the-
ory of an option contract. An option contract is an agreement in which the buyer
(holder) has the right (but not the obligation) to exercise buying or selling of an
asset at a set price (strike price) on (European style option) or before (American
style option) a future date (the exercise date or expiration); and the seller (writer)
has the obligation to honor the terms of the contract. Since the option gives the
buyer a right and the writer an obligation, the buyer pays an option premium to the
writer. Empirical research has shown that the Black-Scholes model is inadequate
for actual price dynamics [29, 22, 56, 55].

The primary limitation of the model is that it assumes price volatility is constant.
Many researchers have suggested that the volatility of many asset prices fluctuates
[44]. The pricing theory is based on the equilibrium of supply and demand in eco-
nomics. This is based on the theory of arbitrage-free in financial engineering. Some
assumptions are needed when using this theory for pricing. The most important
is “replicability”. We can replicate financial instruments through a combination
of other instruments. However, it is extremely difficult to replicate the effect of
time-varying volatility. This is because the price of an instrument is assumed to
be dependent on its risk. The risk is the price variability in financial engineering.
These time-varying volatility models are virtually impossible to use in the practical
world. Thus it is difficult to use empirical research of price fluctuation in dynamic
models for the purpose of pricing.

In contrast, it is comparatively easy to use time-varying volatility for the purpose
of making investment decisions. This is because it does not require the “replicabil-
ity”. There are many kinds of investment actions, i.e. corporate finance problem,
standard portfolio problem, option pricing, duration and immunization problem. In
recent years, research in these fields has gained considerable attention in the finan-
cial business world. Because scientific approaches became essential in the financial
field, the field now requires a sophistication of intuition that only comes from experi-
ence. One of the best-known theories for this purpose is the MPT (modern portfolio
theory) based on the ideas of H. Markowitz [46], W. Sharpe [60] and J. Lintner [41].
This theory is used to solve optimum asset allocation problems. However, we can
not solve issues for multi-term allocations using this theory, because it is based on a
single term price model. The theory assumes that an asset price fluctuates according
to normal distribution.

Many researchers have developed theories based on this assumption. Optimum
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asset allocation is one of the most important issues when taking investment action.
It is expensive for pension funds to keep a department of investment in their or-
ganizations. It is normally impossible for the average personal investor to make
quick decisions regarding investments. Thus, they often outsource the task of in-
vestment management to qualified professionals. The optimal mix of investment
managers rather than asset allocations has become the major issue in recent years.
“Conventional” MPT recommends that investors mix managers of heterogeneous
styles to address this problem. This strategy is called “diversification investment”
in MPT. Thus, a multi regression analysis has been used to solve this problem with
a non-dynamic model [61]. However, it is natural to think that the skill of rotat-
ing (the investment style under a market environment change) is one of the most
important factors. Therefore, I think it is worthwhile to estimate investment style
dynamically.

Financial risk management is the practice of creating economic value in a firm
by using financial instruments to manage exposure to risk. It focuses on when and
how to hedge capital using financial instruments to allocate costly exposure to risk.
Therefore, we should evaluate the risk, which is an estimation of the volatility of as-
sets. Static models are often used to evaluate these risks in business world. However,
as mentioned above, many researchers have suggested that the asset price volatil-
ity fluctuates, thus, it is important to research a dynamic system for estimating
time-varying volatility.

Price jump is an important topic for financial risk management. Asset manage-
ment risk gains attraction when asset prices change abruptly. The VaR (Value at
Risk), the most popular method of financial risk management, is a measure of how
the market value of an asset (or a portfolio of assets) is likely to decrease over a
certain time period (usually 1 day or 10 days) under usual conditions. The com-
mon VaR method assumes that an asset price fluctuates following stable log-normal
distribution without price jumps. However, many financial data analyzed exhibit
fat tails relative to the log-normal distribution. Many practitionérs know this point
empirically, therefore they often triple or double the VaR in practice [12, 18].

I believe modeling dynamic systems with jumps is extremely useful, not only
for estimating time-varying volatility, but also for analyzing investment manager’s
styles. This is because a manager’s investment actions depend on actual price fluc-
tuations including price jumps.

For this purpose, two areas of research were undertaken. First, I surveyed some
conventional studies on dynamic price models and examined the statistical nature
of market price data using return distribution analysis and time series analysis.
Next, I evaluated three financial issues by modeling a dynamic system based on the
results of the research. The first issue is the modeling for estimating time-varying
investment style drift of fund managers. The second is the modeling for estimating
time-varying volatility for a stock using conventional price models. The third is the
modeling of physical structures such as the trading mechanism.

I estimated and identified for the three areas with jumps using actual market
data. For these steps, I used the innovation approach. The Kalman filtering tech-
nique was applied for obtaining innovations. Some continuous-time models were
used as physical structure models, thus the local linearization scheme is used be-
cause actual market data is discrete in time. Following this step, modeling evolved
for the same issues considering jumps in the system noise, and identified using mar-
ket data. Ozaki and Iino provided a computationally simple method based on the
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innovation approach for the filtering of non-linear state space models with a mixed
Gaussian-Poisson type short noise [52]. Models were evaluated using the Akaike
information criteria (AIC).

This work confirmed the usefulness of the dynamic model for the financial issues
discussed above. It became apparent that modeling the jump-diffusion model (with
Poisson noise plus Gaussian noise) was necessary. It was also evident that it is
essential to consider the physical structure of such a trading mechanism.

In the Section 2 I do a survey and examine the statistical nature of actual
asset price data by taking particular note of the price jump. In Section 3 I do a
modeling and identification for three financial issues (i.e. estimating an investment
style fluctuation, conventional modeling for estimating time-varying volatility and
physical structure modeling with trading mechanism) without any jump. Finally I
apply this dynamic modeling with jump for the above three issues and identify them
in Section 4. Also I apply the physical modeling based on the trading mechanism
of a market and try to qualitatively explain price jumps.
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2 Statistical Nature of Market Data

A number of researches about statistical nature of actual asset price have been
reported. The purpose of my work is building dynamic models for financial topics
and applies the model to actual market data and check the performance. Hence
main interests in this Section are the behavior f time series price fluctuation and
existence of the price jump.

In this section, I survey and examine the statistical nature of market data by
analysis of actual asset price data. For the analysis I adopted historical data of
NYSE, NASDAQ and other countries listed stock exchanges. A stock exchange has
a significant role to play in a capital market. A stock exchange is a corporation or
mutual organization which provides facilities for stock brokers and traders, to trade
company stock. To be able to trade a stock on a stock exchange, it is listed there.
Stocks are traded intensively and the trading volume is recorded with the price.
Thus we can obtain high objectivity data from listed markets. The price of the
stock is adjusted by “stock split” and “dividends”, because such corporate action
changes the stock price in a discontinuous manner. Stock split refers to a corporate
action that increases. the number of shares in a public company. Dividends are
payments made by a company to its stockholders. When a company earns a profit,
it can be put the money to two uses: it can either be re-invested in the business
(called retained earnings), or it can be paid to the stockholders of the company as
a dividend. Capitalization events such as split or dividends fluctuate stock price
discontinuously. These fluctuations are not intrinsic value changes, thus listed price
must be adjusted in consideration of the capitalizations.

Some researchers report that the distribution of returns in financial markets
does not follow a Gaussian distribution. Mandelbrot analyzed a relatively short
time series of cotton prices and observed that returns had a Lévy stable symmetric
distribution with a Pareto fat tail [43]. He also found a power-law behavior of the
probability density function (pdf) of returns, with the heavy tail exceeding the Lévy
stable distribution. When high frequency data became easy to obtain after 1990’,
many researchers have discussed return tail-behavior. Now, (ultra) high frequency
data analysis is important in the field of econophysics [65].

FIGs.1 ~ 4 show typical time series stock data, the Standard & Poor’s 500
stock index (31-Dec-1998 to 12-Dec-2006), the Dow Jones stock index (31-Dec-1998
to 12-Dec-2006), TOYOTA Motors (23-Dec-1998 to 13-Dec-2006) and Microsoft
Corp. (31-Dec-1998 to 12-Dec-2006) are shown in FIG. 1, FIG. 2, FIG. 3 and FIG.
4 respectively. Graph (a) indicates the daily closing log-price, (b) indicates the
daily trading log-volume, (c) indicates the daily log-returns and (d) indicates the
normal-quantile log-returns plot. The most distinguishing feature of these data is
that stock log-prices do not fluctuate following Gaussian process. The time-varying
volatility and infrequent spikes are seen graphically from the time series log-returns
on graph(c). The number of return spikes of individual stocks seems to be larger
than indexes such as S&P500.

Table 1 shows summary statistics of log-returns and Table 2 shows the top and
bottom 5 of them. The most characteristic feature of Table 2 is that all samples
have large kurtosis, compared to normal distribution case 3. This fact indicates
that their distributions have greater than normal heavy-tail distributions. Given
the constant and the normal distribution to log-returns, magnitudes of their spikes
are too large. In the case of IBM, minimum log-return is 16.8%, which is over 8
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times the standard deviation, and occurrence probability is almost 1.5 x 10716, It
is virtually non-existent. However, as over 16% of disastrous devaluation occurs
one more time in this measurement period, we cannot say with confidence that it
s “first and probably the last” phenomena. Even though the spikes are not so
much upward as downward, the maximum rise up is +12.3%, which is over 6 times
standard deviation. In spite of the occurrence probability of almost 1 x 1079, we
can observe a few points of nearly 12% in this observation period. These spikes
are particularly noticeable in Microsoft on graph(c) in FIG.4 and other individual
stocks compared to indexes. Most of the spikes occur around the same time as
the company’s announcement of quarterly earnings (QE). It is natural to consider
that the stock price fluctuates in response to QE, because stock price reflects its
prospect of revenue. Aside from the case of individual stocks, S&P500 index returns
reflect macroeconomic information such as change of policy rate and mass terrors
such as Sep. 11 terrorist attacks. However, there are situations in which there are
no identifiable causes.

One cause for excess kurtosis of asset returns is a spike. However the kurtosis
shows larger than 3 even though there is no spike. If return volatility fluctuates,
the kurtosis is over 3. Let X; = {z1, 22,23} be random variables and defined
following equation,

Iy = OiWy (la)

where o > 0, w; ~ N(0,1), Cov[oy, w;] = 0. By Eq.(1a) and Jensen’s inequality, we
get expectation of z7,

E[xt] [Ut wt]
= Elo}]E[w;]
> (E[o,])*Efw;]. (1b)

And we get expectation of 22 on condition o?,

E[‘”?lgf]:E[UE [at]—atE[wt] 2

thus

Elo}] = E[E[s}|0}]] = Ela}] (1c)
Eq.(1a) and Eq.(1c), we get

Blzj] > Elo7] Elw;] = Elaf]*E[w}]. (1d)
Both side of Eq.(1d) are divided E[z?]?, then

B[zt _ ElalEfuf]
Bl 2~ E@lp 4
=E[wf]= EE[EZ?]]z



From the definition of kurtosis, E[w}]/E[w?]? indicates normal distribution, that is
3, and E[z}]/E[z?]? indicates nonconstant volatility, thus is over 3. Therefore, I
would suggest the following three hypothesizes as causes of non-Gaussian process,

A :the deviation of the price fluctuates and could become large instantaneously,

B :the price jumps infrequently by another mechanism different from the normal
deviations,

C :both A and B.

Plots of log-returns in graph (c) in FIGs.1 ~ 4 suggest that the hypothesis (A) is
true. This is because volatilities appear to fluctuate(Compare range of log-returns
the latter half to the first half).

FIG.5 shows (a):the time series chart of high frequency (5min.) price data of
S&P500 and (b):semi-log probability distribution plot of this for 7 =5 min, 7 =1
hour and 7 = 1 day. The each return probabilities are normalized by their standard
deviations and for comparative purpose, expected distribution for the Gaussian pro-
cess and the symmetric a-Lévy process are plotted. As the results, it is reasonable
to suppose that the distribution of a stock returns does not depend on observation
time scale and does not obey normal distribution but Lévy distribution.

Fig.6 shows (a):autocorrelation function of log-returns of S&P500 index, 7=5min.,
30min., 60min. and 1 day over the period 1-Apr-2006 to 31-Aug-2006. Graph (b)
illustrates autocorrelation function of squared log-returns. From the graph (a) in
FIG. 6, the autocorrelation function of log-returns is typically insignificant at lags
between a few minutes and a month. On the other hand it is clear that the autocor-
relation function of square log-returns decreases gradually, and is evidence for the
existence of volatility clustering. The important point to note is that square return
autocorrelation plots of 7 = 30 min and 7 = 60 min have periodical pulsing. This
periodical patterns may be caused by an “U-shaped pattern” over the course of the
day. McInish and Wood analyzed NYSE trading data and showed that the number
of stocks traded following this pattern over the trading day [47]. Volatility is system-
atically higher near the open and generally just prior to the close. Trading volume
has a similar pattern. The time between trades, or durations, tend to be shortest
near the open and just prior to the close [23]. I would suggest that these observations
may appear by the market microstructure notse. The market microstructure noise, a
noise process, may be due to market microstructure effects such as bid-ask bounces
and trading regulations such as trading units and trading intervals. Any observed
intraday price does not correspond to a unique market price at a precise point in
time but instead represents the underlying ideal theoretical price confounded by an
error term reflecting the impact market microstructure friction, or noise [4]. FIG.7
shows (a) the 5 min. high frequency price chart and (b) daily closing price chart of
S&P500 index over the period 31-Dec-1998 to 12-Dec-2006. Due to trading hours
of stock exchange markets(Since September 30, 1985 the NYSE trading hours have
been 9:30 - 16:00), the intraday-data has deficit time, thus this chart has diagonal
lines from closing prices to next opening prices. During intervals between open and
close, events that drive market occur, the opening prices jump from just before clos-
ing price, thus square return autocorrelation shows periodicity in the case of 7 = 30
min and 7 = 60 min.

The question we must consider here is the hypothesis (B), that is the exact
mechanism of price jumps. Chuan[13] used the intra-day stock price for IBM and
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obtained empirical implementation about the market microstructure noise with price
jumps. The observed prices are contaminated by microstructure noises naturally
arising from trading based on information and/or liquidity [57]. He suggests that
frequent small jumps may be disguised as large infrequent jumps if the sampling
frequency is low, a result that is intuitively plausible, and that at the 5-minute or
10-minute sampling frequency, the jump intensity can be overestimated by more
than 50% if one ignores microstructure noises. Hence spikes of returns are observed
in high frequency data such as 5 min.

These results mean that the trading structure is closely linked to the dynamics
of price fluctuation. Admittedly jumps occur between trading intervals, nonetheless
I would suggest that jumps occur independently of trading intervals. It is not
reasonable to suppose trading intervals as a cause of return spikes of daily data such
as FIG.1, because I couldn’t confirm that the differences of pdf between 7 = 5 min
and 7 = 1 day from FIG.5(b). It is natural to think that the big news which drives
the market occurs depending on the point process. Hence I adopt hypothesis (C),
and develop following argument on the assumption of the existence of price jumps.

A method so called chart analysis is used to predict the future stock price by
finding patterns in the time series of a stock price. Chart analysis assumes that
non-random price patterns and trends exist in markets, and that these patterns
can be identified and exploited. Chart analysts search for current price activity
resembling archetypal patterns, such as the well-known head and shoulders reversal
pattern (this is a chart pattern with three peaks, the middle peak being higher than
the other two, and is considered a bearish signal), Double Top/Bottom (when price
peaks after a rise, and the decline that follows leads to another rise in prices to form
a second peak at or about the level of the first peak, a double peak is said to have
formed) and also study the graphs of mathematical “indicators” derived from price
and/or volume action, such as the popular moving average.

From the graph (a) in FIGs.1 ~ 4, we have some archetypal patterns about the
stock price fluctuation, as follows;

1. The stock price has an upward or downward trend.

2. The stock price has a struggle period. The amplitude of the price is decreased
gradually in this period.

3. After a struggle period, the price jumps suddenly.

The pattern 2 makes a wedge-like chart. This form is called “triangle chart” in chart
analysis. The chart analysis is an empirical approach, which is not clearly explained
theoretically. However, these behaviors of the price fluctuation are unexplained
features given the perfect random walk of the price. I suggest that these features
must be considered for modeling which will be studied on Subsection 4.3.2 in Section

4.
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3 A Dynamic Approach to Modeling Systems for
Financial topics

In this section, applying potentiality of dynamic models for finance is examined by
some issues. Statistical dynamic models need some system noise, it is assumed to
be Gaussian noise on the standard case. I concluded that an asset price jumps in
section 2, however, in this section models are described assuming Gaussian system
noise. Assuming Gaussian plus Poisson noise will be considered in next section.

In this section, three financial topics are examined. First topic is the modeling
for time-varying style estimation of fund managers. Next topic is the modeling for
estimating of time-varying volatility using conventional price models. Third topic is
the physical structure modeling for it considering trading mechanism.

3.1 Style Analysis of Mutual Funds by Dynamic Models

Common investors use “diversification”; spreading their investments around into
many assets. “Diversification” reduces the risk of portfolio. If investor diversify his
asset infinitely, the portfolio becomes a “market portfolio”. A market portfolio is a
portfolio consisting of a weighted sum of every asset in the market, with weights in
the proportions that they exist in the market. A market portfolio is only a theoretical
concept, it exists in virtually. However, a market index such as the S&P500 in USA
and the TOPIX in Japan (the average of whole stock market) is used as proxy.
Active managers are evaluated using that market index as a performance criterion.
Investors use “excess return” for evaluating an active manager’s performance as it
is the return in excess of a stock market index as a benchmark.

It has been recognized that performance of the equity fund is depending on its
investment style. In finance, the most significant influence factor for equity funds is
the market beta (8ar), the performance coefficient between the fund and the market
portfolio. A stock that has a B,y = 2 follows the market in an overall decline or
growth, but does so by a factor of 2; meaning when the market has an overall decline
of 4% a stock with Sy of 2 will fall 8%. (B can also be negative, meaning the stock
moves in the opposite direction of the market: a stock with 8 of —3 would decline
9% when the market goes up 3% and conversely would climb 9% if the market fell by
3%.) Investors can control 8y, of the fund by mixing cash or high volatility stocks
into the fund. However, it is well known that using the 83, strategy is too difficult
to get high performance. This strategy requires a stock price forecasting, is ultimate
dream for all investors. Whether true or not, some equity fund managers advocate
keeping their funds neutral for Sy and use other non-8y, strategies. I think that it
is too difficult to get reliance of the clients only using (s strategy.

“Value” or “growth” styles are widely used investment styles for equity funds.
We can separate between value and growth styles using fundamental analysis. Value
style managers generally buy companies whose stocks appear under priced; these
may include stocks that are trading at, for example, high dividend yields or low
price-to-earning or price-to-book ratios. In contrast, growth style managers invest in
companies that exhibit signs of above-average growth, even if the stock price appears
expensive in terms of metrics such as price-to-earning or price-to-book ratios. There
is another criterion in investment style management. Equity investment styles are
often grouped by the size of the companies. By size we mean a company’s value on
the stock market: the number of outstanding stock multiplied by the stock price.
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This is known as market capitalization, or cap size. “Large” companies tend to
be less risky than “small” ones, however “small” ones can often offer more growth
potential.

Therefore, a stock benchmark index is divided into these four sectors. Many con-
sultants classify equity funds in four styles based on above idea, i.e. large value(LV),
large growth(LG), small value(SV) and small growth(SG).

W. F. Sharpe proposed the simple classification method for this using linear
regression model [61].

rr: = &+ Brvrive + Preries + Bsvrsve + BscTsc.t (2)
where,

g =0,

> B=1,

where « is a constant parameter and £ is the coefficient parameter represented style
exposure weight. rg; is the fund return and rpy;:--rse,: are four sectors index
return at ¢. Suffixes LV, LG, SV, and SG represent four sectors named “large
value”, “large growth”, “small value” and “small growth” respectively. A fund’s
return is represented by linear coupling four sector returns and the coefficients [
by Eq.(2). Four coeflicients are obtained by some optimization methods under the
condition 8 > 0 and Y, # = 1. This return based method is widely used because of
its easy-to-use approach.

The equity style management using Sharpe’s method and “diversification” is
adopted by institutional investors such as pension funds. This style management is
based on the assumption that fund managers fix their strategy. Some fund managers
fix their strategy, however, other managers change it depending on their predictions
[42]. This is because It is well known that a superiority period for each of the four
strategies appears alternately. In addition to that, the factor most affecting fund
performance is By (already mentioned above), it is difficult to build this factor
into Eq.(2), because of strong possibility of multicollinearity problems. Four sector
returns (the independent variables in Eq.(2), rrvy, rret Tsve and rsg;) are highly
correlated with each other. If we add rys, to Eq.(2), multicollinearity becomes more
serious.

Tre = &+ Buras + Brvrovy + Brerict + Bsvrsve + Bsarsay (3)

For example, following shows the VIF(Variance Inflation Factor) for four and five
sectors of monthly returns of the Russell/Nomura Japan sector Indexes(described
below) over the period Feb. 1989 to Apr 2007.

[VIFy, VIFye, VIFsy, VIFsg] = [6.34,4.29,7.30, 5.89]
[VIFyy, VIFe, VIFsy, VIFsc, Bul = [25.52,35.13,7.75,6.41, 109.38]

From this result, it may be suspected that we can not believe the solution by this
five factor model. The VIFs by Eq.(2) are under 10, however the results obtained
by Eq.(2) have low reliability. This is because this model assumes two constraint
conditions such as § > 0 and ) 8 = 1. The multicollinearity problem can be reduced
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using the return in excess of a benchmark as dependent and independent variables.
Moreover, using excess returns reduces independent variables of these models. This
is because a benchmark is a sum of 4 sectors (large-value, large-growth, small-value
and small-growth), and the value of each strategy is represented by the value on
the straight line around zero. However, it is inappropriate for 8 to represent the
coefficients because 3 has a special meaning in finance. f is a measure of a stock (or
portfolio)’s volatility in relation to the rest of the market. Thus - is used instead of
B except market beta in this paper. Therefore, Eq.(3) is rewritten,

Trt — TMt = YVG (TV,t =T M,t) — e (Tc,t - TM,t)
+yrs(roe — raee) — Yos(Tse — Tage) + Burae + @
=yve(rve —reg) + Yos(roe — rsg) + Bura: + o (4)

Eq.(4) means that the fund excess returns are represented sum of each products of
the factor and factor excess returns. The VIFs of Eq.(4) is listed below.

[VIFyg, VIFLs,VIFs,] = [1.07,1.84,1.87]

Most equity fund managers make their investment decisions based on the finan-
cial analysis of the firm. Therefore, they advocate that source of the excess return
is based on the skill of individual stock selection [15]. It can be interpreted in the
business world that « in Eq.(2) represents contribution of this individual stock se-
lection skill. In fact, many equity funds show large contribution by « in this model.
However, it may be suspected that this is divided into contributing factors of indi-
vidual stock selection strategy and (), strategy. This is because the most simple
strategy to get excess return is controlling the By, albeit its difficulty. It is a worth-
while topic to estimate and divide them. Regarding the individual stock selection
strategy, I think that this strategy depends on following three factors,

A Skill of the fund manager.

B The market environment; exactly correlative relationship between return of
stocks.

C Fund size.

I think that it is difficult to build A and B into the model, then use C for this purpose.
If the fund size becomes large, it is decreasingly able to concentrate investment
individual stocks. This is because the number of a stock is not infinity. Therefore,
it can be assumed that the exposure is in inverse proportion to the log-volume ratio
of the fund for the whole market. The contribution of that strategy is represented,

); (5)

Urs
1 9
vr.+log( i

y

where, 77, is a time-varying parameter representing individual stock selection strat-
egy of the fund, and Ur, and Uy, are the volume of the fund and whole market
respectively. Since the value obtained by this is time-varying, it is necessary to
consider changing the static model into a dynamic one, because this value depends
on t.
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Up to now I have given the following five models. Two models are static and
three models are dynamic. Each models show that the fund excess returns are
represented as the sum of each product of the factor and factor excess returns.
These two static models are often used for return contribution analysis. Regarding
the three dynamic models, let’s assume exposures # and vy have a dynamic structure
driven by a random Gaussian noise in each dynamic models.

It should be noted that it is inappropriate for § to represent the coefficients for
VG and LS strategies. This is because § has a special meaning in finance, that of
a measure of a stock (or portfolio)’s volatility in relation to the rest of the market.
Thus « is used instead of 3 except market beta in this work.

model VG-LS static

Trt—TMt = C
+ Yve (TV,t - Tc,t)
+vLs(ree — ) (6)

model VG-LS dynamic

rr: — e = Yer(Tve — Tey)

+ YLsp(rre — sz) (7a)
where,
Waeir = Wei-1+ aveWvay (7b)
Yrst = Yrsg—1 + qrsWisy (7c)
(7d)

model VG-LS-M static

Trt —TMt = &
+ve(rvg—r Gt)
+ 7Ls(roe — i)
+ Buram (8)

model VG-LS-M dynamic

TEt — TMt = ’ch,t(Tv,t - TG,t)
+vrse(rre — rsg)

+ BrT g (9a)
where,
YWwer = Waei-1+ wveWvey (9b)
Yrst = YLsg—1 + qrsWise (9c)
Brrs = Brag—1 + auWare (9d)
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model VG-LS-M-I dynamic

Tre — Tt = W (Tvie — Tayt)
+YLsa(Tre — Tsy)
+ BrraTag
+ Y1, 108(Urz/Uns,z) (10a)

where,

Wi = Waei-1 +qveWye, (
Y5t = Vrsi-1+ qrsWisy (
Brre = Brrp—1 + quWaae (10d)
Y1t = V-1 + aWiy (
where ¢ of all models are a positive constant parameter and W ~ N (0, 1).
For example, from model (10), we obtain the following discrete time state space

representation, let consider X; is the vector of conditional mean of the state and
Z, is the observation data vector at ¢, we obtain

-Xt: FXt_1+GWt (11&)
Zt - HtXt (11b)

where F' = 4 X 4 singular matrix,

(12)
X:= [wes Vst By ')’I,t]T,
(13)
qve 0 0
_ 0 drs 0 0
G= 0 0 gu 0O’
0 0 0 gqr
(14)
H,= [TV,t —TGt TLt—Tst TMt Vit log(%‘% ] )
and
Zy=Tps— "M (15)

with V', as prediction error variance and v, as prediction error at ¢, we obtain log-
likelihood function of the state space model,

N
—210gp(217 e ZNIQ) = Zlogp(ytlz‘t—l) tty R, Q)
t=1

N
= (log|w| + v}/V;) + Nlog 2. (16)

t=1
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{2 is a parameter vector of the model, V', and 1, are obtained by a recursive filtering
technique. v; is called “innovations”, otherwise known as prediction error, named by
Wiener, who noticed that we can improve the model using innovations. Prediction
error has improvement information because it is the difference between observation
and estimation. Historically this theory was developed by Wold, Kolmogorov and
Wiener [74, 39, 73]. Wiener proposed the solution method of the prediction problem
using the spectral function of the time series, and to estimate the spectrum from
the past observations so that it leads to the best predictor of future observations.
Akaike [1] changed the trend of Wiener’s frequency domain approach to the time
domain approach for predictions in statistical time series analysis. He noticed that
the spectrum estimation problem is solved by finding the best AR predictor, using a
statistical criterion FPE (final prediction error). This idea, which later culminated
in Akaike’s Information Criterion (AIC) as a more general statistical model selec-
tion criterion, including some state space representation models, using Boltzmann’s
probabilistic interpretation of entropy.

Wiener proposed the idea of “whitening” in his innovation approach, and in-
troduced the Wiener-Hopf equation, which supplies the solution method called the
Wiener filter. Wiener filter minimizes the mean-square estimation error to whiten-
ing; however, it has the disadvantage that it requires infinity observation data. R.
Kalman suggested a solution about it, called Kalman filter [38]. (see Appendix A)
The state of the system is represented as a vector of real numbers. At each discrete
time increment, a linear operator is applied to the state to generate the new state,
with some noise mixed in, and optionally some information from the controls on
the system if they are known. Then, another linear operator mixed with more noise
generates the visible outputs from the hidden state. The Kalman filter may be re-
garded as analogous to the hidden Markov model, with the key difference that the
hidden state variables are continuous (as opposed to being discrete in the hidden
Markov model). Additionally, the hidden Markov model can represent an arbitrary
distribution for the next value of the state variables, in contrast to the Gaussian
noise model that is used for the Kalman filter. After the recursive filter introduc-
tion, several interesting works followed. A recursive smoother based on the Kalman
filter [8], Bayesian interpretation smoother [48]. An unified explanation of Bayesian
interpretation about the Kalman filter was given by Harrison et al. [28].

The optimum parameters of 2 and initial conditions may be obtained by mini-
mizing the likelihood function Eq.(16) as follows

N
Q, X, Py = argnrgr;o Z(log lve| + V2 /V;) + Nlog 2. (17)
k) k) t:l

Six Japanese long life (investing over ten years) and big size (total assets over
30 billion yen) mutual funds at Apr 2007 are used to identify models(7) ~ (10) by
Kalman filtering technique and models(6) and (8) by multiple regression method for
comparison. All these funds use the TOPIX index (most popular stock market index
in Japan, tracking all domestic companies of the exchange’s First Section, almost
1700 major companies in Japan) as a benchmark. However, because the Tokyo stock
exchange does not make public TOPIX sector information such as value and growth,
we need to use an alternative index. Therefore, the Russell/Nomura Japan sector
indexes are used. This indexes are another Japanese stock market index. This is
produced by Nomura Securities Co., Ltd. and the Frank Russell Company, classified
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into several styles. The component parts are approximately consistent with TOPIX,
with the monthly return correlation coefficient at 0.996 over the period Dec. 1998
to Apr 2007.

FIG.8 shows time series of cumulative each factor returns over the period Feb. 1994
to Nov. 2006, (a) VG, (b) LS, (c) TOPIX and (d) the market(TOPIX) volume. It
is obvious that market trend of each factors shift from “bull” to “bear” or “bear” to
“bull” (e.g. see the trajectory of cumulative VG factor return before and after 2000
in graph (a) in FIG.8). Thus a superior strategy swaps. FIGs.9 ~ 14 show (a) Net
Asset Value(NAV; price of the fund), (b) excess returns and (c) log-volume of six
datasets for analysis. FJO sirn AVO are condensation codes of the fund name. FJO,
NJO, VRG, HJF, FBR and AVO represent “Fidelity Japan Open” (Jan-1996 to Apr-
2007), “Nomura Japan Open” (Mar-1996 to Apr-2007), “Value Regress Open” (May-
1994 to Apr-2007), “Heisei Japan Fund”(May-1994 to Apr-2007), “Fidelity Japan
Growth Open”(Jul-1998 to Apr-2007) and “Active Value Open” (Mar-1996 to Apr-
2007) respectively. Some funds seem to indicate a spike-like excess return(e.g. see
HJF and VRG around year 2000).

Table 3 shows fitting performance, and tables 4 and 5 show estimated parameters
by the static models(6),(8) analyzed by multiple regression method. From the AICs
in table 3, three factors model(8) shows better fitting performance than two factors
model(6) except the cases of HJF(—708.8 — —707.0) and AVO(—657.7 — —655.8).
The R-square values of NJO and FBR by model(6) indicate poor fitting performance.
Adding By factor to this model improved fitting performance(NJO:0.0771 — 0.5009,
FBR:0.1540 — 0.5769) These results suggest that §)s strategy have a possibility of
improvement fitting performance, however, this is depending on manager’s strategy.
The t-values of parameter Sy, in table 5 indicate low reliability in HJF(—0.50) and
AVO(—0.26), and high reliability in NJO(-10.59) and FBR,(—10.20), so it is believed
that these are consistent with above results.

Table 6 shows fitting performance and Tables 7,8,9 show estimated parameters
by the dynamic models(7),(9),(10) analyzed by the scheme above mentioned. Com-
pare AICs between VG-LS Model static and dynamic, Model VG-LS-M static and
dynamic. The dynamic models show better fitting performance than the static
models (for example; FJO by VG-LS model:—726.8 — —1572.3, FJO by VG-LS-M
model:—740.7 — 1612.9). A comparison of AIC values from static and dynamic
models strongly suggested that factors exposure of each fund are time-varying.
Therefore, the static model such as Sharpe’s model is insufficient for analyzing man-
ager’s investment style.

The most least AICs were obtained by model(10) in all six funds. This result
suggests that the skill of individual stock selection is necessary for this style analysis.
By comparing the AIC values of VRG, model (10) indicated poor improvement
than model (9). It can be interpreted that this fund does not use the skill of
individual stock selection as main strategy. FIGs.15 ~ 20 show (a) innovations
and (b) normalized innovations. Graph (c), (d), (e) and (f) indicates Yvg -1,
Ys,tjt-1, Bumte—1 and yrq:-1 respectively. The dotted line indicates £1 standard
deviation around each states. From graph (a) and (b), there are some spike-like
innovations (e.g. see Feb-2000 in NJO and HJF), however there is no spike-like
return at corresponding time in factor returns (see FIG.8). This suggests that style
exposure does not fluctuate not only following Gaussian. It may have an adverse
effect on estimation by Kalman filtering technique. This point is elaborated in the
following sections 4.1.
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Table 4 and 5 show estimated parameters by two static models. It should be
noted that the static model estimate negative (short) 8y, for all six fund by compar-
ison of graph(e) in FIGs.15 ~ 20. From graphs (c) and (d), yv¢ and s obviously
change corresponding to the market trend. Some funds reverse their strategy(e.g.
see vy of AVO; before and after 2004). Graph (f) indicates exposure of individual
stock selection ;. It vibrates short period around zero. This suggests that predom-
" inance of a specific stock does not sustain. Connolly et al. reported characteristic
patterns in the dynamics between stocks returns and trading volume. They found
substantial momentum (reversals) in consecutive week returns when the latter week
has unexpectedly high (low) turnover [16]. y; may indicate this reversal pattern of
excess return of individual stock.

FIGs.21 ~ 26 show investment style maps by the dynamic model and the static
model, graph (a) is the original “VGLS Sharpe map” obtained by the model (2),
graph (b) is the VG-LS strategy style map by the model (10), graph (c) is the Bas-
VG strategy map and graph (d) is the LS-f), strategy map. In order to be able
to compare between Sharpe method and the dynamic model (10), each exposure by
the dynamic model is normalized by the standard deviation of their factor returns.
The graph corresponding original Sharpe map is (b). These maps exhibit unlike
investment style as compared to the Sharpe map. For example, Sharpe method
indicates that NJO fund have no “small” exposure, however the dynamic model
(10) indicates that this fund shift its L-S strategy into “small” . It is observed that
By exposure of some fund fluctuates more greatly than VG-LS This could be due
to the low reliability of the Sharpe method.

This static model is often used in practice to evaluate for manager’s performance,
however it suggests that the static model may provide an erroneous conclusion.

From above analysis, I conclude following three points;

1. The exposure of each strategy fluctuates, thus the fund manager changes his
investment style.

2. It is necessary to use dynamic modeling for managers performance evaluation.

3. The investment style does not fluctuate in Gaussian, it may have an adverse
effect on estimation by Kalman filtering technique.

3.2 Estimation of Time-varying Volatility by GARCH Model

The Black-Sholes model is the most widespread dynamic price model in business.
This classical model is assumed to be a constant volatility independent of the asset
price, and the stochastic term is driven by an additional Brownian motion. All of cu-
mulants of the Brownian distribution beyond the second are zero, thus Black-Scholes
option model was constructed with this property as crucial advantage. However, a
constant volatility assumption obviously conflicts with actual market nature men-
tioned Section 2.

Stochastic volatility (SV) models have some random process volatility. In section
2, I showed the kurtosis of an asset returns is over 3, it was possible to be interpreted
that this was due to the time-varying volatility. A natural generalization to Black-
Scholes model is changing volatility some stochastic processes. For a SV model,
replace the constant volatility o; in Black-Scholes model for some stochastic process,
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most common model is the following one as proposed by Merton et al. [49].
dS, = (a + BSy)dt +v/ordwy, (18)

where w ~ N(0,0), 0; is a non-negative and mean-reverting time-varying parameter
as observed in the market. Hence Stein and Stein [66] consider it,

do; = —a(oy — b)dt + cdw, (19)

In this model, the volatility is driven by Gaussian process. Volatility tends to
decrease slowly after being raised suddenly, thus this property is represented with
autoregression (AR) structure. The Black-Scholes price model does not explain
skew and heavy tail of an asset return because its volatility is assumed constant and
driven by Gaussian noise. While in contrast, this autoregressive-SV (ARSV) model
describes that property by time-varying volatility even if it is driven by Gaussian
noise. In order to identify the continuous time model using market data, some
kind of discrete approximation method is necessary. Hull and White obtained the
discretization model by Euler method. That is the most simplest approximation
method [30].

re = Pri-1 + e (20a)
€t = Otzy, (20b)

where r; is log-return of a asset at ¢, 4 is a constant parameter [—1, 1], z; is Gaussian

process ~ N(0,1),and o must above zero because volatility is non-negative, hence
in order to use model(20) we square both sides of Eq.(20b) to transform a linear
function using y; = loge? and e} = log z7 then

yi =07 +e (21)

We cannot use conventional maximum-likelihood approach in order to identify a
model because the stochastic term e} is not Gaussian but chi-square distribution.
For this reason, the estimation performance by this approach is insufficient, thus
this ARSV model is not mainstream trend.

The general autoregressive conditional heteroscedasticity (GARCH) model is a
special case of SV models, which was introduced by Engle [23]. This is known
as generalizing an autoregressive conditional heteroscedasticity (ARCH) model, is
widely discussed model in the econometrics literature. These models can represent
time-varying volatility as well as SV model. Basically, the SV model assumes two
dimensional error processes, while the GARCH model allows for only a single dimen-
sional error process. The ARSV model parameters are not always easy to estimate,
while GARCH parameters can easily be estimated using maximum likelihood. In
the limits of continuous time, the GARCH and ARSV models bear strong similari-
ties ([50], [20]), but when fitting these models to discretely-observed, say daily data,
the models look rather distinct ([25]).

For constructing a discrete time ARSV model, the Euler approximations scheme
is used. Euler approximations are found using a recursive formula that uses slope
information. Given by the derivative, approximated a value on a solution close to
an initial point. Let assume the following a differential equation.

dP

= f(P)
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Sincedp P one may write
= w
at . At y

AP _ P(ty+ At) — Plty)

At At
Pn+1"_ Pn
At
_ P
T odt

Solving this expression P,,; we end up with a discrete equation which predicts a
future value of P,, P,1, in terms of a past value: '

Pn+1=Pn+Atf(Pn)'

Now considering following continuous time ARSV model which has exponential
volatility term for non-negative condition,

dS; = (a + BSy)dt + 6, exp(ny/2)dwr 4, (23a)
d’l']t = ’)”I’]tdt + szwz,t. (23b)

The model (23) is discretized by above Euler approximations scheme, then we
obtain

St =u+ (1 + ﬁ)st.q + 91 exp(nt_l/Z)wl,t (243)
N =+ (1+ 8)n—1 + baway, (24b)

here w;; and wqy ~ N(0,1). However, it is difficult for this model to estimate di-
rectly [69]. Hence the deterministic approximation [50, 26] is adopted, thus Eq.(24b)

18

& 1 —1
=9+ (14+08)n-1+0 . (25)
V2

&; is a normalized estimation error at f.
From Eqgs.(24a) and (25), we obtain the following discrete time state space rep-
resentation,

Xi=F 1 X 1+ G W, (26a)
Z,=HX,;. ' (26Db)

Let’s consider logarithm as an asset price is S; = log(F;),

-thl:st Mt I]T,
1+8 0 a
F, = 0 14+« 92\% ,
0 0 1
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where &; is a normalized prediction error at ¢,

G: = [61exp(n:/2) 0 0]
W= [wt] )

w~ N(0,1),and
H,=[1 0 0].

Then, —~2LLF is represented the same equation as Eq. (16), thus optimum param-
eters of {2 and initial conditions may be obtained by minimizing this. 2, V7, v; and
& are obtained by recursive Kalman filtering technique same as Subsection 3.1 (see
Appendix A).

The daily time series of closing price datasets using in section 2 were analyzed
by the model (24). FIGs.27 ~ 36 show results by this analysis, (a) estimated first
sate prediction Py;_;, (b) estimated second state prediction m;—1, (c) innovations
and (d) estimated volatility. The dotted line in graph(a) indicates 1 standard
deviation around Py;_;.

Asis evident from graph (d), this model estimates volatility clustering mentioned
in section 2 (e.g. compare the volatility level between ¢ = 200 — 600 and t =
1200 — 200 in TOYOTA). From graph (c), spike-like innovations are observed, there
are corresponding to the return jumps of same data (e.g. see graph (c) in FIGs.33
around ¢ = 1500), it can be clearly seen from these that this model can not predict
occurrence of the jumps. Rapid rise in volatilities are observed corresponding to
these jumps. From trajectory observations of returns as graph (c) in FIGs.1~4,
this model estimated that volatility rose just with jumps and decreased gradually.
As a result, the volatility level is observed sustaining high level soon after jump.
However, it not seems to be not so high volatility level from the daily log-returns
(e.g. compare the graph (¢) in FIG.4 and the graph (d) in FIG.32). This results
suggest that this model has the tendency to overestimate volatility immediately
after the jumps. This point is elaborated in the following sections 4.2.

Table 10 shows fitting performance and estimated parameters by this model.Each
results in this table will be discussed in Subsection 4.2 by comparing with GARCH-
jump model.

From above analysis, I conclude following two points;

1. an asset price volatility fluctuates, and we can estimate it by the conventional
dynamic model(24).

2. an asset price jumps have adverse affects on the estimation by this model.

3.3 Estimation of Time-varying Volatility by a Dynamic
Market Model

The conventional price models (e.g. SV model and GARCH model) are unconsidered
pricing mechanism. From the researches of Section 2, the behavior of actual price
fluctuation seems to be random. The random walk hypothesis is a financial theory.
This is a variant of the efficient market hypothesis, it is one of the most important
hypothesis in the MPT. It holds that stock prices follow a random walk pattern and,
consequently, historic prices are of no value in forecasting future prices. However,
many researchers do not believe it. This hypothesis has been tested; it is still
competing with one another [45, 3].
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In the recent years, the Market Microstructure (MMS) (a branch of economics
concerned with the functional setup of a market) have gained considerable atten-
tion in market dynamics and modeling is attempted. M. O’Hara defines market
microstructure as “the study of the process and outcomes of exchanging assets un-
der a specific set of rules. While much of economics abstracts from the mechanics
of trading, microstructure theory focuses on how specific trading mechanisms affect
the price formation process” ([51]).

Microstructure focuses on a market pricing mechanism. A matter related price
formation directly is price discovery and price formation. Price formation for an
asset is based on the supply and demand conditions. Investors have different views
on the future price of an asset. They trade assets at different prices. Price discovery
happens when these prices match and a trade is executed. There are different
mechanisms through which the price for an asset is determined. Call auction is one
of the mechanisms followed by marketplaces for determining the asset price traded
in that market. In stock exchange market, continuous auction is a mechanism where
the orders are checked for possible match as and when it is received and is executed
at the price available on the counter side of the order book. The process of price
discovery also depends on the pre-trade transparency of the order book. An opaque
order book makes investors to search for price information by calling the markets
to give their quotes. Thus the investors spend more time in getting exact price
information from multiple market makers than actually executing the trade. This
will slow down the price discovery.

The price formation of the market is one of the Walrasian auction systems. A
Walrasian auction is a type of simultaneous auction where each agent calculates
its demand for the good at every possible price and submits this to an auctioneer.
The price is then set so that the total demands across all agents equals the total
amount of the good. Thus, a Walrasian auction perfectly matches the supply and
the demand. In fact, there is no “Walrasian auctioneer” in the real stock market.
However, traders of stockbrokers who offer bid or ask and short term traders (i.e.
Day traders) operate similarly to “Walrasian auctioneer”. They play an extremely
important role as supplier of “market liquidity”.

Market liquidity is a investment term that references an assets ability to quickly
be liquidated or converted through an action of buying or selling without causing a
significant movement in the price and with minimum loss of value. A liquid asset has
some or more of the following features. It can be sold 1) rapidly, 2) with minimum
loss of value, 3) anytime within market hours. The essential characteristic of a liquid
market is that there are ready and willing buyers and sellers at all times. A market
may be considered deeply liquid if there are ready and willing buyers and sellers
in large quantities. This is related to a “market depth”, where sometimes orders
cannot strongly influence prices. A price forecast of market player vary from hour to
hour depend on their time evolution mechanism and external information. Excess
demand that arise from a mismatch between supply and demand vary with it.

Liquidity is the ability to meet obligations when market player come due without
incurring unacceptable losses. Transaction cost is an important parameter with
liquidity in Market microstructure. Studies have shown that for a given liquidity
condition. Investors executing a transaction for larger volume end up incurring larger
market impact cost compared to the investor executing a transaction for smaller
volume. But market impact cost is more dependent on the liquidity condition of the
market rather than the size of the transaction. If the market is more liquid even a
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large volume transaction can be easily executed with less market impact cost as the
spreads are narrowed down in a highly liquid market.

For simplifying the market microstructure model, Bouchaud and Cont ignore the
cost and heterogeneity of market players [11]. They obtain following simple equation
for price change AS, inverse of liquidity (market depth) A and excess demand of k
trader wg.

1 N
AS, =+ E Wit (27)

where N is number of market players. According to Eq.(27), the liquidity is larger,
the price change becomes smaller. Hence the inverse of liquidity (market depth) is
considered as price volatility. According to this idea, Iino and Ozaki [31] construct
the dynamic system of price fluctuation.

dS; = pededt + BreF dwy, (28a)
déy = (a + Beb)dt + baduwn,s (28b)
dAt - (’Y)\t)dt -+ g3d’ll)3,t (28C)

The continuous time model (28) can be written as a continuous time state space
representation given by

dz(t) = f(x(t))dt + g(z(t))dw(t) (29a)
dz(t) = Ha(t) +€(t), €(t) ~ N(0,0%) (29b)

where

F®)=[6M a+Bé AT,
Be¥ 0 0
glz®)=] 0 6 0of,
0 0 6
dw(t): [dwl,t d'LUgt d’l.U3t]T,
H=[1 0 0]

To apply the Kalman filtering technique and innovation approach to estimate
model (28), some discrete approximation have to be derived. One of the most
simple discretized approximation method is the Euler approximations.

This approximation method is simple and easy to solve, however, it can not
accurately approximate nonlinearity functions. When we discrete the model (28),
this approximation method indicates large approximation error. To apply the in-
novation approach to estimate state space models, we used the “Local linearization
method” as approximation method, which was proposed by Ozaki et al. [53] first,
and developed by Shoji [64] and Jimenez [35, 36]. In this work, this method was
used for estimating by model (28)(see Appendix B).

Basic Kalman filtering approach is used within the framework of the linear model.
Hence nonlinear Kalman filtering scheme shall be applied for nonlinear model such
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as model Eq.(28). On the basis of the linear Kalman filtering approach, local lin-
earization method calculates the conditional mean of state estimator, the conditional
variance and innovations.

From continuous state space representation such as model(29), using non linear
Kalman filtering technique (see Appendix C), innovations v; and conditional vari-
ance p(tx) are obtained, then the joint conditional density of v(t;) can be written
as

P(v(ty)|2(te-1) - - - 2(t1),0,%0) = WGXP (_%VT(tk)p—l(tk)V(tk)) (30)

Here 6 is constant parameters to be estimated. Therefore, (—2) log-likelihood func-
tion of the model is given by

N
(—2) logp(2(tw), .-, 2(t1)|0, @) = D _ logp(2(te)|2(te-1),. - ., 2(t1). 8, o)
k=1

N
= Z logp(v(te)|2(te-1), - - ., 2(t1), 0, x0)
k=1
N
= > _{loglo(te)| + v (te)p™ (tx)v(tr)} + N log 2.

(31)

Based on the estimated innovation (%) and its covariance p(t;) with respect to
the given parameters 6 and initial conditions, the optimum parameters and initial
conditions may be obtained by minimizing the likelihood function Eq.(31) as follows,

N
{6, 20,Qo} = arg min > {log|a(te)| + 7 ()7 (t)0(t6)} + Nlog2m,  (32)
0, k=1

where Qo = Q(%) is also regarded as parameters to be estimated.

The model (28) was difficult to solve because of its nonlinearity and complexity
. In general, nonlinear optimization problems depend on initial parameters. Setting
inappropriate initial values have an optimizer put local-optimum solution. We must
search acceptable approximation by trial and error approach with comparing LLF
and behavior of error of the states. I used the “FMINCON” program (nonlinear
optimization function) in MATLAB to estimate parameters. It is extremely-difficult
to search the global optimum solution with this tool. In this work, I tried to solve
about 10 datasets analyzed in section (2) over a prolonged period of time. I applied
some functional techniques to the program, however, I had not obtained satisfying
results. To easy to estimate, I reduced the parameter « in Eq.(28b), it means the
trend of excess demand. Therefore, I obtained acceptable approximate solutions as
best of a bad lot, S&P500 and TOYOTA.

Table 11 shows fitting performance and estimated parameters by this model.
The AIC values obtained by model (28) present poor fitting performance by com-
parison with the GARCH model (24) in Table 10 (S& P500:-6323.4 v.s. —6200,
TOYOTA:—5294.9 v.s. —5221.7). FIGs.37 and 38 show (a) estimated first state
prediction Sys—1, (b) second state prediction @1, (c) third state prediction Agz—1,
(d) innovations and (e) estimated volatility. The error of @y;_, and A1 in FIG.37

32



are larger than fluctuations size of ¢y;—; and Ay;—;. This means that estimated ¢;;_,
and Ay;—; possess poor reliability.

From the standpoint of modeling procedure, it is reasonable to suppose that
MMS model are one of stochastic volatility models, were evolved using the concepts
of market microstructure. However, I obtained under fitting results compared to
GARCH in Subsection 3.2. These results may suggest that GARCH model (ignored
considerations of market mechanism) superior to more complex model such as this
MMS model. Whereas I think that there are another two reasons for these poor
results;

i ) model (28) is unsuitable for describing of a stock price fluctuation.
ii ) insufficient optimization.

The presumption [i] means that it is difficult for a stock price to analyze by this MMS
model. It is well known that a stock price indicates an uncertainty trend relative
to a currency rate. This is because an exchange rate such as Yen/Dollar fluctuates
reflecting “national monetary policy” strongly. In contrast, a stock market has much
more variety than currency. Thus disproportion between supply and demand does
not tend to enlarge, and it is eliminated at short times in the high liquidity market.
The fact suggests that it is harder to estimate an excess demand of a stock than
that of a currency. Other models may be constructed for estimating excess demand
of a stock. :

The presumption [ii] means the lack of optimization skill. It should be men-
tioned here that I obtained another optimization results which have more large LLF
than in table 11. Although I did not adopt these result because I decided that they
possessed lower reliability. In order to estimate parameters of this model, the set
of parameters are searched along with the objective function —2LLF' to be maxi-
mized, using searching calculator. In the case of nonlinear problems such as model
(28), many set of initial parameters must be tested because nonlinear problems’
results strongly depend on initial parameters. In my work, it was observed that
high propensity to turn up the AR parameter of excess demand £, turn down the
system noise parameter #,. The maximum LLF was obtained when the order of § is
103. This result suggested rising up over fitting. In order to eliminate the difficulty,
I represented 5 as hyperbolic tangent. This functional technique gives numerical
constraint [—1,1] on B. This over fitting was able to known by the behavior of
prediction error. I rejected the result which is larger than size of fluctuation of ¢. I
think that it was likely to be caused by the presumption [ii].

From above analysis, I conclude following two points;

1. considering physical structure of a trading design in a market, i.e. market
microstructure, makes dynamic modeling for asset price fluctuation.

2. this MMS model has technology problem regarding the estimation.
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4 A Dynamic Modeling Approach to Financial
Topics with Jumps

As mentioned in section 2, I suggested that an asset price jumps and its volatility
fluctuate. The dynamic modeling for two financial topics, style analysis of mutual
fund and estimating time-varying volatility of a stock price are considered in section
3. These approaches use a classical model with Gaussian system noise. These
conventional models can not predict the jumps occurrence, thus it is likely that the
jumps deteriorate fitting performance. Likewise, this deterioration appears in style
analysis mentioned in Subsection 3.1. In this section, the models with jump are
investigated.

4.1 Style Analysis of Mutual Funds by Dynamic Models
with Jumps

Some spike-like innovations (these are prediction errors obtained by dynamic models)
were observed in Subsection 3.1. These are believed to be due to the changeover of
investment strategy of the fund, that is corresponding with changing positive and
negative sign of style exposure. This is because dynamically changing of investment
strategy is one of the most important skill of fund managers.

The selection of investment strategies for getting excess return is depend on the
fund manager. It is obvious that the “bull’ or “bear” market trends of each factors
return, V-G L-S and Sy change (see FIG.8). Thus a superior strategy swaps, as
mentioned in Subsection 3.1. Change over the trend cycle is roughly one year ~
multiple years. Thus it is natural to think that changing frequency of main strategies
are low. This suggests that a manager shifts the exposure infrequently; however the
amount of change is large. Therefore, the exposure fluctuates following Gaussian
plus Poisson process. In order to improve the fitting performance for this style
analysis, it is necessary for the modeling to consider building into jump diffusion
process.

The model 10 is assumed to four investment strategies. Considering addition of
Poisson noise, assuming Poisson rate A is sufficient low, into each states, we obtain
following model;

TEt — Mg = Yvee(rve — ret) + ’)’LS,t("‘L,t —Tst)

Ur
+ Brgraae + Vg 108(5-—’5) (33a)
Mt
where
YWer = Waei-1 T veWves + KvGiteyg, (33b)
VLSt = VLSp-1 + qLsWrss + KLStbeps e (33c)
Brag = Bug-1 + auaWare + Kt gleyes (33d)
Vit =VIt-1+ GWrs + Krtleg (33e)

where ¢ > 0, k¢ ~ N(0,42) and E(ic:) = A. We can not identify using this
model by conventional Kalman filtering technique as mentioned in section 3. This is
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because model (33) does not have Gaussian system noise. Thus some jump detection
techniques is required.

One of another method for estimating parameters in jump-diffusion model is
based on Markov-chain Monte Carlo (MCMC) simulation [24]. This method can es-
timate under various stochastic processes, such as Gaussian plus Poisson. However,
it should be impractical approach. This is because it }"equires hungry-computation
power. On my work, other technique was applied. The basic idea of this technique
is based on Ozaki[52]. It is assuming that the system noise is mixed Gaussian and
compound Poisson processes. To get the maximum likelihood of the model with
shot noise in N observation data, 2V possible cases likelihood function must been
calculate. This is because the observations z, (s > t) depend on the past states
M, however the effect decreases exponentially for its Markov property. Hence they
assumed that we ignore the effect of M; with 2z, (s > t), proposed the detection
method(see Appendix D).

The combination number of states with Poisson jump in the model 33 is 18, as
following;

4Co + 401 +4C2 + 4C3 +4C4 = 18.

There are the 18 models to estimate. A large amount of computation power was
required to estimate by the 18 models. Thus I picked only 4 models which have
three Gaussian system noises and one Gaussian and Poisson system noise. Then I
calculated by these 4 models, and adopted the maximum LLF model as final result
from these.

Ozaki and lino reported that the sensitivity of jump detection strongly depends
on the jump probability ¥ in Appendix D [52]. If ¥ is turned into vary parameters,
there is no end in optimization calculation. Therefor I assumed jump probability ¢
is 0.01 constant parameter.

Tables 12and 13 show fitting performance and estimated parameters by the
model (33). “Strategy” in table 12 indicates the state which shows the best fit-
ting (lowest AIC) model with Poisson jumps as system noise. The “improvement”
in this table indicates comparison the AIC value with the model (10) in Subsection
3.1. These values suggest that the jump diffusion model is not always effective in
this case (FJO:+18, AVO:+0.1). However, other funds indicated improvement in
this scheme. Each parameters g, qvg, grs and qr representing constant volatil-
ity, estimated by this model, are smaller than estimated by classical Gaussian noise
maodel (10). The estimated fluctuation of each time-varying exposures were smaller
than the results obtained by Gaussian noise model. These suggested that detect-
ing changeover of each strategies improve the fitting performance excepting at that
time.

The graph(a) and (b) in FIGs.39 ~ 44 show (a) innovations and (b) normalized
innovations by this system. “D” indicates detecting points by the jump detection
scheme in graph(b). This jump detecting model is effectively for estimation. For ex-
ample, compare the graph (b) in FIG.16 to the graph (b) in FIG.40. We can observe
more Gaussian-like normalized innovations by detecting jumps. Graph (c), (d), (e)
and (f) indicates yve,ge-1, Yrs,tit-1, Bargie-1 and yrge—1 respectively. The dotted line
indicates 1 standard deviation around each states, estimated states obtained by
using the model (10) are plotted by red solid line for comparison. The model with
jump estimated about the same results comparing with no-jump detection model.
However, some results indicated relatively-large differences (see graph (d) in NJO
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around 1997 and graph (c¢) in VRG around 1997).

The graph(e) and (f) in FIGs.45 ~ 50 show cumulative returns of each strategies
by this model and model(8). Many practitioners calculate cumulative returns for
evaluating managers’ investment skill using static models. For example, an investor
measures investment skill of FJO fund from each strategies cumulative return (see
graph (f) in FIG.21). He determines that the best skill of this fund was individual
stock selection strategy and this fund did not use other strategies. However, from
comparison with the results by obtained between dynamic model (graph(e)) and
static model(graph (f)), a significant difference between two models. FJO fund
used LS strategy as well as individual stock selection strategy, and it applied good
performances. Therefore, we must not ignore the skill of this strategy. Comparing
fitting performance between the static model (8) and this dynamic model (33) (see
table 3 and 12), I conclude that conventional performance analysis for funds return
by static models provide less-accurate decisions. I recommend that practitioners
should use dynamic models instead of conventional static models for performance
analysis.

From above analysis, I conclude following two point;

1. the investment style change suddenly, the jump detection technique is effective
for estimating this dynamic model with jump.

2. practifioﬂérs should use the dynamic models for measuring investment skill of
funds.

4.2 Estimation of Time-varying Volatility by GARCH Model
with Jumps

In Section 2, I pointed out that the kurtosis of a stock returns has over 3. I sug-
gested that one of the cause of this is time-varying volatility and the distribution not
depending on Gaussian but a-Lévy process. Regarding former phenomenon, in Sub-
section 3.2, the time-varying volatility was estimated by the conventional GARCH
model. a-stable model is well known for considering latter phenomenon, which fol-
lows a-Lévy noise process. This model is assumed a constant volatility independent
of the asset price as well as Black-Scholes model.
a-stable price model is described by the following equation;

dSt = (oz =+ ,BSt)dt + O'st, (34)

where «, § and o are constant parameters, and dL; is a-stable process. This model
was proposed by Mandelbrot who determined volatility clustering of the stock price
fluctuation [43]. He adopted Lévy skew process in order to explain heavy-tail nature
of asset price fluctuations. Stable processes owe their importance in both theory and
practice to the generalization of the Central Limit Theorem to random variables
without second order moments and the concomitant self-similarity of the stable
family. An important property of Lévy process is the role that they play in the
generalized central limit theorem. The central limit theorem states that the sum
of a number of random variables with finite variances, it will tend to a normal
distribution as the number of variables grows. A generalization due to Gnedenko and
Kolmogorov [27] states that the sum of a number of random variables with power-law
tail distributions will tend to a stable Lévy distribution. The stable process has the
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important property of stability: If a number of independent identically distributed
(ii.d.) random variables have a stable distribution, then a linear combination of
these variables will have the same distribution. Since the Gaussian process, the
Cauchy process, and the Lévy process all have the above property. It follows that
they are special cases of the stable process. The characteristic function of its process
is defined as

Mz) = explivz — c|z|*{1 — iB[sign(z)]w(z, o)}, (35)

where,

tan 22 if a#l,
wza)=q9 2 (36)
- loglz| ifa=1.

A Lévy skew stable distribution is specified by scale ¢, exponent ¢, shift x and
skewness parameter 8. The skewness parameter must lie in the range [—1,1] and
when it is zero, the distribution is symmetric and is referred to as a Lévy symmetric
a-stable distribution. This “heavy tail” behavior causes the variance of Lévy distri-
butions to be infinite for all & < 2. Heavy tail behavior of this distribution depends
on q.

e For a = 2 the distribution reduces to a Gaussian distribution with variance
0? = 2¢ and finite mean.

For 1 < a < 2 the mean is finite but the variance is infinite.

For @ = 1 and B = 0 the distribution reduces to a Cauchy distribution with
infinite mean and variance.

For 0 < o < 1 the mean and variance are infinite.

Eq.(35) is represented following simple equation by assuming symmetrical distribu-
tions (8 = 0).

z) = explivz — cl2I°]. (37)

This probability distribution function is defined by the Fourier transform of its
characteristic function Eq.(37).

1 0 ;
Ha = %RE[/\ ﬂae—lzde].

—00

37



n!
1 = (=1)" o0 .
La(z) = 5 Z ( n') aZRe[/ |z["*e™**"dz]
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Here, when z sufficiently large we can ignore the terms over n = 2 and obtain
pa(z) 0cz717® (39)

Eq.(39) represents that stable distribution following a power law.

A power law is any polynomial relationship that exhibits the property of scale
invariance. This is a feature of objects that do not change if length scales are
multiplied by a common factor. We can see this feature on graph(b) in FIG.5. This
is consistent with multi-scale property that is advocated by Mandelbrot [44]. This
model can explain that an asset price fluctuates with jumps. Lévy distribution is
decomposed compound Poisson and Gaussian process by Lévy-Ito decomposition.
Consider a triplet (b, ¢, ) where b € R, ¢ € R, and v is a measure satisfying v(0) = 0’
and [p(1 A |z[*)v(dr) < oco. Then, there exists a probability space (Q, F, P) on
which four independent Lévy processes exist, L(), L&), L®) and L®, where LY is
a constant drift, L(® is a Brownian motion, L® is a compound Poisson process and
L® is a square integrable pure jump martingale. countable number of jumps on
each finite time interval of magnitude less that 1. Taking L = L+ L&) + LG + L®)
we have that there exists a probability space on which a Lévy process L = (L¢)i>0
with characteristic exponent as

2

Y = iub — 959 + ‘/(e"“z — 1 — tuzlig«r)v(dz), (40)
R :

for all u € R, is defined. Split the Lévy exponent Eq.(40) into four parts
W= 4 @ 4 @ 4 p® (41)

where

"p(?)(u) = _2_1
G)(y) = e — 1)v(dz),
9 (w) / (e @

¥4 (u) /|m|<1(eim — 1 —juz)v(dz).
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The first part corresponds to a linear drift with parameter b, the second one to a
Brownian motion with coeficient ¢ and the third part to a compound Po(iisson process
with arrival rate A := v(R (-1, 1)) and jump magnitude F(dz) := Wls((;glv_)lﬁllxlzl'

As the result, Lévy process is able to be described as sum of Gaussian process
and compound Poisson process. This property is a big advantage, because this
model can explain heavy-tail behavior of return distribution and price jumps. It is
natural to think that considering Poisson jump process into the conventional the
ARSV model discussed in Subsection 3.2.

Iino and Ozaki studied based on this idea. Thy detected jumps from price
fluctuations using maximum likelihood method[31]. They modified the model (24)
into following,

St =a+ (1 + B)Si-1 + 01 exp(ne-1/2)w1t + Ceg (42a)
e =7+ (1+ 6)m-1 + Oaway, (42b)
where ¢; ; is a Poisson process with intensity ¢, and
zeta; is the size of the jump at ¢t. From model.(42), we obtain the discrete time

state space representation described in (26). Let consider logarithm an asset price
is Sy, = log(Py) at k,

Xt=[5t T 1]T7
1+45 0 o
F, = 0 149 92\—% ,
0 0 1

where & is a normalized innovation at k,

G; = [0 exp((n: + ketey)/2) 0 0],

Wtz [wt]a
w~ N(0,1),and
H:;=[1 0 0].

where, x, ~ N(0,52) and v, is a Bernoulli number with E(i,;) = .

Then, —2LLF is represented the same equation as Eq. (16), thus optimum
parameters of {2 and initial conditions may be obtained by minimizing this. Q, V7,
Vs and &; are obtained by recursive Kalman filtering technique, see Appendix A. For
using that model, separating Poisson jumps from Lévy noise is necessary. I used the
jump detection scheme discussed in Subsection 4.1. The daily time series of closing
price datasets discussed in Subsection 4.1 were analyzed. For reducing difficulties
in estimation, I assumed jump probability  is 0.03 constant parameter.

Table 14 shows fitting performance and estimated parameters by this model.
The “improvement” in this table indicates comparison with the model(24) without
jumps in Subsection 3.1. From comparison the results by two models, in spite of
increasing number of parameters, all AIC values obtained by the model(42) with
jumps are lower than the model(42) without jumps. Improvement degree of the
AIC value tends to be larger in individual stocks than indexes (e.g. compare —21.3
of S&P500 as index to —133.4 of Microsoft as individual stock).
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FI1Gs.51 ~ 60 show results by this analysis, (a) estimated first sate Py;_i, (b)
estimated second state 7y;—1, (c) innovations and (d) conditional variances. “D”
indicates detecting points by the jump detection scheme in graph(d). Compare the
innovations (graph (c)) obtained by with jumps and without jumps model. We
observe small differences between two models. This is because both models can not
predict Poisson price jumps.

We see significant spikes in graph(d) (e.g. see three spikes between ¢ = 300 —500
of Microsoft in FIG.58), they are corresponding to the detection points of price
jumps. Normalized innovation is obtained by normalized by corresponding con-
ditional variance. FIGs.61 ~ 70 show (a) histograms of normalized innovations
obtained by the model (24) and (b) obtained by the jump detection model (42).
The tails of graph (b) is thinner and the kurtosis seems to be smaller than that of
(a). Compare the graph (a) to (b) in FIG.68). Some outliers (indicating arrows) are
observed in graph (a). On the other hand, few outliers are observed in graph (b),
and shape of the histogram become to like a normal distribution. This result shows
that jump detection scheme have an efficacy for whitening normalized innovations.
Graph (c) indicates estimated volatility by two models and (d) indicates the time se-
ries chart of daily log-returns for visual recognition. “D” indicates detecting points
by the jump detection scheme in graph(d). Note that I eliminated the volatility
spikes detecting this scheme from graph (c). This is because volatility spikes are too
large to plot eye-friendly scale.

From the time series chart of (d) for S&P500 as shown in FIG.61 and log-returns
(see graph (d) in FIG.61), the volatility seems to be relatively high in the first
half and low in the second half. The solid lines indicate the volatility estimated
by the jump detection model(42), and the dotted lines indicate it estimated by the
model(24) without jump detection. Two lines show slight differences, however, the
dotted line volatility is higher than solid line volatility at “b”. This is because the
price jump at “a” was identified as a volatility uprush by the model(24). It is seen
from the graph(d) that the most volatile period is roughly in the ¢ = 900 — 1100
range. By comparing the volatility level at that time, it seems reasonable that the
volatility at “b” is more possible than at “a”. In the case of Dow Jones as shown in
FIG.62, the same overestimation occurred (see ” and “o” on graph (c) and (d)).
From the graph(c) in FIG.63, the model(24) estimated two peaks of volatility at
“a” and “b” in the observations for Nikkei225. However, it seems to be natural that
the most volatile range was t = 600 — 1000 by graph (d). Same overestimation by
a price jump occurred in this case. The important noting point is that the return
jump size of “a”. The volatility peak corresponding “b” is not so large like as
“g” correspondmg “3”. The difference between “a” and “b” (observed between the
volatility by two models) is the pre-state of the volatility. It seems to be most low
volatility around “B” all over the period. This observation leads to my presumption
that the degree of overestimation depends on the pre-state of the volatility. This is
because this GARCH model uses its estimation error at ¢t — 1 as the system noise of
the volatility at t.

We can see the large overestimation for Seoul composite on graph (c) in FIG.64.
The model (24) estimated high volatility around ¢ = 700 (See “a”). However, we
can not so volatile returns around ¢t = 700 except for the return spike at “o”. I
would suggest that this result is consistent with above reason.

We can not obviously see differences between the dotted line and solid one for
TOYOTA from the graph(c) in FIG.65. Similarity patterns were observed in Wal-
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Mart; the reason for these may be that there are few jumps, which are infrequent
and large in size. In the case of IBM, we can observe some infrequent and large jump
from graph(d) in FIG.66, thus articulate differences appear between the trajecto-
ries by two models. The similarity of estimation pattern is observed at Pfizer and
Microsoft (see FIGs.67 and 68), and the model(24) could not distinguish minute fluc-
tuations of volatility. From the graph (c) in FIG.67, two volatility peaks estimated
by model (24) decrease “a” to “b” and “c” to “d” by jump detections at “o” and
“B” respectively. The model(42) did not detect the spike at “y”, thus it estimated
the volatility uprush indicated by “e”. The exact cause is not well understood. This
could be due to the large of jump probability (¥ was assumed 0.03).

A little differences are observed between dotted lines (model(24)) and solid lines
(model(42)) in graph(c) in FIG.69 like as the case of TOYOTA. We can not observe
outstanding jumps in these cases. In contrast, we can observe significant difference
for the volatility around ¢ = 1500 — 1600 on graph (c) in FIG.70. The model
(24) estimated highest volatility “a” corresponding with the return spike at “a”.
However, we can not see so volatile returns around ¢ = 1500 — 1600 except for the
return spikes at “a” and “B”. The model (42) detected these return spikes, and
estimated the low volatility (compare dotted line “a” to solid line “b”). We observe
the return spike around ¢ = 500 as well as at “o”. However, the model(24) did not
over estimate the volatility as well as “a”. The returns pre “o” were more volatile
than that around ¢ = 500. This observation suggests that the cause of this is same
as the case of Nikkei225.

The following can be understood from above results:

(1) This GARCH model overestimates the volatility because of a price jump with-
out its detection.

(2) The degree of overestimation depends on pre-state of the volatility, if it is low,
the GRACH model overestimate significantly without jump detection.

4.3 Physical Dynamic Models for Market
4.3.1 Heterogeneous Market Players Market Microstructure Model

The model (28) is a simplified system. Original market microstructure model has
various assumptions. The “Information asymmetry” assumption is one of them. It
means heterogeneity of market players. Investment decisions depend on information.
This is an important concept in the market microstructure theory. Information plays
a significant role in determining the behavior and strategies that market players
adopt to create or take liquidity. A better-informed trader is more likely to mitigate
the risk involved in the trading compared to less informed trader. Although the
Efficient Market Hypothesis (EMH) that is one of the important assumptions in
MPT, assumes that market is anonymous and all the players in the market are
equally informed about the trading. According to this idea, the market players are
assumed to be homogeneous.

Market players are divided into following three types in market microstructure.

1. More informed traders: They access to the information, which affects the
market value of the asset and make decision of investment. They tend to take
the liquidity from the market by executing trades at the available prices, as
they know that the spread will narrow down once the information is available
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publicly. Hence better-informed traders tend to place more market orders
before the information is actually broadcasted to the market as a whole.

2. Less informed traders: They don’t have access to the information, which af-
fects the market value of the asset, tend to adopt a different trading strategy
compared to informed traders. These traders are exposed to more risk in the
initial hours of trading, as the spread is wider in the market. These traders
tend to place more limit orders and on the same side of the book as placing a
market order or a limit order to pick up the quantity on the counter side will
result in a trade at adverse price.

3. Liquidity traders: These traders represent the trading desk of an institutional
investor who has given them a target of stocks to buy/sell during the trading
session at best price possible for the day. These traders are open to more risk
in the initial trading hours as the spread is too high and any trade executed
during the initial hours of trading may result in adverse price as a result of
which the average traded price of these traders at the end of the trading session
may not be close to the day s average trade price.

The Walrasian auctioneer is the hypothetical auctioneer that matches supply and
demand in a market of “perfect” competition [51]. The auctioneer provides for the
features of perfect competition. “Perfect” in this definition means full information
and no transaction costs. The process is relating to finding the market-clearing price
for all commodities and giving rise to general equilibrium. There is no Walrasian
auctioneer in real market, traders of stockbroker called “market maker” play a role
similar to the auctioneer. Market makers quote both a buy and a sell price in a stock,
hoping to make a profit on the turn or the bid/offer spread. For this reason, they
are not interested in long-term fundamental information of the stock but short-term
supply and demand on it. Market makers are distributors of stocks; they can't hold
stocks too long. Day traders (who buy and sell stocks within the same trading day)
will usually close their positions before the market close of the trading day. Thus
they play a role similar to stock distributors. They withdraw from the market when
it becomes illiquidity condition, in many cases it is market crush. This investment
strategy of them makes the market more volatile.

- According to this idea, Shiller et al. [62, 40] called this volatility as “excessive
volatility”. In 1981, Shiller compared actual stock price behavior over a century
to the present discounted value of dividends. Then he found actual stock price is
too volatile than the present value of them. Subsequent dividends at each point in
time are not known and its terminal price contains some risk. Therefore, the actual
price may fluctuate. However, that explanation would be insufficient, by orders of
magnitude, to explain the degree of fluctuation of the actual price. Dumas et al. [21]
advocated that volatility was decomposed to “excessive volatility” and “fundamen-
tal volatility”. Dumas noticed that one of the possible occasions of assuming the
excessive volatility is irrational traders in the market. “Irrational” does not mean a
random strategy. It means an “atheoretical” strategy, does not based on forecasting
fundamentals information.

Rational investors make their investment decision based on fundamental views of
the stock. They are called “fundamentalists” or “informed traders”. Other investors
are called “noise trader”. Noise traders do not have any specific information of the
stock.
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‘There are many criticisms about the EMH described above. “Stiglitz Paradox”
is one of them. Based on the EMH, if markets are perfectly efficient, the return to
gathering information is nil, in which case there would be little reason to trade and
markets would eventually collapse [67]. Given the EMH, fundamentalists will not
enter a market without noises, because it is impossible to profit from trading. They
need the noise traders to “hide” their trades and by trading on their private infor-
mation. Noise traders play an important role in the market as liquidity suppliers.
Financial authorities of each country (which emphasize the market stability for sus-
tainable growth) have a vested interest with them as occasion of market crush. To
estimate excessive volatility is highly significant from the perspective of this point
for them. I tried to customize the MMS model in order to estimate the excessive
volatility.

From above idea, it is natural to think that there is different strategy between
noise traders and fundamentalists. Fundamentalists take an interest in the corporate
performance of the target stock, information of this fluctuate. There is no observable
variables about them, however, it is natural to think that news related with them
happen randomly and following on Gaussian process. On the contrast, noise traders
take an interest in supply and demand. There are no observable variable represented
fluctuation of supply and demand.However, it is natural to think that trading volume
reflects fluctuation of supply and demand. Thus the information of trading volume
is able to play as proxy variable of fluctuation of supply and demand. Assumed that
noise traders are driven by information of the changing volume, I customized the
original MMS model(28) to following model,

dS, = o exp(Ars + Awe)dt + 01 exp T duwy (43a)
doy = (a + fde)dt + Oadwoy (43Db)
dApt = YFAFAL + O3dws (43¢)
d)\N,t = N)\N,tdt + 94d10g(vt), (43(1)

where the suffix F' and N denote fundamentalist and noise trader respectively,
dlog(V) is normalized instantaneous log-return of trading volume. The market-wide
liquidity consists of fundamentalist’s and noise trader’s by the model (43). Noise
trader’s liquidity has deterministic structure driven by fluctuation of normalized
trading volume. We can separate liquidity fundamentalist’s and noise trader’s using
this model. However, it was difficult to identify using this rnodel I considered to
more simplifying this model.

Many researchers suggested that the stock price volatility is positively correlated
with its trading volume [68, 4]. Clark [14] interpreted this phenomenon by follow-
ing the “mixture of distributions hypothesis”. He assumed each intraday return
is identically and independently distributed (i.i.d.) with zero mean and variance
o2, the joint distribution of daily returns and trading volume is a bivariate normal
conditional on the daily number of information arrivals,

Ttl-[t ~ N(O, 0'2It) (4434)
‘/tl-[t ~ N(a + bIt, CIt) (44b)

where, 7; is stock return on the t day, V; is trading volume, I; is information,
a, b and ¢ are constant parameters. It follows from Eq.(44a) and Eq.(44b) that
the dynamics of the volatility process of returns are depending on the time series
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behavior of information which also affects the dynamics of trading volume. Based on
this assumption, the timing of a return uprush is depending on outbreak of trading
volume. It can be expected that considering a trading volume into the model has
improved for identification same as the jump detection. However, this model can
not use for prediction because we can not know the trading volume V; at ¢t — 1.

All Market players are consisting of fundamentalists and noise traders. Thus
composition ratio of noise trader is ¢, the inverse of liquidity of all market is defined
using Eq.(43d) as

At = Apg + ¥ log(Vs) (45)
.Hence the model (43) becomes
dS; = ¢y exp(Ars + Anz)dt + 61 exp( M)dwl,t (46a)
dg; = (o + Bér)dt + Oadway (46Db)
dAps = YrApsdt + Ozdws (46¢)
At = Apg + log(Vy) (46d)

From the model (46), we obtain the state space representation described in (29).
Where,
T
z(t) =[S & Ars)
fz(t)) = [¢tAt a+ P 7)\F,t]T7

gleAFt‘;’\Nt 0 0
g(z(t)) = 0 6, 0},

0 0 6
dw (t) = [det dw2’t d’lU3,t]T,
H=[1 0 0].

The model (46) is imputed a external force into the model (28). The log like-
lihood function can be represented same as the model (28), because the external
force is independent with the states.

This model is more complex more than original MMS model (28), it is more
difficult to estimate by this model. To easy to estimate, I reduced the parameter «
in Eq.(28b). I analyzed S&P500 and TOYOTA again.

Table 15 shows fitting performance and estimated parameters by this model. The
“/mprovement” in this table indicates comparison the AIC values with the model
(28). Comparison AIC values between two models, the HPMMS model shows bet-
ter fitting performance than the MMS model (S&P500: —33.9, TOYOTA: —39.9).
These fitting performances by the HPMMS model are better than MMS one, how-
ever not better than GARCH model.

FIGs.71 and 72 show results of this model; (a):Sy:—1, (b):bsje-1, (C):ANtt—1
(d):Aw,g¢—1, (€):innovations and (f):volatility. By comparison MMS model (28), it
was difficult to observe distinct differences between two models. Distinguishing fea-
ture is microscopic fluctuation on trajectories of total liquidity Ay:—1 (see graph (d)
in FIGs. 71 and 72). The inverse of the market liquidity equals to the sum of fun-
- damentalist’s Ar; and Noise trader’s 1/ log(V;). Thus Ay seems to contribute only
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adding microscopically fluctuations into the market liquidity. Theses microscopic
fluctuation put on the estimated volatility.

This HPMMS model was constructed based on the idea that heterogeneous mar-
ket players in market microstructure theory. This model is more complicated than
MMS model, thus the fact suggests that it is more difficult to solve than MMS ones.
Inverse of liquidity of noise traders Ay is defined 1 log(V;) as a deterministic func-
tion. Fluctuation of a trading volume depends on not only the price volatility but
seasonal influence. The trading volume jumps up sharply at the expire day of the
option contract which is arranged quarterly, decreases suddenly on the off-season as
the year change period(see graph (b) in FIG.1). It was observed that microscopic
fluctuations of volatility by HPMMS on graph(f) in FIGs.71 and 72. I suggest that
the information of the volume fluctuation is effective in estimating volatility because
the volatility depends on the trading volume. However, the information may dete-
riorate the estimating performance of HPMMS. This is because the volume follows
non-Gaussian strange process (see graph (b) in FIG.1). For solving this problem, it
is recommended that the stochastic model such as the model (43) is used.

From above analysis, I conclude following two points;

1. It is natural to assume that a market consists of heterogeneous market players.
The HPMMS model is based on this assumption.

2. The HPMMS model can estimate the inverse of noise traders liquidity An,
however, it was difficult to estimate.

4.3.2 The Delay Van der Pol model; an agent model approach

Using the Ising model, the analysis of the market has been discussed in [5, 71];
besides, modeling the financial market by a certain form of Ising structure of the
interactions of agents seems to be successfully achieved in several studies such as
Bouchaud et. al. [17, 32]. It is think that most traders are influenced by rumors,
excessively or under excessively react to the information, and like the subjective
desirability more than the objective probability [19, 63]. The minority traders of a
market, who are diffident to their investment position in many cases, are going to
follow the decision of the majority. Because they tend to think that the majority of
the traders have more accurate information than themselves. A majority orienting
model [33] is introduced, which is composed of three elements: the mutation of
dealers, the majority rule and the feedback by the price, as basic elements for the
change of a stock price in a real market. This model is a ternary interaction model
of a finite particle, which makes excursions that are similar to the Ising model [7],
assuming a mutation to the other type for each particle. The van der Pol equation
is obtained as a deterministic approximation, which seems to explain the oscillation
of a stock price.

Traders make use of information from the history of a stock price in order to
gain profits by dealing stocks. I develop the majority orienting model taking into
account of the feedback rule considering the history of buying then I selling of traders
and introduce a delayed van der Pol equation. The majority orienting model more
realistic and helps to understand the dynamics for the change of the stock price.

The majority orienting model
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The van der Pol equation is obtained from the majority orienting model for
the change of a stock price [33]. In the model there are two types of particles in
a box plus (+) and minus (—), whose numbers are N, and N_ respectively with
N = N, + N_. Let each trader be considered to be a particle in the box and change
his position at random by the following step, with three substeps 1), 2) and 3), which
are successively applied to the particles in the box. Here a + particle represents a
bullish (feeling confident about the future stock price) trader, while a — particle
represents a bearish (feeling pessimistic about the future stock price) trader.

1 Mutation rule: One particle out of N particles is chosen at random. It changes
its sign to the opposite sign with probability m and does not change with
probability 1 —m, (0 < m < 1).

2 Majority rule: Three particles are taken at random. If two of the particles
taken have the sign + and one has the sign —, the one with — changes its sign
to + and the price S increases by 1, while, if two of the particles have the sign
— and one has +, the one with + changes to — and the price S decreases by
1. If the three particles have the sign +, no change of sign occurs for the three
particles and the price S increases by 3, while, if the three particles have —,
no change of sign occurs for the three particles and the price S decreases by
3.

3 Feedback rule: If S is positive, N, is decreased by 1 with probability S/N,
while, if S is negative, N, is increased by 1 with probability —S/N. The
absolute value of S can be larger than N when m is small. We only discuss
the case of |S| < N in this section. This condition is almost valid when
m > 0.75.

Let us represent NV, and S at step s as N, (s) and S(s) respectively. Assuming that
the duration of a step is 7, and the values of N, (s), N_(s) and S(s) are given, we
have the following expected values:

- [N+(s+2v - N+<s)]

Ny(s) | N-(s) Ni(s) (N4(s) — 1) N_(s)
= m{' ¥ W }+3 S ESCa)
Ni(s)N-(s) (N-(s) =1) S(s)
3 +N(N—1)(N—2) "N (47)

B [S’(s +BV— S(s)]

_ G NOWL) - DN =) Ne(s)(Na(s) = DN_(5)
- N(N-1)(N - 2) N(N -1)(N-2)
gN=(8)(N_(s) = 1)Ns-(s) _ N-(s)(N-(s) = 1)(N-(s) -~ 2) (48)
N(N-1)(N-2) N(N -1)(N -2)
When N is sufficiently large, we obtain the deterministic approximation Eq.(49a)and
Eq.(49b), putting wﬁ as z; and S(s)/N as y;, taking an appropriate time
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scale T as,

d 1 1
axt = — Qmmt + 6.’L't ('2' -+ J?t) (5 - .’L't) — VYt (49&)
3 3
=—2 m=7 T — 6z, — vy,
d

Assuming the number of the particles NV is large enough, we can neglect the random
sampling effect of particles, while in the real market the stock price y; is perturbed by
random noise. Hence we have the following model of stochastic differential equations

dz; ={-2 (m - %) T, — 62 — vy, }dt, (50a)

where w; is the standard Brownian motion.

Delayed van der Pol equation

The rule 1 in the previous section models the trader’s random change of his
investment attitude “bullish” or “bearish”. The rule 2 models traders’ majority
orienting behavior. Each trader makes effort to get good data or information in
order to predict the stock price. But the information on a stock is heterogeneously
distributed among traders in a real market. For example, it is natural to think that
a holder of a stock has more accurate information on the stock than a non-holder of
the stock. The minority traders of a market, who are diffident to their investment
position in many cases, are going to follow the decision of the majority, because
they tend to think that the majority of the traders have more accurate information
than themselves. The majority orienting behavior of traders is called “herding” and
“information cascade” phenomenon is referred to as one of the structural factors

of the collapse (crash) of the price often observed in the stock market [72]. Let us
S(s)

consider on the feed back force of the rule 3. The term —v

the rule 3, which means the stock price gets the feedback force proportional to the
excess over the standard price which is assumed to be 0 in the model given in [33],
where the excess takes positive or negative real value. The rule 3 assumes that
traders have the consensus of the standard price of a stock and have a tendency to
sell and buy to compensate the excess. Even if the standard price exists, it is almost
impossible to assume that all traders know it.

It is natural to think that the price, which each trader refers to, should be the
price, which calculates the gain-or-loss of the position instead of zero. I assume that
the book value of a stock to be the reference price, and that the power of pull back is
proportional to the difference of book value and current price. Assume each trader
refer the price of a stock of the time at s — u at time s, namely the holding period
(investment period) of each trader of a stock to be u. Consider the case of a book
value is higher than a current price, a trader with buy-position tends to change his
position to “bearish” and going to sell to take a profit. In the case of a book value
is lower than a current price, he maintains “bullish”. When a trader has the sell
position, this relation becomes to reverse. Hence the stock price receives the pull

of Eq.(47) represents
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back pressure caused by the book value of the position at time s — u of each trader.
A trader changes their holding position on the basis of the book value at s —u. The
following rule 3’ is rewritten as follows;

3’ Feedback rule: If S(s) — S(s — u) is positive, then N, is decreased by 1 with
probability | (S(s) — S(s—u))/N |, while, if S(s) — S(s — u) is negative, then
Ny is increased by 1 with probability | (S(s) — S(s — u))/N |.

Assuming that the holding period (investment period) of each trader stock to be u,

S
—v—](vfl in Eq.(47) is changed to;
S(s) — S(s—u)
1
VTS (51)
where S(s — u) is the price ¢ at time s — u, which is referred by each trader.
Hence it seems to be natural to consider a delayed differential equation as,
L S U S R
dtmt = my Tt 5 Tt 5 zs) = V(Y — Yiu),
3 v
= —2(m-— 4—)mt — 6z — V(Y — Yiu), (52)
d
a—iyt = 6.’17,: (53)

where y;_,, is the price (the reference price) at ¢ — u. From the system, unless y;—,
is constant, the argument for the van der Pol equation is not applied. The van der
Pol equation of (49a) and (49b) has the Hopf bifurcation at m = 0.75. The orbit
and the flow for the equation are illustrated in FIG.73 of the phase plane, where the
sign of y-component of the flow of the van der Pol equation is antisymmetric with

respect to the y-axis. The set defined by the equation d_tzt = 0 is the curve given

w= {z (m_g) zt——ﬁzf}. (54)

The Eq.(54) has a local maximum and a local minimum when m < 0.75 (shown
by a dotted curve in FIG.73-(a)), which do not exist in m > 0.75. The sign of
z-component of the flow is changed in the curve given by Eq.(54). When m > 0.75,
each orbit is attracted to the fixed point (0,0) drawing a spiral curve and then the
price orbit becomes flat. In the case when m < 0.75, the van der Pol equation has
a limit cycle by the Poincare-Bendixson theorem [34]. Here we observe that the
behavior of the solution of the delayed van der Pol equation considering the solution
of the original van der Pol equation. In order to compare the delayed van der Pol
equation with the equation without delay, taking the same values for all parameters
other than the delay. A numerical study is shown in FIG.74. Assuming the price
on the time interval [—u, 0] is a constant, say «, and take an initial function on the
time interval [—u, 0] to be constant for the delayed van der Pol equation.

In this DVDP model, the stock price get the feedback force proportional to the
excess over the past price to which each trader refers. In m > 0.75, this system has
a limit cycle as well as the system without delay and the orbit tend to expand out of
the limit cycle. When m < 0.75, the solution of this system makes the convergence
patterns repeatedly as shown in FIG.73 or is similar to a limit cycle as shown FIG.74

by the equation;
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depending on parameters, the orbit is not flat contrariwise with the case without
delay. It is natural to think that, the reference point should be increased gradually
with the time because of the demand cost for the risk of the investment. This cost is
called “cost of capital” [9]. Let the rate of increase of this cost be g. The reference
point price of the trader should be multiplied by e*¢ by the rate g. Hence Eq.(51)

becomes

— —_ ug
_,56) -5 (jv u) X e (55)
Hence we have;
imt = —21{m— § Ty — 62:? - V(yt — Yt-u X e‘ug)’ (56)
dt 4
d

It is shown a typical numerical solution of this equation in FIG.75, where the initial
function of on [—u, 0] is assumed to be a constant. This corresponds to the case in
which each trader made their position when the price fluctuation is small.

Delay van der Pol stock price model Systems of delay differential equations
now occupy a place of importance in some areas of science and engineering, for
example, epidemiology, population dynamics and neuron dynamics. Interest in such
systems often arises when traditional pointwise modeling assumptions are replaced
by more realistic distributed assumptions. The manner in which the properties
of systems of delay differential equations differ from those of systems of ordinary
differential equations has been and remains an active area of research.

From Eq.(52), the set of points %xt = 0 is given by

1 3
Vi = Yoou = —— {2 <m—z) mt—ﬁmf}. (58)

From Eq.(58), we see that there is a dynamical hysteresis effect [34]. The orbit
depends on its past history of the price y;—,. This hysteresis effect is summarized
as follows.

A: The case where m > 0.75, there is no negative resistance region (the solution
flow is attracted to the fixed point), and the amplitude of the price fluctuation
decreases gradually because the solution flow is attracted toward the reference
point. However, by a big fluctuation of the past price given to the system, the
current price is excited again.

B: The case where m < 0.75, the amplitude of the price increases compared with
the van der Pol equation without delay because the negative resistance region
vibrates on y according to a past price change.

When a past price fluctuation is relatively small, for the case of A, i.e. m > 0.75,
the orbit is attracted to the reference point, which is enveloped by a triangle form
like a wedge. As it can be observed from FIG.73-(a), the magnitude of flow of the
solution flow near (0, ;—,) is small. The change of the stock price at t—u makes the
sudden increase of magnitude of the solution flow at t. This argument is applied also
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to the system Eq.(56) and Eq.(57), in which the system gets a continuous external
force caused by the demand cost. When an initial function is constant and w is
long enough, it makes a limit cycle of the original van der Pol equation. Therefore,
although the stock price does not show a trend in the struggle period, the price
jumps by the sudden change caused by the change of past price, the price struggles
again and the amplitude becomes small gradually. In this condition, it is probable
that a relatively large news steps in for the shock of past price change. Thereby,
the change of a stock price sometimes shows a stairs-like trend given as in FIG.75.
Considering the process, DVDP model can explain the volatility jumps and their
successive damping.

In addition the trend depends on the sign of the price of the reference point.
The minus sign of the price at the reference point, namely the minus sign of y;_, in
Eq.(56) makes a downward trend, while the plus sign of it makes an upward trend.

When u is relatively small with m < 0.75 as in the case B, the jump of a stock
price tends to be hidden by the amplitude of a struggle. For this reason, a stock
price does not show a stair-like trend but a smooth trend (See FIG.75). In a real
market, these two cases may be combined. The parameter m shows the measure
of conviction of trader’s prediction for the market. A trader does’t mutate when
his conviction is strong, and mutate easily when it is week. Stock prices will be
struggle, in which the buying and the selling almost evenly take place, when the
traders think that the future of the corporate performance is unpredictable. When
most of traders think that present stock prices are cheap (or expensive), the stock
prices will show the trend because they do not hesitate to buy (or to sell) the stock.
It is natural to think that conviction of traders is week in the former case and is
strong in the latter case.

The solution flow of the delayed van der Pol equation on a phase plane depends
on ¢ not just on z, and y, while it is independent on time for the case of the van der
Pol equation, Eq.(49a) and Eq.(49b). Up to previous argument, as a simple case,
the holding period u of a position did not depend on a trader, but assumed that
it was fixed. This seems to be a little strong assumption. Let us assume that the
holding period of N traders are uj, ug, - -, uy respectively. The sum of each pull
back power generated from the positions of all traders makes the feedback force as

S(s) — LZ;‘IL S(s —u;)
—v N i : (59)

Assume the number of particles N is sufficiently large, and v(g) = 0 for ¢ > s and
0<w(g) for 0 < ¢ < s with ftt_ ,v(q)dq = 1, the feedback force is given by

—u{y - / v()uqda}. (60)

-Uu

The following stochastic equations will be reasonable to analyze real data of time
series of a stock price:

dn = (-2 (m-3)n-sad-vu- [ vlmdalan (o

-U

dys = 6z;dt+ 0dws. (62)

It will give a good short time prediction if we take v(q) at time g (v(g) = V'(¢)/ ftt_u V(g)dg,
V(q):trading volume), normalized by ff__u v(g)dq = 1. From Eq.(61) and Eq.(62),
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the reference price is the past price transition weighted average by trading volume.
We often observe the phenomenon in which a price struggles, near the price at the
time of a big trading volume in the past, which may be explained by this model.

I suggest that one of the advantage of DVDP model is constructed based on
three simple rules(mutation, majority and feedback rules of market players. The
feedback rule has close relation to The Prospect Theory by Kahneman and Tversky,
which is a theory about decision making of the human being in an atmosphere
of uncertainty. They says that human uses the “value function”, as a measure of
decision making instead of the linear function, whose conceptual figure of the value
function is shown in FIG.76 [37]. By using the non-linear function, the delayed van
der Pol equation shows more intricate orbit, which is an interesting subjects. FIG.77
shows an example of numerical simulation using a non-linear value function. This
value function, similar in form FIG.76 described by connecting two log functions.

The Prospect theory is one section of the “Behavioral Finance”, which is a
new finance theory conditioning on the action of the investor who is not necessarily
rational under such uncertain environment [19, 63]. It includes the above-mentioned
"information cascade” in many cases.

Next advantage is that DVDP model is a self-excited system, a price fluctuate
without sequential system noise input, an impulse such as a big news plays a role
of “trigger”. The degree of sensitivity to external shocks depend on state of the
system. Thus we may be able to determinate the market stability based on this
idea.

On the contrary, DVDP model has a material disadvantage. The delay differ-
ential equation system such as this DVDP model is not able to solve by a method
by state space representation. This is because dimension of the state space repre-
sentation is infinity for this system. The identification methods for delayed system
require further study. From above analysis, I conclude following three points;

i). Base on the agent approach for a market trading structure, by assuming only
three rules of a trader, the DVDP price model is obtained.

ii). This is one of the dynamic model containing a deterministic price jump gen-
eration mechanism.

iii). It is not able to solve by this model because of a problem in the estimation
method.
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5 Conclusion

The aim of this thesis is to consider model requirements for practical use of dynamic
models in the academic and practical world. First, I studied the statistical nature
of actual market data. Next, I constructed models for practical financial issues, and
used these models with actual market data.

I developed three dynamic models for analyzing the investment style of mutual
funds from the conventional static model; enabling the estimation of time-varying
style drift of funds. This model is easy to use in practice, and may provide innovative
change in style management in finance. I showed that Nelson-Foster’s GARCH
model has certain drawbacks, primarily that it overestimates volatility by price
jumps. We can overcome this problem using the jump detection scheme.

I constructed a dynamic model based on the market trading mechanism, and so
obtained the DVDP price model. This model provides qualitative explanations for
typical price fluctuations, such as triangle patterns, decreasing volatility and price
jumps.

From these results, I conclude that it is necessary to consider time-varying volatil-
ity and jumps of states (e.g. price and exposure) for dynamic modeling in finance. I
think that this study has the potential to contribute to the development of dynamic
models for finance.
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Appendix

A  linear Kalman filter

Prediction
X1 = F Xy i1, (63a)
Pt[t-—l = FPt—lIt—lFTa (63b)
v =2, — H;X;, (63c)
V,=H,P,; H; . (63d)

Filtering

K, = Pt[t-lH;r(HtPt[t—-l)‘la (64a)
Xy =Xy + Ki(Z; — Hi X ys), (64b)
Py = (I - KH;)Py .. (64c)

B local linearlization scheme

A continuous time nonlinear state space model is represented like as Eqgs. (29),
where,z(t) € R? is the state vector at the instant of time t, z(t) € R" is the observa-
tion vector at the instant of time ¢, f(z(¢)), g(z(t)) are the nonlinear functions, and
Cz(t) is the state dependent matrix described the variance feature of model. Using
the local linearization method, we obtain following stochastic difference equation,

m(tn+1) = :c(tn) + ¢(x(tn); A) + €(x(tn); A)v (65)

where A = t,41 — t, as sampling period,
J(x;) :Jacobian of f(z(t)),
H (z;) :Hessian of f(z(t)),

x(t) = o,
P(z(ta; A)) = Ro(J(x(tn)), A) F(2(tn)) + (AR (I (z(tn))), D)
— Ry(J(z(ta)), A)r(z(tn)),

R (J(x(tn)), D) =/0 exp(uJ (2(tn)))u* du,
R(x(t.)) = 5tr{g(ta)g” (1) H(a(t))}.

£(z(ty); A) is a Gaussian stochastic process with zero mean and following covariance
matrix

A
V(z(ta)) = /0 exp(&(tn) )9 (tn)9” (t) exp(J ((tn))u)" du. (66)
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Lemma 1[35, 36] ¥ (x(t,); A) is defined in the following matrix

{A(rc(tn); A) bi(z(tn); D) P(a(tn); A)
0 0 1

= exp(MA) (67)

where

0 0

J(@(ta)) r(x(ta)) f(x(tn))
M = 0 .
0 0 0
Lemma 2 [70] V (z(t,)) in Eq.(66) is defined in the following matrix

V(x(tn) = F7(2)Gs(A) (68)
where

_I(@(t)) 9(t)aT ()] ny _ [Fa(d) Go(a)
exp([ 0 gJT<§(tn)>]A) ‘[ 0 Fs(A)]'

C non linear Kalman filter

Prediction

£ (tklts-1) = Elz(te)|25-1]
= Z(tk-1/te-1) + ¥ (E(te-1ltr-1); A) (69a)
(k) = 2(tk) — C2(te|te-1) (69b)
S(te) = E[(z(te) — 2 (tklte-1))2(tx) — 2(talte-1))"]
= exp(J (&(tr-1/ts-1)) A) Q(te-1) exp(J (& (tr-1jt,_, ) A)T + V(& (tr-1]tk-1)),

(69c)
where @, is the conditional covariance.
Filtering
£(telte) = Elz(tr)|2x]

= &(tx|tr-1) + K (te) D(ts) (70a)

Q(t) = E[(x(te) — 2(telts))z(tx) — &(txlte))"]
= (I — K(t)C)S(tx) (70b)

p(te) = Elv(tv(h) |

= CS(t)CT + o? (70c)
K (t) = S(t)CTp(ts) (70d)
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D jump detection technique

Here the size of the compound Poisson noise could be noticeably large, the filter-
ing and prediction of the state space representation such as model(33), are specified
in term of state variable M; defined by

o _ [ MO Pr(M, = MP|Ziy1) > Pr(M; = M}|Zua),
t ]Wt(l)if Pr(M;y = M{|Zsy1) < Pr(M;y = M{|Zey1).

Here, the posterior probability of M is

i Soaoy fir(t+ 1) fit]t — Dmimy
Pr(M, = M}|Zss1) = . (72
"t ) = S G DGR D

where

m; = Pr(M; = M}),
B {1 — 9 if M, = M,
9 if M, = M},
fitlt = 1) = Pr(a|M;, Z,,),
fir(t +1[t) = Pr(zu.| M7, M., Z,),
where ¥ is a jump probability, fi(¢[t—1) and f;(¢t[t+1) are conditional density of M;}

and MF, | respectively. The optimum parameters are obtained minimizing following
likelihood function.

N 1
6, 59,00} = i ] I(M, = M™)s(t
{8, 26, Qo} argg}mr;{gog{ oglg (M, = M?)p(ts)|

+ D 1M = MP)5T (6)p7 (t)0(8x)} + Nlog2m,  (73)

i=0
where,

1 if M, = M2,

I(M, = M®) =
(M, e {0 otherwise.
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Model VG-LS static Model VG-LS-M static
Adj-R?[-2 x LLF | AIC Adj-R* | -2 x LLF | AIC
FJO | 0.3194 —732.8 —726.8 | 0.3898 —748.6 | —T740.7
NJO || 0.0771 —721.8 —715.8 | 0.5009 —805.1 -797.1
VRG || 0.2618 —859.0 | —853.0 | 0.3976 —891.8 | —883.8
HIJF || 0.4373 —714.8 —708.8 | 0.4346 —715.0 | —707.0
FBR || 0.1540 —575.3 —569.3 | 0.5769 —649.8 | —641.8
AVO || 0.3278 —663.7 —657.7 | 0.3230 —663.8 | —655.8

Table 3: Fitting performance for six Japanese mutual funds by the linear regression
model(6) and model(8) over the period Jan-1996 to Apr-2007 for FJO. Mar-1996
to Apr-2007 for NJO. May-1994 to Apr-2007 for VRG. May-1994 to Apr-2007 for
HJF. Jul-1998 to Apr-2007 for FBR. Mar-1996 to Apr-2007 for AVO

r ” we | TLs \ o J
FJO -—3.2773(—6.33) 0.022542(0.46) 0.003920(2.72)
NJO 0.002888(0.056) 0.148279(2.99) 0.000253(0.18)
VRG —0.27523(—5.75) 0.035308(0.79) 0.002974(2.36)
HIJF —0.81345(-—10.70) ~0.26574(—3.72) 0.006821(3.40)
FBR —0.24035(—4.56) ——0.10983(—1.78) 0.001648(1.03)
AVO 0.322558(5.01) —0.14732(—2.39) 0.003143(1.75)

Table 4: Estimated parameters six Japanese mutual funds by the linear regression
model(6), the values in () indicate student’s-t value: over the period Jan-1996 to
Apr-2007 for FJO. Mar-1996 to Apr-2007 for NJO. May-1994 to Apr-2007 for VRG.
May-1994 to Apr-2007 for HJF. Jul-1998 to Apr-2007 for FBR. Mar-1996 to Apr-
2007 for AVO.

| I wea | LS | B | o |
FJO || —0.3847(—7.54) | —0.0153(—0.32) | —0.1201(—4.04) | 0.0043(3.15)
NJO | —0.1135(=2.86) | 0.0718(1.93) | —0.2454(—10.59) | 0.0011(1.00)
VRG || —0.3411(—7.64) | —0.0125(—0.30) | —0.1467(—5.96) | 0.0034(3.00)
HJF —0.8232(—-10.47) ——0.2728(—-—3.74) —0.0218(—0.50) 0.0069(3.42)
FBR —0.3694(—9.39) —0.1542(—3.51) —0.2525(-—10.20) 0.0032(2.77)
AVO | 03178(473) | —0.1505(—2.39) | —0.0101(—0.26) | 0.0032(1.76)

Table 5: Estimated parameters six Japanese mutual funds by the linear regression
model(8),the values in () indicate student’s-t value: over the period Jan-1996 to
Apr-2007 for FJO. Mar-1996 to Apr-2007 for NJO. May-1994 to Apr-2007 for VRG.
May-1994 to Apr-2007 for HJF. Jul-1998 to Apr-2007 for FBR. Mar-1996 to Apr-
2007 for AVO.
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Model VG-LS dynamic | Model VG-LS-M dynamic | Model VG-LS-M-I dynamic

-2 x LLF | AIC -2 x LLF | AlIC -2 x LLF | AIC
FJO || -1576.3 —1572.3 —1618.9 -1612.9 —1850.7 —1842.7
NJO || —1278.6 —1274.6 —1757.3 -1751.3 -2029.3 —2021.3
VRG || —-1569.4 —1565.4 -2116.2 -2110.2 —-2175.9 —2167.9
HJF || —-1243.2 -1239.2 —1456.6 —1450.6 —1907.3 —1899.3
FBR || -1052.7 —1048.7 —1496.8 —1490.8 —1592.6 —1584.6
AVO || -1050.2 —1046.2 —-1342.7 —1336.7 —1671.1 -1663.1

Table 6: Fitting performance for six Japanese mutual funds by the dynamic
model(7), model(9) and model(10):over the period Jan-1996 to Apr-2007 for FJO.
Mar-1996 to Apr-2007 for NJO. May-1994 to Apr-2007 for VRG. May-1994 to Apr-
2007 for HJF. Jul-1998 to Apr-2007 for FBR. Mar-1996 to Apr-2007 for AVO.

[ ” Tva I YLS l ave l qrLs ]
FJO || —1.6893 | —0.5537 | 0.5958 | 0.6373
NJO || —1.4845 | 0.1814 | 1.2741 | 0.8201
VRG || —1.2615 | 0.2210 | 0.4731 | 1.3738
HJF || —0.1878 | 0.6679 | 0.1308 | 3.0577
FBR || —0.5861 | —2.5994 | 1.4484 | 0.5357
AVO || —3.1526 | —0.6510 | 1.2354 | 1.8433

Table 7: Estimated parameters for six Japanese mutual funds by the dynamic
model(7):over the period Jan-1996 to Apr-2007 for FJO. Mar-1996 to Apr-2007
for NJO. May-1994 to Apr-2007 for VRG. May-1994 to Apr-2007 for HJF. Jul-1998
to Apr-2007 for FBR. Mar-1996 to Apr-2007 for AVO.

[ H WG I YLs J B J va [ qrs l M |
FJO || —0.5091 | 0.4222 0.1109 | 0.0410 | 0.6103 | 0.1847
NJO || —0.3973 | —0.0347 | —0.1794 | 0.2841 | 0.4572 | 0.0248
VRG || —0.6827 | —1.1458 | 0.1098 | 0.1381 | 0.2215 | 0.1773
HIJF 0.0365 | —1.1349 | 0.4648 | 0.7102 | 1.3402 | 0.0471
FBR || —0.5437 | —0.5935 | —0.1842 | 0.0638 | 0.1727 | 0.1943
AVO || —-1.0736 | —0.5825 | —0.3678 | 0.6341 | 0.9122 | 0.0804

Table 8: Estimated parameters for six Japanese mutual funds by the dynamic
model(9):over the period Jan-1996 to Apr-2007 for FJO. Mar-1996 to Apr-2007
for NJO. May-1994 to Apr-2007 for VRG. May-1994 to Apr-2007 for HJF. Jul-1998
to Apr-2007 for FBR. Mar-1996 to Apr-2007 for AVO.
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fund || -2 x LLF AIC strategy | improvement
FJO || —1850.9 | —1840.9 LS +1.8
NJO || —2044.0 | —2034.0 VG -12.7
VRG || —2187.8 | —2177.8 IS -9.1
HJF || —1917.3 | —1907.3 IS —8.0
FBR || —1598.5 | —1588.5 VG -3.9
AVO || —1673.0 | —1663.0 IS +0.1

Table 12: Fitting performance for six Japanese mutual funds by the Gaussian noise
model(8) and mixed Gaussian-Poisson noise model(33): over the period Jan-1996
to Apr-2007 for FJO. Mar-1996 to Apr-2007 for NJO. May-1994 to Apr-2007 for
VRG. May-1994 to Apr-2007 for HJF. Jul-1998 to Apr-2007 for FBR. Mar-1996 to

Apr-2007 for AVO.
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Figure 1: The daily closing log-price (a), the daily trading log-volume (b), the daily
log-returns (c) and the normal-quantile log-returns plot (d)of the Standard & Poor’s
500 stock index over the period 31-Dec-1998 to 12-Dec-2006.
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Figure 2: The daily closing log-price (a), the daily trading log-volume (b), the daily
log-returns (c) and the normal-quantile log-returns plot (d)of the Dow Jones stock
index over the period 31-Dec-1998 to 12-Dec-2006.
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Figure 3: The daily closing log-price (a) and the daily trading log-volume (b),
the daily log-returns (c) and the normal-quantile log-returns plot (d) of TOYOTA
Motors stock over the period 23-Dec-1998 to 13-Dec-2006.
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Figure 4: The daily closing log-price (a) and the daily trading log-volume (b),the
daily log-returns (c) and the normal-quantile log-returns plot (d) of Microsoft Corp.
stock over the period 31-Dec-1998 to 12-Dec-2006.

76



900g-99(-Z1 0% 8661-09(-T¢ pottad a1}
1040 X9pUI ()G 73S Jo ®yep sotd Kouanbouy ysy jo uorouny Aysuap Ayryrqeqoxd srsieusurouayd pue (e)1reyo jord Jo soLIes BUILT, ‘¢ AINTL]

o/'S
0t 8 9 74 4 0 ¢ - 9- 8- 0T-
0T
.
q /+
1 ot
c-
] 3 o1l
2= Hh
i Ano .. ... ]
E| uetssneg 3
E| Kept —¢o— lm”-oH
i UTWQ9 —ye— 1
uTtwg _g ]
E T 1 1 L 1 1 1 1 i o1
0
(a) =
T10/10/60 20/L0/20 10/10/00
T T T
R S di-9
S e L | Y | | U S 418 9
......................................................................................... Jd69 w
"
........................................................................ o
..... 4L 8
: g
..................................................................................... dreel
.............................................. A 203
e e P 7. Ll (I A de-o
1 | 1




‘suInjai-Jof parenbs jo uorouUNy none[pI10903ne(q) "SUINaI-3o]
JO uoTIOUN} UOTJR[PII0I0INE:(R) "900Z-8NY-TE 0% 900%-1dy-T poled 9y} 1940 fep T pue ‘urtwi(g ‘"UTW(E “UTWG=L ‘XdPUT OOSINS ‘9 231

bet
09 134 V)% Sg 0¢ Y4 0¢ aT 0T S .
G0°0-
T I 1 I | I | ¥ - _
................................................................................................. 40
( ; »
......................... 4. ... lgo0 &
o
Q
0
.......... 41°0 a
: o
: =
X ) Y
NAMUH Q .................... R AR £ CERERE I B - —G8T°0 U.
uTHE9 —OH— : 3
- UTWQE g | -rvle ool R I TP S —Z°'0
TUTWG ——
T I L 1 1 L ] 1 1 1
(q)

S0°0-
0
]
S0°0 o
[¢]
Q
o]
°0 8
[
X =
: . . . . : . . . 610 B
>mﬁ.m(.&l. ..... R SRR e -. ..... - @
uTwo9 o | : : | : m | ” g
L "UTWOE —— |- - e O TEEEEEEEEE .......... .......... .......... ...... H2°0
uTHg - : : : . . ; ; 4
I I 1 1 1 1 | 1 1 1

78



10/80/90

T0/L0/90 T0/90/90

T0/50/90

*(q)eqep soud Futsop

Arep pue (e) ‘utwg=L vjep dotad Aouanbayy yS1y :900g-INYy-1¢ 8. 900Z-1dy-T porrad 9} I9A0 XIPUT OO J2YS JO SITRYD SALI0S dWIL], 1 2and1 ]

m 1 r _ Z°L
(q)
T0/80/90 T0/L0/90 T0/90/90 T0/50/90

T ! I I e
................... e B P e 2T L
.................. W T P e BT L

%)

Y B T A N 9T L
.................... e VAT L

r _ L L L

(e)

79



(a):cumulative return Feb.1994=1
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Figure 8: time series of cumulative each factor returns over the period Feb-1994 to
Nov-2006, (a) VG, (b) LS, (c) TOPIX as Feb-1994 = 1, and (d) the market(TOPIX)

volume.
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Figure 9: FJO: (a) Net Asset Value(NAV), (b) excess returns and (c) log-volume,
over the period Jan-1996 to Apr-2007.
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Figure 10: NJO: (a) Net Asset Value(NAV), (b) excess returns and (c) log-volume,
over the period Mar-1996 to Apr-2007. ‘
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Figure 11: VRG: (a) Net Asset Value(NAV), (b) excess returns and (c) log-volume,
over the period May-1994 to Apr-2007.
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Figure 12: HJF: (a) Net Asset Value(NAV),

over the period May-1994 to Apr-2007.
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Figure 13: FBR: (a) Net Asset Value(NAV), (b) excess returns and (c) log-volume,
over the period Jul-1998 to Apr-2007.
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Figure 17: Estimated results of VRG (1) by model (10); (a):innovations,
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Figure 18: Estimated results of HJF (1) by model (10); (a):innovations,
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Figure 19: Estimated results of FBR (1) by model (10); (a):innovations,
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Figure 21: Estimated results of FJO (2) by model (10); (a):Sharpe(VG-LS)
map, (b):VG-LS map, (c):8a-VG map, (d):LS-Ba; map, (e):cumulative return by
model(10).
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(a) Sharpe Map (b) VG vs LS

0.5 © 1
- ~ 0.5
- ~
: :
3 7
- ]
@ [}
o o
b 5
a T
= = -0.5
-0.5 -1
~-0.5 0 0.5 -1 -0.5 0 0.5 1
Value -- Growth Value -- Growth
(c) BM vs VG (d) LS vs BM
1 1
1:: 0.5 u 0.5
2 2
& ]
! 0 A} ! 0
g )
3 §
g -0.5 -0.5
-1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Long -- Short Large -- Small

Figure 22: Estimated results of NJO (2) by model (10); (a):Sharpe(VG-LS)
map, (b):VG-LS map, (c):8y-VG map, (d):LS-By map, (e):cumulative return by
model(10).
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Figure 23: Estimated results of VRG (2) by model (10); (a):Sharpe(VG-LS)
map, (b):VG-LS map, (c):8x-VG map, (d):LS-Byr map, (e):cumulative return by

model(10).
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Figure 24: Estimated results of HJF (2) by model (10); (a):Sharpe(VG-LS)
map, (b):VG-LS map, (c):8xm-VG map, (d):LS-frr map, (e):cumulative return by
model(10).
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(a) Sharpe Map (k) VG vs LS
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Figure 25: Estimated results of FBR (2) by model (10); (a):Sharpe(VG-LS)
map, (b):VG-LS map, (¢):81-VG map, (d):LS-Brr map, (e):cumulative return by
model(10).
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Figure 26: Estimated results of AVO (2) by model (10); (a):Sharpe(VG-LS)
map, (b):VG-LS map, (c):8,-VG map, (d):LS-8rr map, (e):cumulative return by
model(10).
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Figure 30: Estimated results of Seoul comp. stock by model (24) over the period
28-Oct-1998 to 12-Dec-2006; (a):Sy¢—1, (b):Mss-1, (c):innovations and (d):volatility.
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Figure 31: Estimated results of TOYOTA stock by model (24) over the period
23-Dec-1998 to 13-Dec-2006; (a):Syt—1, (b):ms—1, (c):innovations and (d):volatility.
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Figure 33: Estimated results of Pfizer stock by model (24) over the period 31-Dec-
1998 to 12-Dec-2006; (a):Syz-1. (b):me-1, (¢):innovations and (d):volatility.
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Figure 34: Estimated results of Wal-Mart stock by model (24) over the period 31-
Dec-1998 to 12-Dec-2006; (a):Syt—1, (b):Mjt—1, (c):innovations and (d):volatility.
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Figure 35: Estimated results of IBM stock by model (24) over the period 31-Dec-
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Figure 36: Estimated results of General Motors; (a):Sy—1, (b):n¢j¢—1, (c):innovations
and (d):volatility by model (24)
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Figure 45: Estimated results of FJO (2) by mixed Gaussian-Poisson noise model
(33); (a):Sharpe(VG-LS) map, (b):VG-LS map, (c):8)-VG map, (d):LS-8,; map.
The red dotted lines indicate the time-varying style estimated by Gaussian noise
model (10). (e):cumulative return by system(10) and (f):cumulative return by
model(4)
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Figure 46: Estimated results of NJO (2) by mixed Gaussian-Poisson noise model
(33); (a):Sharpe(VG-LS) map, (b):VG-LS map, (c):84-VG map, (d):LS-By, map.
The red dotted lines indicate the time-varying style estimated by Gaussian noise
model (10). (e):cumulative return by system(10) and (f):cumulative return by
model(4)
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Figure 47: Estimated results of VRG (2) by mixed Gaussian-Poisson noise model
(33); (a):Sharpe(VG-LS) map, (b):VG-LS map, (¢):8)-VG map, (d):LS-By; map.
The red dotted lines indicate the time-varying style estimated by Gaussian noise
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model(4)

119



(a) Sharpe Map (b) VG vs LS

Large -- Small
o

Large -- Small
o

-0.5
-0.5 0 0.5 -2 -1 0 1 2

Value -- Growth Value -- Growth

(c) LS vsﬂM (d)[}M vs VG

Long -- Short
Value -- Growth
/

-2 -1 0 1 2 -2 -1 0 1 2
Large -- Small Long -- Short

cumurative return

cumulative return

Figure 48: Estimated results of HJF (2) by mixed Gaussian-Poisson noise model
(33); (a):Sharpe(VG-LS) map, (b):VG-LS map, (c):8a-VG map, (d):LS-S5s map.
The red dotted lines indicate the time-varying style estimated by Gaussian noise
model (10). (e):cumulative return by system(10) and (f):cumulative return by
model(4)
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Figure 49: Estimated results of FBR (2) by mixed Gaussian-Poisson noise model
(33); (a):Sharpe(VG-LS) map, (b):VG-LS map, (c):8x-VG map, (d):LS-Fy; map.
The red dotted lines indicate the time-varying style estimated by Gaussian noise
model (10). (e):cumulative return by system(10) and (f):cumulative return by
model(4)
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Figure 50: Estimated results of AVO (2) by mixed Gaussian-Poisson noise model
(33); (a):Sharpe(VG-LS) map, (b):VG-LS map, (c):Ba-VG map, (d):LS-Ba map.
The red dotted lines indicate the time-varying style estimated by Gaussian noise
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Figure 51: Estimated results of S&P500 by model (42) over the period 31-Dec-1998
to 12-Dec-2006; (a):Syt—1, (b):Mee—1, (c):innovations and (d):conditional variance.
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Figure 52: Estimated results of Dow Jones stock index by model (42) over the period
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variance.
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Figure 53: Estimated results of Nikkei225 by model (42) over the period 22-Oct-1998
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Figure 54: Estimated results of Seoul comp. by model (42) over the period 28-
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variance.
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Figure 55: Estimated results of TOYOTA by model (42) over the period 23-Dec-1998
to 13-Dec-2006; (a):Syi-1, (b):mg¢-1, (¢):innovations and (d):conditional variance.
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Figure 56: Estimated results of IBM by model (42) over the period 31-Dec-1998 to
12-Dec-2006; (a):Si-1, (b):Mye-1, (¢):innovations and (d):conditional variance.
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Figure 57: Estimated results of Pfizer by model (42) over the period 31-Dec-1998
to 12-Dec-2006; (a):Sy—1, (b):my¢-1, (¢):innovations and (d):conditional variance.
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Figure 58: Estimated results of Microsoft by model (42) over the period 31-Dec-1998
to 12-Dec-2006; (a):Sgs—1, (b):mye—1, (c):innovations and (d):conditional variance.
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Figure 59: Estimated results of Wal-Mart by model (42) over the period 31-Dec-1998
to 12-Dec-2006; (a):Sy¢-1, (b):7¢js—1, (¢):innovations and (d):conditional variance.
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Figure 60: Estimated results of General Motors by model (42) over the period 31-
Dec-1998 to 12-Dec-2006; (a):S¢i—1, (b):Mg¢—1, (c):innovations and (d):conditional

variance.
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Figure 61: Estimated results of S&P500 over the period 31-Dec-1998 to 12-Dec-
2006; (a):histogram of normalized innovation by model (24), (b):by model (42), (c):
estimated volatility by model (42) and (d) log-return of the data.
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Figure 62: Estimated results of Dow Jones stock index over the period 31-Dec-1998
to 12-Dec-2006; (a):histogram of normalized innovation by model (24), (b):by model
(42), (c): estimated volatility by model (42) and (d) log-return of the data.
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Figure 63: Estimated results of Nikkei225 over the period 22-Oct-1998 to 12-Dec-
2006 ; (a):histogram of normalized innovation by model (24), (b):by model (42), (c):
estimated volatility by model (42) and (d) log-return of the data.
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Figure 64: Estimated results of Seoul comp. over the period 28-Oct-1998 to 12-Dec-
2006; (a):histogram of normalized innovation by model (24), (b):by model (42), (c):
estimated volatility by model (42) and (d) log-return of the data.
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Figure 65: Estimated results of TOYOTA over the period 23-Dec-1998 to 13-Dec-
2006 ; (a):histogram of normalized innovation by model (24), (b):by model (42), (c):
estimated volatility by model (42) and (d) log-return of the data.
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Figure 66: Estimated results of IBM over the period 31-Dec-1998 to 12-Dec-2006;
(a):histogram of normalized innovation by model (24), (b):by model (42), (c): esti-
mated volatility by model (42) and (d) log-return of the data.
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Figure 67: Estimated results of Pfizer over the period 31-Dec-1998 to 12-Dec-2006

7

(a):histogram of normalized innovation by model (24), (b):by model (42), (c): esti-

mated volatility by model (42) and (d) log-return of the data.
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Figure 68: Estimated results of Microsoft over the period 31-Dec-1998 to 12-Dec-
2006; (a):histogram of normalized innovation by model (24), (b):by model (42), (c):
estimated volatility by model (42) and (d) log-return of the data.
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Figure 69: Estimated results of Wal-Mart over the period 31-Dec-1998 to 12-Dec-
2006; (a):histogram of normalized innovation by model (24), (b):by model (42), (c):
estimated volatility by model (42) and (d) log-return of the data.
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Figure 70: Estimated results of General motors over the period 31-Dec-1998 to 12-
Dec-2006; (a):histogram of normalized innovation by model (24), (b):by model (42),
(c): estimated volatility by model (42) and (d) log-return of the data.
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Figure 71: Estimated results of S&P500 by model (28) over the period 31-Dec-
1998 to 12-Dec-2006; (a):Syi—1, (b):dge—1, (€):Ange—1, (d):Angi—1, (e):innovations
and (f):volatility.
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Figure 72: Estimated results of TOYOTA by model (28) over the period 23-Dec-
1998 to 13-Dec-2006 ; (a):Sy—1, (b):dsi—1, (¢):Ange—1, (d):ANge—1, (e):innovations
and (f):volatility.
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Figure 73: Numerical simulations of the van der Pol equation by the 4th Runge-
Kutta method ¢t = 300, 2o = —0.2, yo =0, m = 0.8, v = 0.01
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Figure 74: Numerical simulations of the delayed van der Pol equation and the van
der Pol equation by the 4th Runge-Kutta method ¢t = 300, 2o = —0.2, yo = 0,
m = 0.8, v =0.01, (i):u = 0 (no delay) (ii):u = 30 (iii):u = 50
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Figure 75: Numerical simulations of the delayed van der Pol equation considering
demand cost by the 4th Runge-Kutta method ¢ = 1000, zo = —0.1, yo = —1,
(i):m = 0.7, v = 0.02, u = 30, g = 0.002, (ii):m = 0.8, » = 0.01, u = 150, g = 0.003
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Figure 77: Numerical simulations of the delayed van der Pol equation for nonlinear
value function by the 4th Runge-Kutta method. a)Price orbit and b)Phase chart
and orbit nonlinear value function: for y; > 0 := v X log(y: X 5+ 1), for y: < 0 :=
vx ~log(—y+1) t =25 20=0.5,y =15 m=0095v=08 u=6,g=0.05
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