
Studies on Subgraph and Supergraph
Enumeration Algorithms

Masashi Kiyomi

DOCTOR OF

PHILOSOPHY

Department of Informatics
School of Multidisciplinary Sciences
The Graduate University for Advanced Studies

2006

Contents

1 Introduction 3

2 Preliminaries 8
2.1 Terms . 8
2.2 Graph Classes . 9

2.2.1 Chordal Graph . 9
2.2.2 Interval Graph . 10
2.2.3 Split Graph . 11
2.2.4 Block Graph . 12
2.2.5 Ptolemaic Graph . 13
2.2.6 Strongly Chordal Graph 13
2.2.7 Weakly Chordal Graph 14

3 Enumeration 16
3.1 Difficulties . 16
3.2 Reverse search . 19

3.2.1 Algorithm . 19
3.2.2 Time Complexity . 20

4 Algorithms 21
4.1 Parent-Child Relation by Edge Removal/Addition 21

4.1.1 Chordal/Interval Supergraph Enumeration 22
4.1.2 Chordal/Interval Subgraph Enumeration 25
4.1.3 Strongly Chordal Subgraph Enumeration 27
4.1.4 Strongly Chordal Supergraph Enumeration 28
4.1.5 Weakly Chordal Subgraph Enumeration 28
4.1.6 Split Subgraph Enumeration 29

4.2 Parent-Child Relation by Simplicial Vertex Elimination 41
4.2.1 Chordal Subgraph Enumeration 41
4.2.2 Subgraph Enumerations with Forbidden Induced Subgraphs 50

5 Conclusion 53

1

Summary
Enumeration is listing all objects that satisfy given properties. We call

enumeration of subgraphs of a given graph, such that those subgraphs have
specified properties, as subgraph enumeration. Similarly We call enumeration
of supergraphs of a given graph as subgraph enumeration. In this thesis, we will
consider about subgraph/supergraph enumeration algorithms. In areas such as
data mining or statistics, subgraph enumeration and supergraph enumeration
play important roles to find frequent patterns or to draw on some rules satisfied
by the inputs, etc.

We developed two types of algorithms of subgraph/supergraph enumeration
for chordal and related graphs; one searches graphs to be enumerated by an
edge addition or an edge removal; the other defines a neighbor of searching by
a simplicial vertex elimination, which is specific for chordal graphs. The first
type uses the fact that there are only O(n2) edges in a complete graph Kn,
and achieves polynomial time delay algorithms. We can use this method to
develop both subgraph enumeration algorithms and super graph enumeration
algorithms. The second type uses nice properties of simplicial vertices and the
fact that we can enumerate cliques in a chordal graph quickly. Using this type
of algorithm for chordal subgraph enumeration is faster than doing so using
the first type (it needs only constant time to enumerate each chordal graph).
However, this method is only for the subgraph enumeration.

The organization of this thesis is as follows. We first introduce enumeration,
focusing particularly on graph enumeration. Chapter 2 provides the preliminar-
ies, notes about terms that we use in this thesis, and explanations about graph
classes. In Chapter 3, we discuss the difficulties of our enumeration problems,
and explain the framework of the reverse search method. In Chapter 4, we
develop algorithms for our enumeration problems. These algorithms are based
on the reverse search method. They are of two types: one defines parents such
that the difference between a graph and its parent is exactly one, and the other
defines parents such that the parent of a graph is obtained by eliminating a
simplicial vertex. And, we conclude the thesis in Chapter 5.

2

Chapter 1

Introduction

Listing all the objects that satisfy a specified property, with no duplications, is
called “enumeration”. For example, the enumeration of substrings contained by
a string “abcab” is “a”, “b”, “c”, “ab”, “bc”, “ca”, “abc”, “bca”, “cab”, “abca”,
“bcab” and “abcab”. Enumeration has many applications in engineerings such
areas as data mining, optimization, and statistics, for example to find frequent
patterns or to draw on some rules satisfied by the inputs. We sometimes use
enumeration to prove mathematical theorems. Proving some mathematical the-
orems, such as the four-color theorem, requires considering whether they are
true in so many cases that the help of computers is needed. In such a case, we
use enumeration. In this thesis, we study enumeration with particular focus on
graph enumeration: enumerating graphs belonging to some graph classes, such
as chordal graphs, interval graphs, etc.

From early on, techniques to enumerate things in good ways are studied.
Gray created an encoding of numbers so that successive numbers differ in exactly
one bit [19]; this encoding is called “Gray code”. The concept that two successive
objects differ in small part has been used in enumeration. For example, Wells
developed an algorithm to list permutations in this way [43]. Bitner et al. used
Gray code to enumerate k-element subsets of an n-element set. It is important
for these researches that the successive two enumerated objects differ in small
part. With this property, we can efficiently do some computations that need
enumeration (see for example [33]), and the question of whether there is a Gray
code for a given class is itself an interesting mathematical problem. Classes
to be enumerated by this method are often very simple in structure, such as
permutations or k-element subsets. Since finding an encoding that satisfies
Gray code like properties is difficult and differs for each enumeration problem,
little research has treated the enumeration of complicated structures such as the
graph classes that we treat in this thesis.

Enumeration is also used widely for solving problems in computer science,
in which methods are often very easy, and one does not even recognize enumer-
ation is being used. In the field of combinatorial optimization, we often use the
branch-and-bound method to solve integer programming problems. The branch-

3

ing process does enumeration, enumerating all the feasible solutions that satisfy
a given condition. The divide-and-conquer method also uses enumeration. It
corresponds to the binary partition method in terms of enumeration. In col-
umn generation algorithms or in set covering approaches for some optimization
problems, solutions of subproblems are enumerated, and an optimal solution is
found by combining them. In combinatorial game theory, we use enumeration
to find the best move of a player. Indeed, we enumerate all the possible moves
and select the move that obtains the best evaluation value in end game. In these
enumerations, the searches are done among tree structures, while enumerations
using Gray codes search along path structures. Searching along tree structures
enables us to enumerate more complicated structures. However, in these area,
researchers have more actively studied how to omit enumeration where it is not
needed; they have researched how to cut the feasible domain where optimal solu-
tions never exist. With problems whose feasible domain and objective function
are defined strictly, such as integer programming, this is natural, since omitting
vain enumeration means that we can solve the problems simply and in a short
time.

Recently, due to the increase of computation power, we have come to be
able to treat huge amounts of data in practical amounts of time. Additionally,
in areas such as genome science, and data mining, enumeration has begun to
be used. In these areas, problems are often defined vaguely rather than strictly.
Researchers in these areas want to find some meaningful structure in huge data
sets [21, 34]. Enumeration algorithms for graph structures such as paths, trees,
and cliques are used in frequent pattern mining problems. For example, we can
find clusters by enumeration of cliques. Enumeration of bipartite cliques is used
in frequent item set mining [39, 2, 1, 26]. In these areas, since problems are not
strictly defined, research to obtain many possibly optimal objects or to obtain
objects that at least have good properties is important, and enumeration has
become a strong tool.

Once enumeration got to be a strong tool, demand surfaced for enumeration
to apply more complicated structures. For example, some want to enumerate
objects that satisfy some properties and are maximal; others want to enumerate
very complicated graph structures in a given graph. Researches to enumerate
these complicated structures in short time is thus important.

For that matter, even though we can enumerate objects in a wide class,
it does not mean that we can enumerate objects in every subclasses of the
class. It is characteristic of enumeration (in contrast, problems in areas such
as optimization, can be solved if there is an algorithm for problems of their
superclass’s). For example, Chapter 4 contains a chordal subgraph enumeration
algorithm that enumerates every chordal subgraph in a given graph and does so
in a constant time for each, however, there is not developed a constant time in-
terval subgraph enumeration algorithm, although interval graphs are a subclass
of chordal graphs. Moreover, although we can of course enumerate every graph
of n-vertices in constant time, for many graph classes we do not know whether
or not we can enumerate them in constant time. Hence, it is not sufficient to de-
velop an algorithm for solving an enumeration problem that enumerate graphs

4

in a large class.
Our goal in this thesis is to develop fast algorithms for graph enumeration.

In general, the number of objects to be enumerated in an enumeration problem
is very large. For example, think about enumeration of spanning trees in com-
plete graph Kn. The number of spanning trees is nn−2. Thus, even if we take
only O(1) time to find each spanning tree, it costs Ω(nn−2) time. We thus need
to reduce the time used to output each object in order to keep the total time
reasonably short. Moreover, if the number of outputs is polynomial in the input
size, enumerating each object in polynomial time in the input size automatically
bounds the total time complexity to be polynomial in the input size. In order
to use enumeration for solving wide-ranging problems, such as optimization or
data mining, enumeration algorithms must be able to enumerate each object in
polynomial time in the input size, and the faster this can be done, the better.
Enumerating each object in constant time is the best in the sense of time com-
plexity. Thus, we estimate the efficiency of enumeration algorithms by the time
complexities for each output. If the delay between every consecutive two out-
puts is always polynomial in the input size, we call the algorithm “polynomial
delay” or simply “polynomial”. Even though it is difficult to develop a poly-
nomial delay algorithm for enumeration problems, we can sometimes develop
enumeration algorithms whose total time complexities to solve the problem are
polynomial in the output size. Such enumeration algorithms are called “out-
put polynomial”. Polynomial delay enumeration algorithms are always output
polynomial. These criteria can be used to estimate how an algorithm is output-
sensitive. We also need to keep the total memory space reasonably small, as is
the case for solving other computational problems. As for the space complexity,
we use the usual space complexity criterion in enumeration problems, estimating
the space complexity by the size of inputs.

Some variations exist in graph enumeration. We consider two of these vari-
ations in this thesis: “subgraph enumeration” and “supergraph enumeration”.
In a subgraph enumeration, we enumerate all the subgraphs of certain type in
a given graph. An example is the chordal subgraph enumeration problem, i.e.,
the problem of listing all the chordal subgraphs in a given graph. Similarly,
given a natural number n and a graph G ∈ Kn, the problem of listing graphs in
Kn containing G is the supergraph enumeration problem.

Subgraph and supergraph enumeration have many applications. These types
of enumeration are special cases of graph enumeration in complete graphs. We
can thus use them for problems such as frequent pattern mining or optimiza-
tion, as stated above. One application of the subgraph/supergraph enumeration
appears in graphical modeling, in which we use graphs to model some systems.
The vertices correspond to random variables, and if two variables have a de-
pendency, we connect them by an edge. If we know that graphs of a system
belong to certain graph class such as chordal graphs, we can investigate the
system by enumerating such graphs. For example, the system corresponding
to chordal graphs is known as the decomposable model, and was researched by
chordal graph enumeration [13]. However, the number of graphs of n vertices (n
corresponds to the number of random variables) belonging to some graph class

5

is often very large and enumerating all of them is impractical. In such a case, if
we know that some variables never have dependencies, we can omit enumerat-
ing many systems, and this is done by subgraph enumeration. Similarly, if we
know that there must be some dependencies among some variables, we can use
supergraph enumeration to reduce the total enumeration time.

Naive algorithms for an enumeration problem often take much time and/or
space (time exponential in the output size and/or space exponential in the
input size). Developing an output-sensitive enumeration algorithm that uses
a small amount of memory is an important task. If we use an algorithm that
finds neighbors (under some definition) recursively, the algorithm often needs
to store the objects previously output in memory in order to avoid making
duplicate outputs. However, when we enumerate exponentially many (in the
input size) objects in output-sensitive computational time with a small memory,
we have to avoid duplicate outputs without storing previously output objects
in memory, since storing them would require the size of the to be exponentially
large. Further, simple search strategies may fail with some problems. For
example, branch-and-bound type algorithms are not efficient if the subproblems
related to the bounding operations are hard. Though it is not easy to develop
an efficient algorithm for enumeration problems, efficient algorithms have been
provided for some enumeration problems, such as enumerations of vertices of a
polytope, all cells in a hyperplane arrangement, spanning trees of a graph [3],
maximal cliques of a graph [29] and perfect elimination orderings of a chordal
graph [10].

There are some known results about subgraph enumeration. For example,
given a graph G = (V, E), we can enumerate paths and cycles in it in polynomial
time. The time complexity for one output is O(|E|) [35]. Given a graph G, we
can enumerate every tree spanning G in constant time [40]. Here, the number
of edges of a spanning tree is O(|V |). Thus, we must need O(|V |) time to
output a spanning tree of G in the naive sense. However, if the differences
of any two consecutive outputs are in constant size, and the algorithm always
takes only a constant time to obtain a graph from the previous graph, we say the
algorithm takes constant time to enumerate each graph. After the establishment
of the reverse search method for enumeration problems by Avis and Fukuda
[3], enumeration algorithms have made a notable amount of progress. Many
classes have been proved to be enumerated in polynomial time in the input size.
However, many graph classes remain that we do not know whether or not we can
enumerate even in polynomial time. Moreover, as for supergraph enumeration
problems, little research has been done on them to the best of our knowledge.

In this thesis, we introduce some schemes for graph enumeration for both
subgraph enumeration problems and supergraph enumeration problems, and
we develop our enumeration algorithms that enumerate each graph in polyno-
mial time using the scheme. The algorithms are for chordal graphs, interval
graphs, split graphs, block graphs, Ptolemaic graphs, strongly chordal graphs
and weakly chordal graphs. These graph classes (except for chordal graphs itself
and weakly chordal graphs) are subclasses of chordal graphs. To the best of our
knowledge, our results are the first results about enumeration of these graphs.

6

Of existing methods for enumeration, the most classical one is giving one-
to-one correspondence between each object and a natural number. An example
of this method is constructing Gray code [37] for objects to be enumerated.
Once we have such correspondence, it is clear that we can easily enumerate the
objects. The problem is that finding such one-to-one correspondences is not so
easy, and these correspondences are often specific to the individual problems.

The binary partition method is another method for enumeration. In enu-
merating objects in set S, it divides the problem into two smaller problems:
enumerating objects in S1 and enumerating objects in S2, such that S = S1∪S2

and S1∩S2 = ∅. As for graph enumeration, for example, S1 is set of graphs that
we want to enumerate and includes a certain edge e, and S2 is that not includ-
ing edge e. We solve these subproblems recursively until the number of objects
to be enumerated is sufficiently small (typically one). This method searches
objects on a binary tree structure, while the method of giving one-to-one cor-
respondence with natural numbers searches on a path structure. This method
corresponds to the divide and conquer method in combinatorial optimization,
and is thus popular for researchers in that field. In fact, the divide and conquer
method essentially enumerates feasible solutions by the binary partition method
and finds the optimal solution by combining the results. As for the chordal sub-
graph enumeration problem, and for some other enumeration problems in this
thesis, it seems impossible to construct algorithms that enumerate each output
graph in polynomial time, by the binary search method. We explain the details
about the difficulties in section 3.1.

The reverse search method by Avis and Fukuda [3], which we explain in
section 3.2, was a breakthrough in this field. It searches objects on a general
tree (or forest) structure. The method was originally developed for enumerating
all vertices on a given polytope, and was applied to many enumeration problems
for its simplicity and generality. It constructs a spanning tree (or a spanning
forest, more generally) among the objects to be enumerated, and searches on
the structure for every object. On every node in searching, if we know every
branch of the structure incident to the node, we do not have to record the
nodes already visited on memory. The reverse search method thus is efficient in
memory complexity. It is also efficient in time complexity, if we can develop a
good algorithm for finding all branches incident to a given node. In this thesis,
we mainly develop reverse search type algorithms to enumerate graphs with
polynomial time delay in the input size for each graph.

The organization of this thesis is as follows. We first introduce enumeration,
focusing particularly on graph enumeration. Chapter 2 provides the preliminar-
ies, notes about terms that we use in this thesis, and explanations about graph
classes. In Chapter 3, we discuss the difficulties of our enumeration problems,
and explain the framework of the reverse search method. In Chapter 4, we
develop algorithms for our enumeration problems. These algorithms are based
on the reverse search method. They are of two types: one defines parents such
that the difference between a graph and its parent is exactly one, and the other
defines parents such that the parent of a graph is obtained by eliminating a
simplicial vertex. And, we conclude the thesis in Chapter 5.

7

Chapter 2

Preliminaries

2.1 Terms

A graph (V, E) is a set of vertices V and a (multi-)set of edges E. Every edge
e ∈ E connects two vertices in V . If we treat an edge as an set of two vertices,
the edge is undirected. If we treat an edge as an pair of the tail vertex and head
vertex, the edge is directed. A graph whose edge set consists of undirected edges
is undirected, and a graph whose edge set consists of directed edges is directed.
If all edges are distinct and every edge consists of two distinct vertices, the graph
is simple. All graphs in this thesis are undirected and simple, unless otherwise
stated.

We describe the vertex set of graph G as V (G) and the edge set of G as
E(G).

Given a graph G = (V, E), the neighbor of vertex v ∈ V is the set of vertices
{v′ ∈ V | (v, v′) ∈ E}.

Graph G = (V, E) is a subgraph of G′ = (V ′, E′) if and only if V ⊆ V ′ and
E ⊆ E′, and graph G is a supergraph of G′ if and only if G′ is a subgraph of
G. Notice that we treat graph A = (VA, EA) and graph B = (VB , EB) that are
subgraphs of G to be different subgraphs of G when VA 6= VB or EA 6= EB even
if A and B are isomorphic.

Given a graph G that is a subgraph of the n-vertex complete graph Kn,
we call finding (without duplications) all subgraphs of G that have a given
specified property subgraph enumeration. The property is, for example, that
the graph is chordal, or that the graph is an interval graph. Similarly, given
graph G included in Kn, we call finding (without duplications) all subgraphs
of Kn that are supergraphs of G and have specified properties as supergraph
enumeration. Especially, when the property is that the graph is chordal (resp.
an interval graph), we call the problems chordal (interval) subgraph/supergraph
enumeration. Given an edge set E, it is easy to enumerate every graph whose
edge set is E, that may contain some isolated vertices. Therefore, we enumerate
graphs by enumeration of edge sets, (see 2.1). For simplicity, given an edge set

8

1

5

43

2

1

5

43

2

1

5

43

2

1

5

43

2

Figure 2.1: All the graphs in K5 whose edge set is {(2, 4), (2, 5), (4, 5)}. The
filled vertices are in the vertex set, and non-filled vertices are not in the vertex
set.

E, we denote by G〈E〉 the graph whose vertex set is the set of vertices incident
to edges in E and whose edge set is E.

Given a graph G = (V,E), elimination of vertex v ∈ V from G is removing
v from V and the edges incident to v from E.

We denote by G + e the graph obtained by adding edge e to the edge set of
graph G, and we denote by G− e the graph obtained by removing edge e from
the edge set of graph G.

Usually, the size of output of an enumeration problem is very large, often
exponential in the input size. The lower bound of the total computation time
that an enumeration algorithm takes is thus often exponential in the input size.
Hence, we here introduce the terms of time complexities with considering the
size of output. If an algorithm terminates in time polynomial of the input size
and output size, the algorithm is an output polynomial time algorithm. If
an algorithm can enumerate each object in polynomial time in the input size, the
algorithm is a polynomial time delay algorithm. Note that a polynomial
time delay algorithm is always an output polynomial time algorithm.

2.2 Graph Classes

In this section, we introduce the definitions and known properties of the graph
classes appearing in this thesis.

2.2.1 Chordal Graph

We begin by defining chordal graphs.

Definition 2.1 A graph is chordal if and only if it has no induced chordless
cycle of length more than three (see Figure 2.2) [17].

Chordal graphs are also called rigid circuit graphs, triangulated graphs, or per-
fect elimination graphs. Chordal graphs have many good properties; an impor-
tant one is that a chordal graph has at least one simplicial vertex, where a vertex
is simplicial if and only if its neighbors induce a clique. Moreover, if the chordal
graph has more than one vertex, there are at least two simplicial vertices in

9

1 2

3

4
5

6

1 2

3

4
5

6

Figure 2.2: The left graph is chordal, while the right graph is not chordal, since
(1, 4, 6, 5) and (2, 4, 6, 5) induce chordless cycles.

it [12]. An elimination of a simplicial vertex from a chordal graph results in
another chordal graph, and the size of the vertex set of the new chordal graph
is exactly smaller than that of the original chordal graph. Thus, we can itera-
tively eliminate simplicial vertices from a chordal graph until the graph has no
vertex. The vertex ordering along which we eliminate the simplicial vertices is
called perfect elimination ordering. It is known that a vertex ordering of graph
G = (V, E) is a perfect elimination ordering if and only if for all three vertices
i, j, k in V satisfying i < j < k, (i, j) ∈ E consists, and (i, k) ∈ E and (j, k) are
in the edge set of G. Given a general graph, we can find a perfect elimination
ordering of the graph in the linear time in the graph size, if there exists at least
one such ordering [36]. We can characterize chordal graphs by perfect elimi-
nation orderings; a graph is chordal if and only if it has a perfect elimination
ordering. Hence, given a graph, we can recognize whether or not the graph is
chordal in linear time in the input size. In Chapter 4, we develop two types of
subgraph enumeration algorithms and a supergraph enumeration algorithm for
chordal graphs.

2.2.2 Interval Graph

We next introduce interval graphs. an interval graph is a graph that represent
relations of intervals. If two intervals has an intersection, we connect the vertices
corresponding to the intervals. Interval graphs are widely used on archeology,
biology, scheduling etc. [17]

Definition 2.2 A graph G is an interval graph if and only if there is a one-to-
one correspondence between its vertices and a set of intervals on the real line,
such that two vertices are adjacent if and only if the corresponding intervals
have an intersection [17].

The set of intervals is called an interval representation of G (Figure 2.3). In
general, an interval graph has many interval representations that are not iso-
morphic (Figure 2.4). We can represent an interval graph by a PQ-tree, which
efficiently keeps information about interval representations [8]. Given a PQ-tree
representation of an interval graph, we can obtain all the interval representations
efficiently from the PQ-tree.

10

2
3 4 5 6 7

8 9 10
11

2
7

10

11

9
8 5 6

3

4

1

1

Figure 2.3: An interval graph and its interval representation.

2
3 456 7

89 10
11

2
7

10

11

9
8 5 6

3

4

1

1

Figure 2.4: Another interval representation of the interval graph in Figure 2.3.

It is also well-known that a graph G is an interval graph if and only if G is
chordal and asteroidal triple free, where asteroidal triple is a set of three distinct
vertices (v1, v2, v3) such that there exists a path connecting vi and vj that
contains no neighbor of vk (i 6= k 6= j), for every combination of 1 ≤ i, j, k ≤ 3.
Lekkerkerker and Boland showed that a chordal graph is asteroidal triple free,
and thus interval, if and only if it does not contain any of the graphs in Figure 2.5
as an induced subgraph [28]. Although we can solve optimization problems on
interval graphs with algorithms for chordal graphs since interval graphs are
chordal graphs, this is not the case for enumeration problems, since the number
of chordal graphs with n vertices is exponentially larger than the number of
interval graphs with n vertices, thus enumeration of chordal graphs makes too
many redundancies.

Given a graph, we can recognize whether or not the graph is an interval
graph in linear time of the input size. Booth and Lueker gave the first linear
time algorithm for the recognition [8] using a PQ-tree. Corneil et al. devel-
oped simpler linear time algorithm [11]. In Chapter 4, we develop a subgraph
enumeration algorithm and a supergraph enumeration algorithm for interval
graphs.

2.2.3 Split Graph

Definition 2.3 A graph is a spit graph if and only if its vertices can be parti-
tioned into an independent set and vertices which induce a clique (see Figure 2.6)
[15].

11

Figure 2.5: A chordal graph is asteroidal triple free if and only if it does not
contain any of these graphs as an induced subgraph.

Figure 2.6: An example of a split graph, whose vertices are partitioned into an
independent set of three vertices and a clique of five vertices.

For simplicity, given a split graph G, we call a vertex partition of V (G), (VI , VC),
such that VI is an independent set and vertices in VC induce a clique, as an I-
C-decomposition of G.

It is known that a chordal graph whose complement is also a chordal graph
is equivalent to a split graph [22]. We can recognize whether or not a given
graph is a split graph in O(n+m) time, where n is the number of vertices of the
given graph and m is the number of the given graph [22]. Bender et al. showed
that almost all chordal graphs are split [5].

In Chapter 4, we develop a subgraph enumeration algorithm. Such we can
use a subgraph enumeration algorithm can be used for supergraph enumeration,
since a split graph is self-complementary.

2.2.4 Block Graph

Definition 2.4 A graph is a block graph if and only if it is connected and every
maximal 2-connected component is a clique [20].

It is known that a graph is a block graph if and only if the graph is chordal and
diamond free, where diamond free means that no vertices of the graph induce
the graph shown in Figure 2.7. Given a graph, we can recognize whether or not

12

Figure 2.7: diamond.

the graph is a block graph in linear time in the input size. In Chapter 4, we
develop a subgraph enumeration algorithm.

2.2.5 Ptolemaic Graph

Definition 2.5 A connected graph is Ptolemaic if and only any four vertices
satisfy the Ptolemaic inequality; that is any four vertices u, v, w, x satisfy

d(u, v) d(w, x) ≤ d(u,w) d(v, x) + d(u, x) d(v, w),

where d(v1, v2) is the length of the shortest path from v1 to v2 [20].

It is known that a graph is Ptolemaic if and only if the graph is chordal and
gem free [9], where gem free means that no vertices of the graph induce the
graph shown in Figure 2.8. Given a graph, we can recognize whether or not the

Figure 2.8: gem.

graph is Ptolemaic in linear time in the input size ??. In Chapter 4, we develop
a subgraph enumeration algorithm.

2.2.6 Strongly Chordal Graph

Definition 2.6 A graph G is strongly chordal if and only if G is chordal and
every even cycle of length six or more contains a chord splitting the cycle into
two odd length paths (Figure 2.9) [14].

It is known that a graph G is strongly chordal if and only if it has a strongly
perfect elimination ordering. Where strongly perfect elimination ordering of G
is a perfect elimination ordering of G and for any four vertices i, j, k, l of G
satisfying i < j < k < l, if (i, k), (i, l) and (j, k) is an edge of G, (j, l) is also an
edge of G. It is known that a graph is strongly chordal if and only if the graph
is chordal and sun free [14], where sun free means that no vertices of the graph

13

1 2

3

4
5

6

1 2

3

4
5

6

Figure 2.9: The left chordal graph is strongly chordal, while the right chordal
graph is not strongly chordal, since the cycle (1, 2, 3, 5, 6, 4) does not have a
chord splitting it into two odd length paths.

Figure 2.10: Examples of suns. A sun is a graph of 2n vertices (n ≥ 3) whose ver-
tex set can be partitioned into W = {w1, w2, . . . wn} and U = {u1, u2, . . . , un},
such that vertices of W induce a clique, V2 is an independent set, and ui is
adjacent to wj iff i = j or i = j + 1(modn).

induce “sun” (see Figure 2.10). Given a graph G, we can recognize whether or
not G is strongly chordal in O(min(n2,m log n)) time. Further, we can obtain
a strongly perfect elimination ordering in the recognition process [38]. develop
a subgraph enumeration algorithm and a supergraph enumeration algorithm.

2.2.7 Weakly Chordal Graph

Definition 2.7 A graph G is weakly chordal if and only it is hole free and anti-
hole free, that is, neither G nor the complement of G has any cycle of length
more than four as an induced subgraph (Figure 2.11) [23].

Given a graph G = (V, E), we can recognize whether or not G is weakly chordal
in O(|E|2) time [25]. In Chapter 4, we develop a subgraph enumeration algo-
rithm.

14

1 2

3

4
5

6

1

2

3

4 5

6

7

8

Figure 2.11: The left graph, the example of not chordal in Figure 2.2, is weakly
chordal. The right graph is not weakly chordal, since (1, 7, 2, 4, 6) is an anti-hole.

15

Chapter 3

Enumeration

3.1 Difficulties

Here we discuss about the difficulties of the enumeration of graphs. We of-
ten solve optimization problems by enumerating feasible solutions and finding
an optimal solution that maximizes the objective function, when we have no
other efficient (polynomial time) way to find an optimal solution. These enu-
merations are done in branch-and-bound type algorithms or divide-and-conquer
type algorithms, and the methods are often intuitively understandable. Thus,
one may consider enumeration to be easy. However, there are some difficulties
in enumeration. The difficulties are deeply related to the structures of prob-
lems. Studying the difficulties of each enumeration problem thus helps us to
understand the problem.

First, we consider enumeration of chordal graphs of less than or equal to n
vertices. A naive algorithm for the problem is to enumerate all graphs of less
than or equal to n vertices, check each graph to see whether or not it is chordal,
and output only chordal graphs. This method clearly finds all the chordal
graphs without duplications. However, this method takes an exponentially long
time for each chordal graph to be output on average. This fact comes from the
theorem by Bender et al. [5].

Theorem 3.1 (Bender et al.) The number of chordal graphs of n vertices is
asymptotic to

sn =
n∑

r=1

(
n

r

)
2r(n−r)

.

Thus, the number of graphs of n vertices is exponentially larger than that of
chordal graphs of n vertices. In fact, the number of all graphs of n vertices is

16

2
n(n−1)

2 . Thus, we estimate the ratio as

2
n(n−1)

2

n∑
r=1

(
n

r

)
2r(n−r)

>
2

n(n−1)
2

n∑
r=1

(
n

r

)
2

n
2 ·n

2

=
2

n2
4 −n

2

n∑
r=1

(
n

r

) > 2
n2
4 − 3

2 n

.

Except for weakly chordal graphs, all the graphs treated in this thesis are chordal
graphs (they are chordal graphs or they belong to subclasses of chordal graphs).
The difficulties are thus apply to those graphs.

Observation 3.2 We cannot obtain a polynomial time delay algorithm by gen-
erating all the graphs included in Kn and output only chordal (interval, etc.)
graphs.

Next, we consider the difficulty of developing a branch-and-bound type al-
gorithm. Let us consider a chordal subgraph enumeration algorithm: given a
graph G = (V,E), we enumerate all chordal subgraph of G. At every level of the
search, we choose an edge e in E, and divide the problem into two subproblems:
an enumeration of chordal subgraphs containing edge e, and an enumeration of
those not containing edge e. We stop dividing the problem when we know that
there is no chordal subgraph in a subproblem. In this way, we can enumerate all
chordal subgraphs of G by outputting all leaves of the search tree. The problem
is that deciding whether or not there is a chordal subgraph in a subproblem is
difficult. Let A be the current graph in the algorithm and B be the input graph.
The problem to decide whether or not there is an chordal graph containing A
and included in B is known as “graph sandwich problem”. The graph sandwich
problem is proved to be NP-complete.

Theorem 3.3 (Graph sandwich by Golumbic et al. [18]) Given two graphs
A and B, deciding whether or not there is a chordal graph C satisfying A ⊆ C ⊆
B is NP-complete.

The algorithm thus possibly takes an exponentially long time at the bounding
phase, or the algorithm visits exponentially many subgraphs of G that are not
chordal, unless P = NP. Hence, the algorithm may take an exponentially long
time to output a chordal subgraph.

Observation 3.4 It is hard for a naive binary partition algorithm to enumerate
all chordal subgraphs of a given graph with polynomial time delay, unless P =
NP.

Golumbic et al. also showed that a graph sandwich problem for interval graphs,
deciding whether or not there is an interval graph included in one given graph
and containing another given graph, is NP-complete.

Theorem 3.5 (Graph sandwich by Golumbic et al. [18]) Given two graphs
A and B, deciding whether or not there is an interval graph C satisfying A ⊆
C ⊆ B is NP-complete.

17

The interval subgraph enumeration thus has a similar difficulty. In contrast, a
graph sandwich problem for split graphs can be solved in polynomial time.

Theorem 3.6 (Graph sandwich by Golumbic et al. [18]) Given two graphs
A and B, we can decide whether or not there is a split graph C satisfying
A ⊆ C ⊆ B in time linear in the size of A and B.

Thus, we can enumerate every split subgraph of G in polynomial time in the size
of G by the binary partition method. Given a graph G = (|V |, |E|), to obtain
a split subgraph, we may possibly solve the graph sandwich problems |E| time.
We thus obtain the theorem below.

Theorem 3.7 Given a graph G = (|V |, |E|), we can enumerate every split
subgraph of G in O(|E| × (|V |+ |E|)) time by the binary partition method.

Next, we consider a graph search type algorithm. Suppose that, from a
graph, we search graphs by adding or removing an edge (see Figure 3.1). This
corresponds to that we consider a meta-graph whose vertices are graphs that
we want to enumerate, and search on the meta-graph by some graph algorithm,
where two graphs are connected by a directed edge if one of them is obtained
by adding/removing an edge to/from the other. When such a type of algorithm

Figure 3.1: Searching graphs by adding or removing an edge.

is used, we must pay attention to ensure that the algorithm enumerates all the
graphs we want (i.e., we have to make sure that the algorithm reach every vertex
of the meta-graph). Even if the algorithm can enumerate every graph (reach
every vertex of the meta-graph), those algorithms often require a huge size of
memory, since we have to memory which graphs we have already output (which
vertices on the meta-graph we have already searched) in order not to output
identical graphs multiple times. If the number of graphs we want to enumerate
is exponentially many, the necessary memory size gets exponentially large.

Observation 3.8 A naive depth-first type algorithm requires exponentially large
memory for chordal (interval, etc.) enumeration.

18

3.2 Reverse search

3.2.1 Algorithm

For efficient enumerations, a good search method is necessary. The reverse
search method suits this requirement. The reverse search is a sophisticated
depth-first search type scheme for enumerations and was originally developed
by Avis and Fukuda in [3]. Because of its simplicity and efficiency, the reverse
search has been used in many algorithms for problems in many fields [3, 30, 31,
29].

Let F be the set of objects that we want to enumerate. For example, F is
the set of chordal graphs included in a given graph. We define a parent-child
relation by determining a parent for each object except for some specified objects
called root objects, which do not have parents. The definition of the parents has
to satisfy that no object is a proper ancestor of itself, that is, by starting from
an object x and moving in continuing succession to its parent and its parent’s
parent, we never come to the start object x again. The graph representation of
the relation induces a set of disjoint rooted trees spanning all objects in F , in
which paths from all leaves aim to the roots. Figure 3.2 illustrates an example
of the graph representation. Each object to be enumerated is drawn by a point,
and an object and its parent are connected by a directed arrow.

root

root

Figure 3.2: Spanning forest on the objects to be enumerated. Paths from all
leaves aim to the roots.

Tracing each edge in the reverse direction from the root objects enables us
to perform a depth-first search to visit all objects. We can thus find all objects
without duplications by using two subalgorithms: one algorithm to find all root
objects, and another to find all children of an object. We often have to store
the nodes that we have visited in memory to avoid visiting them twice when
performing depth-first search algorithms. In contrast with such cases, reverse
search needs to store only the nodes on the path from the root in memory by
limiting the base structure for searching as tree (forest) structure. In reverse
searching, we only need to store objects in the path that connect the current
object and its root.

19

3.2.2 Time Complexity

The time complexity of the reverse search method depends on that of finding
children of each object. If we can find each child in T time, or if there is no
child, we can know that in T time, the time complexity of the reverse search
algorithm is T time for each on average. However, in a naive implementation
of reverse search method, computation time between an object is output and
the next one is output sometimes exceeds O(T) time. For example, consider
the case that T is O(1) and the depth of the search tree is T ′ which is larger
than O(1). Then, after outputting a leaf object, we need to go back to the root
object and find the next child. This takes Ω(T ′) time, since the length of the
path we have to retrace is possibly T ′. However, we can search every object in
exactly O(T) time, by revising the algorithm in this case. We next describe the
revising by Nakano and Uno [41, 32].

If we have an enumeration algorithm traversing a search tree such that any
parent and its child differ by a constant size, the maximum difference between
two consecutive outputs can be bounded in a constant size with only a modifi-
cation on the timing of output. The modification is that at the odd level of the
recursion we output the objects before making recursive calls, and at the even
level of the recursion, we output after the terminations of the recursive calls. In
this way, at least one of three iterations outputs an object when the algorithm
ascends or descends the search tree. If each iteration takes a constant amount
of time to make a recursive call, the delay is also a constant amount of time.

20

Chapter 4

Algorithms

In this chapter, we describe our enumeration algorithms, for chordal graphs and
its subclasses, based on reverse search. We developed two types of algorithms.
One defines the parent-child relation on all graphs to be enumerated such that
the difference between a child and its parent is exactly one edge. The other
defines parents such that the parent of a graph is obtained by eliminating a
simplicial vertex. There are many graph classes whose non-empty graphs are
always able to be obtained by adding an edge to another graph of the class.
There are also many graph classes whose graphs are always able to be obtained
by removing an edge from another graph of the class. For these graph classes, we
can develop the first type of algorithm. The second type of algorithm requires
that graphs to be enumerated are chordal (subclasses of chordal graphs are
possible), since otherwise, it is possible that some graphs to be enumerated have
no simplicial vertex and we cannot define the parents of the graphs. We can
use the first type of algorithm for both subgraph enumerations and supergraph
enumerations, while the second one can be used only for subgraph enumerations
(The exception is the case of split graphs. The subgraph enumeration of split
graphs is automatically applied for the supergraph enumeration of split graphs).
However, the second type of algorithm is much faster in the case of chordal
subgraph enumeration.

4.1 Parent-Child Relation by Edge Removal/Addition

In this section, we develop an enumeration scheme by defining a parent in a
reverse search by an edge removal or an edge addition. As described in Sec-
tion 3.2.1, algorithms based on the reverse search method first find roots, and
then search for the children recursively. In the case of the edge addition, the
root object is Kn, and in the case of the edge removal, the root object is the
empty graph. The idea of generating children is that we generate, from a graph
H, every graph H ′ obtained by adding or removing an edge as a candidate of
a child, then check if H ′ is a graph to be enumerated (e.g. if H ′ is chordal,

21

or if H ′ is an interval graph), and if so, check if the parent of H ′ is H. Only
when the parent of H ′ is H and H ′ is a child of H, the algorithm outputs H ′

and then continues the recursion. There are only O(n2) edges in Kn, thus, even
if we examine all the edges to be added, we only take polynomial time in the
input size, provided that we can find the parent of any graphs in polynomial
time. This scheme is very general. When we can prove only that we can always
add an edge to or remove an edge from a graph that we are enumerating, the
scheme works. Thus, we can show that many graphs have polynomial time delay
enumeration algorithms. However, checking O(n2) edges costs at least O(n2)
time. It is thus difficult to develop a constant time enumeration algorithm by
this scheme.

4.1.1 Chordal/Interval Supergraph Enumeration

Our chordal supergraph enumeration algorithm proceeds as follows. Given a
chordal graph H, we define the parent of H as a graph obtained by adding an
edge to H, and we define the root as n vertex complete graph Kn. This definition
involves two problems. The first problem is “Is there always a chordal graph
obtained by adding an edge to H?”, and the second problem is “If there are
several chordal graphs obtained in such a way, which one should we choose?”
We prepare a lemma below to answer these questions.

Lemma 4.1 Given an n-vertex chordal graph H = (V, E) 6= Kn and any vertex
v ∈ V of degree smaller than n− 1, there exists a vertex v′ ∈ V not adjacent to
v such that graph H + (v, v′) is chordal. Moreover, we can find such vertex v′

in O(n+m) time, where m is |E|.
Proof It is known that there exists a perfect elimination ordering of H such
that the vertex v is located at the tail[36]. We denote such a perfect elimination
ordering by P = (p1, p2, . . . , pn), where pn = v. Let pk be the last vertex in P
that is not adjacent to v. We show that pk is the desired vertex v′ by proving
that P is a perfect elimination ordering of H ′ = H + (v, pk) and H ′ is thus
chordal.

We denote by Hj the subgraph of H induced by {pj , pj+1, . . . , pn}, and we
denote by H ′

j the subgraph of H ′ induced by {pj , pj+1, . . . , pn}. We denote by
Ni(v) (resp. N′i(v)) the set of neighbors of vertex v in Hi (resp. H ′

i).
Vertex pi (i = 1, 2, . . . , k − 1, k + 1, k + 2, . . . , n) is a simplicial vertex of

H ′
i, for Ni(pi) and N′i(pi) are identical. Since pk is a simplicial vertex of Hk,

Nk(pk) induces a clique in Hk and also in H ′
k. Since all the vertices of Nk(pk)

are adjacent to vertex pn, N′k(pk) = Nk(pk)∪{pn} also induces a clique in H ′
pk

.
Hence, vertex pk is a simplicial vertex of H ′

pk
. P is thus a perfect elimination

ordering of H ′.
We can obtain a perfect elimination ordering P such that v is located at the

tail in O(n + m) time [36]. To find pk from the ordering P , we need O(n) time.
Thus, we can find the desired v′ in O(n + m) time. ut

Let A be an algorithm obtained from the proof of Lemma 4.1; A inputs
a chordal graph H, and outputs an edge e∗(H) = (v, v′) such that v is the

22

youngest vertex with degree smaller than n− 1 and H +(e∗(H)) is chordal. We
can assume that A outputs the identical edge for identical graphs, since the pair
of a graph with vertex indices can be represented in a canonical way. Let e∗(H)
be the output edge by A when we input H. We define the parent of a chordal
graph H 6= Kn as H + e∗(H). The definition is thus unique and well-defined.

Lemma 4.2 For every chordal graph H 6= Kn, the parent always exists and is
unique.

Lemma 4.3 The parent-child relation induces a rooted tree, whose root is the
complete graph Kn.

We describe an outline of our algorithm below. We have to only call the
procedure with the argument H = Kn.

procedure enum super chordal(H, G)
H : chordal graph, G : graph;
begin

output H;
for every edge e ∈ E(H) \ E(G) do

if H − e is chordal and
the parent of H − e is H then
enum super chordal(H − e, G);

end for
end.

The algorithm performs a depth-first back tracking to enumerate all the chordal
supergraphs included in Kn. From the lemmata above, we can easily confirm
that this algorithm finds all the chordal supergraphs of G without duplications.
We consider the complexity in the theorem below.

Theorem 4.4 There is an algorithm for the chordal supergraph enumeration.
The time complexity of the algorithm to find each chordal supergraph of a given
graph is O(n3) time, and the space complexity is O(n2).

Proof Given a chordal graph H, let v∗ be the youngest vertex that has degree
smaller than n− 1.

For edge e incident to a vertex younger than v∗ such that H − e is chordal,
the parent of H−e is always H, by the definition of the parent. If more than one
vertices are younger than v∗, these vertices induce a clique, since the degrees
of them are n − 1. We consider any two of such vertices, v1 and v2. From the
symmetric property, if and only if edge e1, which is incident to vertex v1, and
some vertex v satisfies that H − e1 is chordal, H − e2 is chordal, where edge e2

is incident to vertex v2 and v. Thus, we have to check chordality on only O(n)
graphs to check, for every edge e incident to vertices younger than v∗, whether
or not H − e is chordal. We can do these checks in O(n3) time, since we can
check chordality of a graph in O(n2) time. For edge e = (v∗, v+), where v+

is elder than v∗, such that H − e is chordal, we can check whether or not the

23

parents of H − e is H in O(n2) time, since we can obtain the parent of H − e
in O(n2) time by Theorem 4.1. Hence, for all edges e = (v∗, v+), we can check
whether or not H − e is a child of H, i.e., H − e is chordal and the parent of
H − e is H, in O(n3) time.

For edge e whose end points are elder than v∗, the parent of H−e is never H,
since we can add to H − e an edge whose one end point is v∗ keeping chordality
by Theorem 4.1.

Hence, the total time complexity to check for every candidate of a child of
H whether or not it is really child is O(n3). ut

The algorithm and the analysis technique can be applied similarly to the
case of the interval supergraph enumeration, since Lemma 4.5, which we show
below, plays the same role as Lemma 4.1. We can thus enumerate interval
graphs that contain given graph G, and the time complexity for finding every
interval supergraph is O(n3).

Lemma 4.5 Given an n-vertex interval graph I = (V, E) 6= Kn and any vertex
v ∈ V of degree smaller than n− 1, there exists a vertex v′ ∈ V not adjacent to
v such that graph I + (v, v′) is an interval graph. Moreover, we can find such
vertex v′ in O(n+m) time, where m is |E|.
Proof We denote an interval representation of I by (I1, I2, . . . , In), where each
interval Ii (i = 1, 2, . . . , n) corresponds to vertex vi ∈ V . We can assume
without loss of generality that all of the end points of the intervals are distinct.
Let vertex vj be the vertex v.

Since the degree of vertex v is smaller than n−1, the corresponding interval
Ij = [lj , rj] does not intersect some intervals. We can assume without loss
of generality that there are some intervals at the right-side of Ij that do not
intersect Ij , since the symmetric intervals also form an interval representation
of interval graph I. Let Ik = [lk, rk] be the interval such that the difference
between rj and the left end is the smallest among such intervals. We change
the interval Ij to [lj , lk + ε], where ε is a sufficiently small number (Figure 4.1).
Then, the resulting interval representation is that of an interval graph I+(v, vk).
Hence, the vertex vk is the desired vertex v′.

1 2

3 4 5

6 7

1 2

3 4 5

6 7

Figure 4.1: We can add a new edge incident to vertex 1.

We can obtain an interval representation (I1, I2, . . . , In) of I in O(n + m)
time [8, 11], and to find Ik from the representation, we need O(n) time. We can
thus find the desired v′ in O(n + m) time. ut

24

Theorem 4.6 There is an algorithm for the interval supergraph enumeration.
The time complexity to find each interval supergraph of a given graph is O(n3)
and the space complexity is O(n2).

These algorithms and the analysis can be applied to the connected chordal/interval
supergraph enumeration, as the parents of connected chordal/interval graphs are
always connected.

4.1.2 Chordal/Interval Subgraph Enumeration

A similar type of algorithm can be considered for subgraph enumeration. Given
a chordal graph H, we define the parent of H as a graph obtained by removing
an edge from H, and we define the root as an empty graph (∅, ∅). Similar
problems to those in chordal and interval supergraph enumeration arise: “Is
there always a chordal graph obtained by removing an edge from H?” and “If
there are multiple chordal graphs obtained in such a way, which one should we
choose?”. We give a lemma below to answer these problems.

Lemma 4.7 Given an n-vertex connected chordal graph H = (V, E) (|E| ≥ 1),
there exists an edge e ∈ E such that G〈E \ {e}〉 is a connected chordal graph.
Moreover, we can find the edge e in O(n+m) time, where m is |E|.
Proof Let v be a simplicial vertex of H, and let ē be an edge in E adjacent to v.
If the degree of v is one, G〈E \ {ē}〉 is a connected chordal graph obtained from
H by eliminating simplicial vertex v. Otherwise, G〈E \ {ē}〉 is connected and
is chordal, since v is a simplicial vertex of G〈E \ {ē}〉 and the graph obtained
from G〈E \{ē}〉 by eliminating simplicial vertex v and the graph obtained from
H by eliminating simplicial vertex v are identical. Hence ē is a desired edge e.

To find e, we have only to find a simplicial vertex of H. The time complexity
is thus O(n + m). ut

In the case of connected chordal graph enumeration, the parent chordal
graph of connected chordal graph H that is not the empty graph is a connected
chordal graph obtained by removing edge e∗(H) from H, where e∗(H) is an
edge obtained by the algorithm derived from Lemma 4.7. We define the root as
the empty graph.

Now, we present our algorithm below. We have only to call the procedure
with the argument I = (φ, φ), i.e., the empty graph.

procedure enum sub chordal(H, G)
H : chordal graph, G : graph;
begin

output H;
for every edge e ∈ E(G) \ E(H) do

if H + e is connected chordal and
the parent of H + e is H then
enum sub chordal(H + e, G);

end for
end.

25

For graph H, we have to check O(n + m) candidates of children. We can
find the parent of the given chordal graph in O(n + m) time, by Lemma 4.7.
Thus, computational time of this algorithm to find each connected chordal graph
included in graph G is O((n+m)2). In contrast with the case of the supergraph
enumeration, we cannot remove an edge incident to an arbitrary vertex keeping
the intervality. We thus can not reduce the time complexity for finding each
connected chordal subgraph with this algorithm.

Notice that the (not necessarily connected) chordal subgraph enumeration
algorithm is straight-forward from that of the connected version, since we can
define a parent of a given (not necessarily connected) chordal graph as the
parent of its one connected component determined by a certain deterministic
algorithm.

Theorem 4.8 There is an algorithm for the (connected) chordal subgraph enu-
meration. The time complexity of the algorithm to find each chordal subgraph
of a given graph is O((n + m)2) and the space complexity is O(n + m).

A similar theorem can be obtained for interval subgraph enumeration. We
give a lemma for this below.

Lemma 4.9 Given an n-vertex connected interval graph I = (V, E) (|E| ≥ 1),
there exists an edge e ∈ E such that G〈E \ {e}〉 is a connected interval graph.
Moreover, we can find the edge e in O(n+m) time, where m is |E|.
Proof We denote an interval representation of I by (I1 = [l1, r1], I2 = [l2, r2], . . . , In =
[ln, rn]), where each interval Ii(i = 1, 2, . . . , n) corresponds to vertex vi ∈ V . We
can assume without loss of generality that all of the end points of the intervals
are distinct. Let lj be the smallest among li (i = 1, 2, . . . , n).

Since I is connected, Ij = [lj , rj] intersects some intervals. Let Ik = [lk, rk]
be the interval that intersects Ij and the value lk be the largest among such
intervals. Setting rj to lk − ε produces a new interval graph that we obtain by
removing an edge between vertices vj and vk. If the interval graph is connected,
(vj , vk) is the desired edge. Otherwise, the graph is divided into two connected
interval graphs, where the left-hand one contains Ij . Then, doing the process
recursively with the right-hand intervals, we can find the desired edge eventually.
At the end of the recursion, it is possible that the graph is divided into an
isolated vertex and the rest of the graph. However, in the sense of an edge set,
the graph is connected.

It takes O(n+m) time to obtain an interval representation of I. We can find
every k at every iteration by sweeping intervals from l1 until we find the desired
vertex. Each interval Ii (i = 1, 2, . . . , n) is swept at most once. Therefore, we
can find all k’s at every iteration in O(n) time. Thus, the time complexity to
find e is O(n + m). ut

This lemma plays the same role as Lemma 4.7, and we come to the lemma
below.

26

Theorem 4.10 There is an algorithm for the (connected) interval subgraph
enumeration. The time complexity to find each interval subgraph of a given
graph is O((n + m)2) and the space complexity is O(n + m).

4.1.3 Strongly Chordal Subgraph Enumeration

A subgraph enumeration algorithm can be developed for strongly chordal graphs
as well. Similarly to the chordal/interval subgraph enumeration, we define the
parent of a strongly chordal graph H, which is not an empty graph, as a graph
obtained by removing an edge from H. Similar problems arise: “Is there any
edge e such that a graph obtained by removing e from H is strongly chordal?”
and “If there are some such edges, which one should we choose?”

To answer the first question, we prove the lemma below.

Lemma 4.11 Given a non-empty strongly chordal graph H, there is an edge e
such that H − e is strongly chordal.

Proof Since H is strongly chordal, H has a strongly perfect elimination or-
dering P ; for any four vertex indices i, j, k, l of H satisfying i < j < k < l, if
(vi, vk), (vi, vl) and (vj , vk) are edges of H, (vj , vl) is also an edge of H. Let v
be the first vertex in P of degree at least one, and let v′ be the first vertex to
which v is adjacent. P is a strongly perfect elimination ordering of H − (v, v′),
since for any four vertex indices i, j, k, l of H− (v, v′) satisfying i < j < k < l, if
(vi, vk), (vi, vl) and (vj , vk) are edges of G, (vj , vl) is also an edge of H − (v, v′).
(v, v′) is thus the desired edge e. ut

The proof gives us an algorithm to obtain an edge e∗(H) such that H−e∗(H)
is strongly chordal. The time complexity to obtain e∗(H) is O(min(m log n, n2)),
since we can compute a strongly perfect elimination ordering of H in that time
[38]. We define the parent of a strongly chordal graph H as strongly chordal
graph obtained by removing the edge e∗(H). We show our subgraph enumera-
tion algorithm below.

procedure enum sub strongly chordal(H, G)
H : strongly chordal graph, G : graph;
begin

output H;
for every edge e ∈ E(G) \ E(H) do

if H + e is strongly chordal and
the parent of H + e is H then
enum sub strongly chordal(H + e, G);

end for
end.

Theorem 4.12 There is an algorithm for the strongly chordal subgraph enu-
meration. The time complexity to find each strongly chordal subgraph of a given
graph is O(m ·min(m log n, n2)) and the space complexity is O(n + m).

27

4.1.4 Strongly Chordal Supergraph Enumeration

For the super graph enumeration of strongly chordal graph, we have to prove
that we can add an edge to any strongly chordal graph H 6= Kn keeping the
strongly chordality.

Lemma 4.13 Given a strongly chordal graph H 6= Kn, there is an edge e such
that H + e is strongly chordal.

Proof There is a strongly perfect elimination ordering P = (p1, p2, . . . , pn) of
H. Let pk be the last vertex in P that is not adjacent to pn. We show that P
is a strongly perfect elimination ordering of H ′ = H + (v, pk) and H ′ is thus
chordal.

Since a strongly perfect elimination ordering is a perfect elimination order-
ing, P is a perfect elimination ordering of H ′ by the proof of Lemma 4.1.

Hence, we have only to prove that

for any four vertices i, j, k, l of H ′ satisfying i < j < k < l,
if (i, k), (i, l) and (j, k) are edges of H ′, (j, l) is also an edge of H ′. (4.1)

It is sufficient for the proof to consider the case in which (pk, pn) corresponds to
(i, l), since pn is the tail of P . By the definition of pk, every vertex pk+1, . . . , pn−1

is adjacent to pn. Hence, (j, l) is always an edge of H ′. ut
The proof gives us an algorithm to obtain an edge ē(H) such that H + ē(H) is
strongly chordal. The time complexity to obtain ē(H) is O(min(m log n, n2)),
as we can compute a strongly perfect elimination ordering of H in that time
[38]. We define the parent of a strongly chordal graph H as strongly chordal
graph obtained by removing the edge ē(H).

Theorem 4.14 There is an algorithm for the strongly chordal supergraph enu-
meration. The time complexity to find each strongly chordal supergraph of a
given graph is O(m · n2) and the space complexity is O(n2).

4.1.5 Weakly Chordal Subgraph Enumeration

A subgraph enumeration algorithm can also be developed for weakly chordal
graphs by defining the parent as a graph that differs in only one edge from the
children. We define the parent of a weakly chordal graph H, which is not an
empty graph, as a graph obtained by removing an edge from H.

To ensure that we can always remove an edge keeping weakly chordality, we
introduce a theorem by Hayward [24].

Theorem 4.15 (Hayward) A graph is weakly chordal if and only it can be
generated in the following manner:

• Start with a graph G0 with no edges.

• Repeatedly add an edge ej to Gj−1 to create the graph Gj, such that ej is
not the middle edge of any P4 of Gj, where P4 is a path of four vertices.

28

By the theorem, it is clear that, given a weakly chordal graph H, there is at
least one edge e such that the graph obtained by removing e from H is weakly
chordal.

Then, if there are some edges that we can remove, which one should we
remove? We can simply choose the youngest edge of such edges in order to
obtain an algorithm that enumerates each weakly chordal graph in polynomial
time. The algorithm is shown below.

procedure enum sub weakly chordal(H, G)
H : weakly chordal graph, G : graph;
begin

output H;
for every edge e ∈ E(G) \ E(H) do

if H + e is weakly chordal and
the parent of H + e is H then
enum sub weakly chordal(H + e, G);

end for
end.

The time complexity is somehow large compared to the other algorithms.
Recognizing whether or not H+e is weakly chordal require m2 time, and finding
the parent of H + e requires m3 time, since we have to determine for every edge
e′ of H younger than e whether or not H + e − e′ is weakly chordal. The
time complexity of our weakly chordal subgraph enumeration algorithm is thus
O(m4) for each output. Theorem 4.15 does not say that given a weakly chordal
graph G, G− e is weakly chordal if edge e is not a middle edge of any P4 of G.

Theorem 4.16 There is an algorithm for the weakly chordal subgraph enumer-
ation. The time complexity to find each weakly chordal subgraph of a given graph
is O(m4) and the space complexity is O(n + m).

4.1.6 Split Subgraph Enumeration

We address a subgraph enumeration of split graphs in this subsection. We
showed in Theorem 3.7 that there is an O(m(n + m)) time algorithm for the
split subgraph enumeration problem. Moreover, a faster algorithm can easily
be developed if the input graph is a complete graph. In fact, since the number
of n-vertex split graphs is asymptotic to the number of n-vertex chordal graphs
[5], we can enumerate split graphs by enumerating chordal graphs and checking
to see whether or not each graph is a split graph. A graph is a split graph if
and only if both it and its compliment are chordal. The time complexity to
determine whether or not a graph is a split graph is thus equivalent to the time
complexity to find out whether or not a graph is chordal, and is O(n2). Hence,
given a graph G, we can enumerate each split graph included in G in O(n2) time
on average with the algorithm in Section 4.2.1, provided n is sufficiently large.
However, with the algorithm, time delay between two consecutive objects being
output is not always O(n2), since it is possible that many, say O(n) or more,

29

consecutive chordal graphs generated by the algorithm in Section 4.2.1 are not
split graphs. We introduce another faster algorithm here; it enumerates each
split subgraph of arbitrary graph G in exactly O(n) time for every n.

Given a split graph H of at least one edge, we define the parent of H as a
graph obtained by removing an edge e from H. First, we show that there is at
least one edge e such that H − e is a split graph.

Lemma 4.17 Given an n-vertex split graph H = (V, E) of at least one edge and
any vertex v ∈ V of degree at least one, there exists a vertex v′ ∈ V adjacent to
v in H such that H − (v, v′) is a split graph.

Proof This regards an I-C-decomposition (VI , VC) of H.
If v is a vertex in VI , we can remove every edge e incident to v keeping graph

H − e as a split graph, as VI is still an independent set and the vertices in VC

induce a clique, after we remove edge e.
Next, consider the case that v is a vertex in VC . If v is adjacent to a vertex

v̄ in VI , we can remove the edge (v, v̄) keeping graph H − e as a split graph by
the same reason as in the case that v is in VI . If v is not adjacent to any vertices
in VI , V ′

I = VI ∪{v} is an independent set and vertices in V ′
C = VC \ {v} induce

a clique. We can thus remove any edge e incident to v keeping graph H − e as
a split graph by the same reason of the case v is in VI .

Hence, there exists a vertex v′ ∈ V adjacent to v in H such that H − (v, v′)
is a split graph. ut

We define the parent of a split graph H having at least one edge as a graph
obtained by removing an edge e = (v, v′) from H, such that v is the youngest
vertex of degree at least one. If there are two or more such edges, we choose v′

to be the youngest.
In order to develop a fast algorithm, we consider some properties of split

graphs. We first categorize the vertices of a split graph. Given a split graph
H = (V, E), the vertex set V is divided into two sets VI and VC ; VI is an
independent set, and vertices of VC induce a clique. In general, VI is not unique,
that is there is a redundancy in the method of selection of VI . Thus, it is
possible that there are some different I-C-decompositions of H. We prepare
another partition I(H), C(H), and M(H) of vertices that has no redundancy.

Definition 4.18 Given a split graph H = (V,E), we categorize vertices in V
as below.

I(H) the vertex set whose elements are always in VI for any I-C-decomposition
(VI , VC) of H,

C(H) the vertex set whose elements are always in VC for any I-C-decomposition
(VI , VC) of H, and

M(H) the vertices in H, and neither in I(H) nor in C(H).

We call the partition “I-C-M-decomposition” of H. We investigate the proper-
ties of the I-C-M-decomposition, below.

30

Lemma 4.19 Given a split graph H = (V, E), the I-C-M-decomposition of H
satisfies the properties below.

(i) Vertices in I(H) are an independent set and are never adjacent to vertices
in M(H).

(ii) Vertices in C(H) induce a clique. Every vertex in C(H) is adjacent to
every vertex in M(H).

(iii) Vertices in M(H) are an independent set, or vertices in M(H) induce a
clique.

(iv) If M(H) is an independent set, for every vertex v1 ∈ I(H), there is a
vertex v2 ∈ C(H) such that v1 and v2 are not adjacent.

(v) If vertices in M(H) induce a clique, every vertex in C(H) is adjacent to
at least one vertex in I(H).

Proof First, we notice about the compliment of H. Let H̄ be the compliment
of H. H̄ is also a split graph. Since a clique of H is always an independent
set of H̄ and vice versa, C(H) is equal to I(H̄). Similarly, I(H) is equal to
C(H̄), and thus M(H) is equal to M(H̄). Hence, we sometimes omit proofs of
redundant statements that we have already proved by thinking of H̄.

(i) Assume that there are vertices v1, v2 ∈ I(H) and v1 is adjacent to v2.
Let (VI , VC) be an I-C-decomposition of H. Since v1 ∈ VI and v2 ∈ VI , this is
a contradiction. Hence, I(H) is an independent set.

Assume that there is a vertex v1 ∈ I(H) and there is a vertex v2 ∈ M(H)
adjacent to v1. Let (VI , VC) be an I-C-decomposition of H where v2 is in VI .
Since v1 is in VI , this is a contradiction. Hence, vertices in I(H) are never
adjacent to vertices in M(H).

(ii) Think the compliment of H. We can prove this statement directly from
the proof of (i).

(iii) Assume that M(H) is not an independent set, and does not induce a
clique. Then, there are vertices v1, v2, v3 ∈ M(H), v1 is adjacent to v2, and v1 is
not adjacent to v3. There are two possibilities: (a) v2 is adjacent to v3 and (b)
v2 is not adjacent to v3. In the case of (a), let (VI , VC) be an I-C-decomposition
of H where v2 is in VI . Since v2 is in VI , v1 and v3 should be in VC . However,
v1 and v3 are not adjacent. This is a contradiction. In the case of (b), think the
compliment of H. The same contradiction occurs. Hence, vertices in M(H) is
an independent set, or vertices in M(H) induce a clique.

(iv) Assume that M(H) is an independent set and there is a vertex v ∈ I(H)
that is adjacent to every vertex in C(H). Then, M(H) ∪ I(H) \ {v} is an
independent set and vertices C(H)∪{v} induce a clique. This is a contradiction,
since v ∈ I(H). Hence, if M(H) is an independent set, for every vertex v1 ∈
I(H), there is a vertex v2 ∈ C(H) such that v1 and v2 are not adjacent.

(v) Think the compliment of H. We can easily prove the statement from
the proof of (iv). ut
We call the properties (i), . . . , (v) in Lemma 4.19 “I-C-M-conditions”.

31

Lemma 4.20 Given a split graph H = (V, E), and a partition of V : I ′(H),
C ′(H) and M ′(H) which satisfies the I-C-M-conditions, (I ′(H), C ′(H),M ′(H))
is always the I-C-H-decomposition of H, i.e., I(H) = I ′(H), C(H) = C ′(H)
and M(H) = M ′(H).

Proof Given a vertex v1 ∈ I ′(H), assume that there is an I-C-decomposition
(VI , VC) of H such that v1 is in VC . Then since every vertex in M ′(H) is not
adjacent to v1, vertices in M ′(H) are in VI . Therefore, M ′(H) is an independent
set. Thus, there is a vertex v2 ∈ C ′(H) not adjacent to v1. Since v1 is in VC , v2

is in VI . However, v2 is adjacent to every vertex in M ′(H) which is in VI . This
is a contradiction. Hence, every vertex in I ′(H) is in I(H).

We can easily check that I ′(H) is equal to C ′(H̄), C ′(H) is equal to I ′(H̄),
and M ′(H) is equal to M ′(H̄), where H̄ is the compliment of H. Hence, from the
proof above, we can prove that every vertex in C ′(H) is in C(H), by considering
H̄.

From Lemma 4.19, we know that every vertex in I(H) is in I ′(H), and every
vertex in C(H) is in C ′(H). Hence, we obtain that I(H) = I ′(H), C(H) =
C ′(H) and M(H) = M ′(H). ut

Now, we consider the enumeration of children of a split graph H. For every
edge e ∈ E(G) \ E(H), we should check whether or not H + e is a split graph.
We can determine this by the lemma below.

Lemma 4.21 Given a split graph H and two vertices v, w ∈ V (H) such that
(v, w) 6∈ E(H), H + (v, w) is a split graph if and only if

• both v and w are in M(H), or

• one of v and w is in I(H) and the other is in C(H) ∪M(H).

Proof Since (v, w) 6∈ E(H), there are three possibilities for e = (v, w): (a) e is
in M(H)×M(H), (b) e is in I(H)×C(H)∪M(H), and (c) e is in I(H)×I(H).

First, we show that if both v and w are in M(H), H + (v, w) is a split
graph. Since (v, w) is not an edge of H, M(H) is an independent set in H.
Thus, I(H) ∪M(H) \ {v, w} is an independent set in H + (v, w), and vertices
in C(H)∪{v, w} induce a clique in H +(v, w). H +(v, w) is thus a split graph.

Next, we show that if v ∈ I(H) and w ∈ C(H)∪M(H), H +(v, w) is a split
graph. I(H) is an independent set in H + (v, w), and vertices in C(H)∪M(H)
induce a clique in H + (v, w). H + (v, w) is thus a split graph.

Last, we show that if both v and w are in I(H), H + (v, w) is not a split
graph. We show that any vertex p ∈ C(H) is in C(H + (v, w)). Assume that
there is an I-C-decomposition of H + (v, w), VI and VC , such that p is in VI .
Then, all the vertices in C(H) \ {p} ∪ M(H) should be in VC , since they are
adjacent to p in H + (v, w). Thus, vertices in M(H) induce a clique (both in
H and in H + (v, w)). Therefore, by lemma 4.19, there is a vertex q ∈ I(H)
adjacent to p. Since q is adjacent to p, q should be in VC . This means q is
adjacent to every vertex in C(H), and thus q ∈ M(H). This is a contradiction.
Hence, p is in C(H + (v, w)).

32

Since v and w are adjacent to each other in H + (v, w), it is impossible that
both v ∈ I(H + (v, w)) and w ∈ I(H + (v, w)) consist. We can assume without
loss of generality that v is in C(H + (v, w)) ∪M(H + (v, w)). Then, v should
be adjacent to all the vertices in C(H + (v, w)) by Lemma 4.19. Therefore,
v is adjacent to every vertex in C(H), since we have proven that C(H) ⊆
C(H + (v, w)).

If |M(H)| ≤ 1, then (VI = I(H) ∪ M(H) \ {v}, VC = C(H) ∪ {v}) VI is
an I-C-decomposition of H. This is a contradiction, since v ∈ I(H). Thus, we
assume that |M(H)| > 1, below. From the observations above, we know that if
|M(H)| > 1, the vertices in M(H) induce a clique.

Now, we consider an I-C-decomposition (VI , VC) of H + (v, w). If w is in
VI , v is in VC . Since v is not adjacent to vertices in M(H), vertices in M(H)
are in VI . However, vertices in M(H) induce a clique. This is a contradiction.
Thus, w is in VC . Since vertices in M(H) induce a clique, at least one vertex
in M(H) should be in VC . However, vertices in M(H) are not adjacent to w.
This is a contradiction. ut
By this lemma, keeping vertex sets I(H), C(H) and M(H) enables us to check
whether or not each H + e is a split graph in constant time.

Split graphs are self-complementary. Thus, we easily obtain the lemma be-
low, by considering complements of the lemma above.

Lemma 4.22 Given a split graph H and two vertices v, w ∈ V (H) such that
(v, w) ∈ E(H), H − (v, w) is a split graph if and only if

• both v and w are in M(H), or

• one of v and w is in C(H) and the other is in I(H) ∪M(H).

Proof By Lemma 4.21 and the fact that split graphs are self-complementary.
Note that C(H̄) = I(H), I(H̄) = C(H), and M(H̄) = M(H), where H̄ is the
complement of H. ut

To generate children of split graph H quickly, we need to maintain C-I-M-
decomposition of H in the algorithm, and the time cost to update the C-I-M-
decomposition should be short. The lemmata below enable us to do this.

Lemma 4.23 Given a split graph H and vertices v, w ∈ M(H) such that
(v, w) 6∈ E(H),

• if |M(H)| 6= 2, I(H + (v, w)) = I(H) ∪M(H) \ {v, w}, C(H + (v, w)) =
C(H), and M(H + (v, w)) = {v, w},

• if |M(H)| = 2, I(H + (v, w)) = I(H), C(H + (v, w)) = {x ∈ C(H) | ∃y ∈
I(H), s. t. (x, y) ∈ E(H)}, and M(H+(v, w)) is the rest vertices in V (H).

Lemma 4.24 Given a split graph H and vertices v ∈ I(H) and w ∈ C(H) such
that (v, w) 6∈ E(H),

• if degH(v) = |C(H)| − 1, and |M(H)| = 0, I(H + (v, w)) = I(H) \ {v},
C(H + (v, w)) = {x ∈ C(H) | ∃y ∈ I(H + (v, w)), s. t. (x, y) ∈ E(H)},
and M(H + (v, w)) is the rest vertices in V (H),

33

• if degH(v) = |C(H)| − 1, and M(H) 6= ∅ is an independent set, (v, w) 6∈
E(H), I(H + (v, w)) = I(H) \ {v}, C(H + (v, w)) = C(H), and M(H +
(v, w)) = M(H) ∪ {v},

• otherwise, I(H + (v, w)) = I(H), C(H + (v, w)) = C(H), and M(H +
(v, w)) = M(H).

Lemma 4.25 Given a split graph H and vertices v ∈ I(H) and w ∈ M(H)
such that e = (v, w) 6∈ E(H),

• if degH(v) = |C(H)| and |M(H)| = 2, I(H +(v, w)) = I(H)\{v}, C(H +
(v, w)) = C(H) ∪ {w}, and M(H + (v, w)) = M(H) ∪ {v} \ {w},

• otherwise, if vertices in M(H) induce a clique, I(H + (v, w)) = I(H),
C(H + (v, w)) = C(H) ∪ {w}, and M(H + (v, w)) = M(H) \ {w}.

• otherwise, I(H + (v, w)) = I(H)∪M(H) \ {w}, C(H + (v, w)) = C(H)∪
{w}, and M(H + (v, w)) = ∅.

Proof of Lemma 4.23 First, consider the case that |M(H)| = 2.
Let v′ be a vertex in I(H). Assume that there is an I-C-decomposition

(VI , VC) of H + (v, w), such that v′ ∈ VC . Since v, w ∈ M(H), there is no edge
between v′ and v and between v′ and w. Thus, v and w are in VI . However,
there is an edge connecting v and w in H + (v, w). This is a contradiction.
Therefore, every vertex in I(H) is in I(H + (v, w)).

Let v′ be a vertex in C(H) and let v′′ be a vertex in I(H) adjacent to v.
Assume that there is an I-C-decomposition (VI , VC) of H + (v, w) such that
v′ ∈ VI . We proved above that a vertex in I(H) is in I(H +(v, w)). Thus, v′′ is
in VI . However, there is an edge connecting v′ and v′′. This is a contradiction.
Therefore, v′ is in C(H + (v, w)).

Let v′ be a vertex in C(H) and be adjacent to no vertex in I(H). I(H) is an
independent set and vertices in C(H)∪M(H) induce a clique in H +(v, w). On
the other hand, I(H)∪v′ is an independent set and vertices in C(H)∪M(H)\v′
induce a clique in H + (v, w). Therefore v′ is in M(H + (v, w)).

Let v′ be a vertex in M(H), which means that v′ is v or w. I(H) is an
independent set and vertices in C(H)∪M(H) induce a clique in H +(v, w). On
the other hand, I(H)∪v′ is an independent set and vertices in C(H)∪M(H)\v′
induce a clique in H + (v, w). Therefore v′ is in M(H + (v, w)).

Next, consider the case that |M(H)| 6= 2.
Let v′ be a vertex in I(H). Assume that there is an I-C-decomposition

(VI , VC) of H + (v, w) such that v′ ∈ VC . Since v, w ∈ M(H), there is no edge
between v′ and v and between v′ and w. Thus, v and w are in VI . However,
there is an edge connecting v and w in H + (v, w). This is a contradiction.
Therefore, every vertex in I(H) is in I(H + (v, w)).

Let v′ be a vertex in M(H)\{v, w}. Assume that there is an I-C-decomposition
(VI , VC) of H + (v, w) such that v′ ∈ VC . Since there is no edge connecting v
and w in H, M(H) is an independent set of H. Hence, there is no edge between
v′ and v and between v′ and w. Thus, v and w are in VI . However, there is an

34

edge connecting v and w in H + (v, w). This is a contradiction. Therefore, v′ is
in I(H + (v, w)).

Let v′ be a vertex in C(H). Assume that there is an I-C-decomposition
(VI , VC) of H + (v, w) such that v′ ∈ VI . Since |M(H)| 6= 2 and v, w ∈ M(H),
there is a vertex v′′ ∈ M(H). Since there is no edge connecting v and w in H,
M(H) is an independent set of H. Thus, there is no edge connecting v and v′′

in H + (v, w). Since every vertex in M(H) is adjacent to v′ ∈ C(H), v, w and
v′′ are in VC . This is a contradiction. Therefore v′ is in C(H + (v, w)).

I(H)∪M(H) is an independent set and vertices in C(H) induce a clique in
H +(v, w). I(H)∪M(H)\{v} is an independent set and vertices in C(H)∪{v}
induce a clique in H + (v, w). I(H) ∪M(H) \ {w} is an independent set and
vertices in C(H)∪{w} induce a clique in H + (v, w). Therefore, v and w are in
M(H + (v, w)). ut
Proof of Lemma 4.24 First, we consider the case that degH(v) = |C(H)|− 1
and M(H) = ∅. Let v′ be a vertex in I(H) \ {v}. Assume that there is an I-C
decomposition (VI , VC) of H + (v, w) such that v′ ∈ VC . v is not adjacent to v′.
Since M(H) is the empty set and is thus an independent set, there is a vertex
v′′ ∈ C(H) that is not adjacent to v′. Hence v and v′′ are both in VI . This is
a contradiction, since v and v′′ are adjacent in H + (v, w). Therefore, v′ is in
I(H + (v, w)).

Let v′ be a vertex in {x ∈ C(H) | ∃y ∈ I(H + (v, w)), s. t. (x, y) ∈ E(H)}.
Assume that there is an I-C decomposition (VI , VC) of H + (v, w) such that
v′ ∈ VI . Let v′′ ∈ I(H + (v, w)) = I(H) \ {v} be a vertex adjacent to v′. In
H + (v, w), both v and v′′ are adjacent to v′, and are thus in VC . However, v
and v′′ are not adjacent in H + (v, w). This is a contradiction. Therefore, v′ is
in C(H).

(I(H), C(H)), (I(H)\{v}, C(H)∪{v}) are I-C-decompositions of H+(v, w).
For any v′ ∈ {x ∈ C(H) | 6 ∃y ∈ I(H +(v, w)), (I(H)\{v′}, C(H)∪{v′}) is also
an I-C-decomposition of H + (v, w). Therefore, v and v′ are in M(H + (v, w)).

Next, we consider the case that degH(v) = |C(H)| − 1 and M(H) is an
independent set and not empty. Let v′ be a vertex in I(H) \ {v}. Assume
that there is an I-C-decomposition (VI , VC) of H + (v, w) such that v′ ∈ VC .
v is not adjacent to v′. Since M(H) is an independent set, there is a vertex
v′′ ∈ C(H) that is not adjacent to v′. Hence v and v′′ are both in VI . This
is a contradiction, since v and v′′ is adjacent in H + (v, w). Therefore, v′ is in
I(H + (v, w)).

Let v′ be a vertex in C(H). Assume that there is an I-C-decomposition
(VI , VC) of H +(v, w) such that v′ ∈ VI . v is adjacent to v′ in H +(v, w). Since
M(H) is not empty, there is a vertex v′′ ∈ M(H), and v′′ is adjacent to v′.
Thus, v and v′′ are in VC . However, there is no edge between v and v′′. This is
a contradiction. Therefore, v′ is in C(H).

(I(H)∪M(H), C(H)), (I(H)∪M(H)\{v}, C(H)∪{v}) are I-C-decompositions
of H + (v, w). For any v′ ∈ M(H), (I(H) ∪M(H) \ {v′}, C(H) ∪ {v′}) is also
an I-C-decomposition of H + (v, w). Therefore, v and v′ are in M(H + (v, w)).

35

Next, we consider the case that degH(v) = |C(H)| − 1, M(H) is not an
independent set and M(H) is not empty. Note that it is equivalent that
degH(v) = |C(H)| − 1, |M(H)| ≥ 2 and vertices in M(H) induce a clique.

Let v′ be a vertex in I(H). Assume that there is an I-C-decomposition
(VI , VC) of H + (v, w) such that v′ ∈ VC . v′ is not adjacent to two vertices
v′′ and v′′′ in M(H). Thus, v′′ and v′′′ are in VI . However, there is an edge
between v′′ and v′′′. This is a contradiction. Therefore, v′ is in I(H + (v, w)).

Let v′ be a vertex in C(H). Assume that there is an I-C-decomposition
(VI , VC) of H +(v, w) such that v′ ∈ VI . v is adjacent to v′ in H +(v, w). Since
M(H) is not empty, there is a vertex v′′ ∈ M(H), and v′′ is adjacent to v′.
Thus, v and v′′ are in VC . However, there is no edge between v and v′′. This is
a contradiction. Therefore, v′ is in C(H).

(I(H), C(H) ∪M(H)) is an I-C-decomposition of H + (v, w). For any v′ ∈
M(H), (I(H)∪ {v′}, C(H)∪M(H) \ {v′}) is also an I-C-decomposition of H +
(v, w). Therefore, v′ is in M(H + (v, w)).

Last, we consider the case that degH(v) < |C(H)| − 1.
Let v′ be a vertex in I(H) \{v}. Assume that there is an I-C-decomposition

(VI , VC) of H+(v, w) such that v′ ∈ VC . Since, v is not adjacent to v′, v is in VI .
Since, w is adjacent to v, w is in VC . Thus, (v, w) is an edge in VI ×VC . Hence,
VI is an independent set and vertices in VC induce a clique. That is (VI , VC)
is an I-C-decomposition of H, and v′ ∈ I(H) is in VC . This is a contradiction.
Therefore, v′ is in I(H).

Assume that there is an I-C-decomposition (VI , VC) of H + (v, w) such that
v ∈ VC . Since degH+(v,w)(v) < |C(H)|, there is a vertex v′ ∈ C(H) that is not
adjacent to v in H + (v, w). Since a vertex in C(H) is always adjacent to a
vertex in I(H) ∪M(H), v′ is adjacent to v′′ ∈ I(H) ∪M(H). Since v′ and v′′

are not adjacent to v, v′ and v′′ are in VI . However, there is an edge connecting
v′ and v′′. This is a contradiction. Therefore, v is in I(H + (v, w)).

Let v′ be a vertex in C(H). Assume that there is an I-C-decomposition
(VI , VC) of H + (v, w) such that v′ ∈ VI . We showed above that vertices in
I(H) belong to I(H + (v, w)) and are thus in VI . Hence v′ is not adjacent
to any vertex in I(H). Thus, v′ is adjacent to at least one vertex in M(H)
(otherwise, v′ should be in M(H)) and vertices in M(H) do not induce a clique
(by Lemma 4.19). This means that there are at least two vertices v′′ and v′′′ in
M(H), and v′′ and v′′′ are not adjacent to each other. v′ is adjacent to both v′′

and v′′′, since v′ is in C(H) and v′′, v′′′ are in M(H). Thus, v′′ and v′′′ are in
VC . However, there is no edge connecting v′′ and v′′′. This is a contradiction.
Therefore, v′ is in C(H + (v, w)).

If M(H) is an independent set, (I(H)∪M(H), C(H)) is an I-C-decomposition
of H + (v, w). For any v′ ∈ M(H), (I(H) ∪M(H) \ {v′}, C(H) ∪ {v′}) is also
an I-C-decomposition of H + (v, w). Therefore, v′ is in M(H + (v, w)). If ver-
tices in M(H) induce a clique, (I(H), C(H) ∪M(H)) is an I-C-decomposition
of H + (v, w). For any v′ ∈ M(H), (I(H) ∪ {v′}, C(H) ∪M(H) \ {v′}) is also
an I-C-decomposition of H + (v, w). Therefore, v′ is in M(H + (v, w)). ut
Proof of Lemma 4.24 First, we consider the case that degH(v) = |C(H)| and

36

|M(H)| = 2. In this case, there is an edge connecting the two vertices in M(H),
since otherwise, (I(H) ∪ M(H), \{v}, C(H) ∪ {v}) is an I-C-decomposition of
H, and v should be in M(H).

Let v′ be a vertex in I(H) \ {v}. Assume that there is an I-C-decomposition
(VI , VC) of H + (v, w) such that v′ ∈ VC . Since vertices in M(H) are not
adjacent to v′, they are in VI . However, there is an edge connecting them. This
is a contradiction. Therefore, v′ is in I(H + (v, w)).

Let v′ be a vertex in C(H). Assume that there is an I-C-decomposition
(VI , VC) of H + (v, w) such that v′ ∈ VI . Since v is adjacent to v′, v is in VC .
Since the two vertices in M(H) are adjacent to v′, they are also in VC . However,
one of the two vertices in M(H) is not adjacent to v in H + (v, w). This is a
contradiction. Therefore, v′ is in C(H + (v, w)).

Assume that there is an I-C-decomposition (VI , VC) of H + (v, w) such that
w ∈ VI . Since v is adjacent to w in H + (v, w), v is in VC . Let v′ be the vertex
in M(H) which is not w. Since v′ is adjacent to w, v′ is also in VC . However,
there is no edge connecting v and v′. This is a contradiction. Therefore, w is in
C(H + (v, w)).

Let v′ be the vertex in M(H) which is not w. (I(H), C(H) ∪ M(H)) is
an I-C-decomposition of H + (v, w). (I(H) \ {v}, C(H) ∪ M(H) ∪ {v}) is an
I-C-decomposition of H + (v, w). (I(H) ∪ {v′}, C(H) ∪ M(H) \ {v′}) is an
I-C-decomposition of H + (v, w). Therefore, v and v′ are in M(H + (v, w)).

Next, we consider the case that (degH(v) < |C(H)| or |M(H)| 6= 2) and
vertices in M(H) induce a clique.

Let v′ be a vertex in I(H) \{v}. Assume that there is an I-C-decomposition
(VI , VC) of H + (v, w) such that v′ ∈ VC . Since v′ is not adjacent to v, v is in
VI . Since w is adjacent to v in H + (v, w), w is in VC . Thus, (v, w) is an edge
in VI × VC . Hence, (VI , VC) is an I-C-decomposition of H, and v′ ∈ I(H) is in
VC . This is a contradiction. Therefore, v′ is in I(H + (v, w)).

When degH(v) < |C(H)|, assume that there is an I-C-decomposition (VI , VC)
of H + (v, w) such that v ∈ VC . Since degH(v) < |C(H)|, there is a vertex
v′ ∈ C(H) that is not adjacent to v. v′ is in VI . Since vertices in M(H) induce
a clique, v′ is adjacent to a vertex v′′ ∈ I(H). v′′ is in VC . However, there is no
edge connecting v and v′′. This is a contradiction. Therefore, v is in I(H).

When |M(H)| 6= 2, |M(H)| should be more than two, since if |M(H)| = 1,
v is isomorphic to the vertex in M(H) and should be in M(H). Assume that
there is an I-C-decomposition (VI , VC) of H + (v, w) such that v ∈ VC . There
are two vertices in M(H) that are not w. Since they are not adjacent to v, they
are in VI . However, there is an edge connecting them. This is a contradiction.
Therefore, v is in I(H).

Let v′ be a vertex in C(H). Assume that there is an I-C-decomposition
(VI , VC) of H + (v, w) such that v′ ∈ VI . Since vertices in M(H) induce a
clique, v′ is adjacent to a vertex v′′ in I(H). If v′′ 6= v, v′′ and w are in VC ,
since they are adjacent to v′. This is a contradiction. If v′′ = v there is a
vertex v′′′ ∈ C(H)∪M(H) that is not adjacent to v, since degH(v) < |C(H)| or
|M(H)| > 2 consist. However, v and v′′′ are in VC , since they both are adjacent
to v′. This is a contradiction. Therefore, v′ is in C(H).

37

Assume that there is an I-C-decomposition (VI , VC) of H + (v, w) such that
w is in VI . There is a vertex v′ ∈ C(H) ∪ M(H) \ {w} that is adjacent to w
and not adjacent to v, since degH(v) < |C(H)| or |M(H)| > 2 consist. v′ and
v are in VC , since they are adjacent to w. However, they are not adjacent in
H + (v, w). This is a contradiction. Therefore, w is in C(H + (v, w)).

Let v′ be a vertex in M(H) which is not w. (I(H), C(H) ∪ M(H)) is an
I-C-decomposition of H + (v, w). (I(H) ∪ {v′}, C(H) ∪ M(H) \ {v′}) is an
I-C-decomposition of H + (v, w). Therefore, v and v′ are in M(H + (v, w)).

Last, consider the case that vertices in M(H) do not induce a clique in H.
In this case, there is at least one vertex w′ in M(H) that is not equal to w.

Let v′ be a vertex in I(H) \ {v}. Assume that there is an I-C-decomposition
(VI , VC) of H + (v, w) such that v′ ∈ VC . Since v and w are not adjacent to v′,
they are in VI . However, there is an edge connecting them in H + (v, w). This
is a contradiction. Therefore, v′ is in I(H + (v, w)).

Assume that there is an I-C-decomposition (VI , VC) of H + (v, w) such that
v ∈ VC . Since w′ is not adjacent to v, w′ is in VI . There is a vertex v′ in
C(H) not adjacent to v, since otherwise v is isomorphic to w and should be in
M(H). v′ is in VI . However, there is an edge connecting v′ and w′. This is a
contradiction. Therefore, v is in I(H + (v, w)).

Let v′ be a vertex in M(H)\{w}. Assume that there is an I-C-decomposition
(VI , VC) of H + (v, w) such that v′ ∈ VC . Since M(H) is an independent set,
there is a vertex v′′ ∈ C(H) not adjacent to v. Since v′′ and w are adjacent to
v′, they are in VI . However, there is an edge connecting them in H + (v, w).
This is a contradiction. Therefore, v′ is in I(H + (v, w)).

Let v′ be a vertex in C(H). Assume that there is an I-C-decomposition
(VI , VC) of H + (v, w) such that v′ ∈ VI . Since w and w′ are adjacent to v′,
they are in VC . However, there is no edge connecting w and w′. This is a
contradiction. Therefore, v′ is in C(H + (v, w)).

Assume that there is an I-C-decomposition (VI , VC) of H + (v, w) such that
w ∈ VI . There is a vertex v′ ∈ C(H) not adjacent to v, since otherwise v is
isomorphic to w in H, and should be in M(H). Since v and v′ are adjacent
to w, they are in VC . However, there is no edge connecting them. This is a
contradiction. Therefore, w is in C(H + (v, w)). ut

Now, we consider that, given a split graph H, for what edge (v, w), H+(v, w)
is a child of H.

Lemma 4.26 Given a non-empty split graph H whose parent is H − (v∗, w∗),
H + (v, w)− (v∗, w∗) is not a split graph if and only if

• one of v and w is in I(H), and the other is in M(H), and

• one of v∗ and w∗ is in C(H), and the other is equal to v or w.

Lemma 4.27 Given a non-empty split graph H containing an edge (v′, w′) such
that H +(v, w) is a split graph and H−(v′, w′) is not a split graph, H +(v, w)−
(v′, w′) is a split graph if and only if

• both v′ and w′ are in C(H), and

38

• – M(H) = {v, w} and at least one of v′ and w′ is adjacent to no vertex
in I(H), or

– one of v and w are in I(H) and the other is in C(H) (we assume
that v ∈ I(H) and w ∈ C(H), in this case), degH(v) = |C(H)| − 1
one of v′ and w′ is not adjacent to any vertex in I(H) but v, and
M(H) is empty.

Proof of Lemma 4.26 Since H+(v, w)−(v∗, w∗) is not a split graph, (v∗, w∗)
is an edge in C(H + (v, w))×C(H + (v, w)) (otherwise, H + (v, w)− (v∗, w∗) is
a split graph by Lemma 4.22). Since H− (v∗, w∗) is a split graph, (v∗, w∗) is an
edge not in C(H)×C(H). Conversely, if (v∗, w∗) is in C(H + (v, w))×C(H +
(v, w)) and not in C(H)×C(H), H + (v, w)− (v∗, w∗) is not a split graph and
H − (v∗, w∗) is a split graph, by Lemma 4.22.

By Lemmata 4.23,...,4.25, C(H + (v, w)) contains at most one vertex that
is not in C(H). And if C(H + (v, w)) contains such a vertex v′, v′ is equal
to v or w. Moreover, if C(H + (v, w)) contains v′, {v, w} is in I(H) ×M(H).
Contrary, if {v, w} is in I(H)×M(H), C(H + (v, w)) always contains a vertex
not in C(H). ut
Proof of Lemma 4.27 Since H − (v′, w′) is not a split graph, both v′ and w′

are in C(H), by Lemma 4.22.
If M(H) = {v, w}, and one of v′ and w′ is not adjacent to I(H), then either

v′ or w′ is in M(H + (v, w)), by Lemma 4.23. Thus, H + (v, w) − (v′, w′) is a
split graph, by Lemma 4.22.

If {v, w} ∈ I(H) × C(H), degH(v) = |C(H)| − 1, v′ is not adjacent to any
vertex in I(H) but v, and M(H) is empty, then v′ is in M(H + (v, w)), by
Lemma 4.24. Thus, H + (v, w)− (v′, w′) is a split graph.

Otherwise, both v′ and w′ are in C(H + (v, w)), by Lemma 4.23, ..., and
Lemma 4.25. Thus, H+(v, w)−(v′, w′) is not a split graph, by Lemma 4.22. ut

From Lemmata 4.26 and 4.27, we can obtain the necessary and sufficient
condition for a graph to be a child of the given split graph. For simplicity, given
two edges e1 = (v1, v2) and e2 = (w1, w2), we write e1 < e2 if the younger
vertex of v1 and v2 is younger than the younger vertex of w1 and w2, or the
younger vertices of v1, v2 and w1, w2 are identical and the elder vertex of v1, v2

is younger than the elder vertex of w1, w2.

Lemma 4.28 Given a non-empty split graph H and vertices v, w ∈ V (H) such
that (v, w) 6∈ E(H), let H − (v∗, w∗) be the parent of H. Then, H + (v, w) is a
child of H if and only if

• when v is in I(H) and w is in C(H),

– if M(H) = ∅, degH(v) = |C(H)|−1, one of v′ and w′ is not adjacent
to any vertex in I(H) but v, (v, w) < (v∗, w∗) and (v, w) < (v′, w′),
where (v′, w′) is an edge in C(H) × C(H) whose one vertex is not
adjacent to any vertex in I(H),

– if otherwise, (v, w) < (v∗, w∗).

39

• when v is in I(H) and w is in M(H),

– (v, w) < (v∗, w∗), or
– if v∗ 6∈ M(H) or w∗ 6∈ M(H), H + (v, w) is a child of H.

• when both v and w are in M(H),

– if M(H) = {v, w}, (v, w) < (v∗, w∗) and (v, w) < (v′, w′), for any
edge (v′, w′) ∈ C(H)×C(H) whose one vertex is not adjacent to any
vertex in I(H),

– otherwise, (v, w) < (v∗, w∗).

In Lemma 4.28, we do not make the necessary and sufficient condition clear in
the case that v is in I(H), w is in M(H), and v∗ 6∈ M(H) or w∗ 6∈ M(H).
Anyway, we show that we can obtain every child of H in O(n) time, if we know
I(H), C1(H) = {v ∈ C(H) | ∃w ∈ I(H), s.t.(v, w) ∈ E(H)}, C2(H) = C \ C1

and M(H).

Lemma 4.29 Given a graph G = (V, E) and a split graph H that is a subgraph
of G, we can obtain every child of H in O(|V |) time, if we know I(H), C1(H) =
{v ∈ C(H) | ∃w ∈ I(H), s.t.(v, w) ∈ E(H)}, C2(H) = C \ C1 and M(H).

Proof In the case that v is in I(H), w is in M(H), and v∗ 6∈ M(H) or w∗ 6∈
M(H), in that case we do not show the necessary and sufficient condition in
Lemma 4.28. In other cases, it is clear that we can find each edge (v, w) that
satisfies the condition in Lemma 4.28 in O(|V |) time.

In this case, one of v∗ and w∗ is in C(H) and the other is not in C(H). Let
v̄ be the vertex not in C(H) among them. Then by Lemma 4.26, H + (v, w)−
(v∗, w∗) is not a split graph, if v or w is equal to v̄. Hence, we have to check,
for each H ′ = H + (v∗, w) and for each H ′ = H + (v, v∗), if H ′ is a child of H
or not. To do this, O(V (H)) time is needed. ut
By Lemmata 4.24,4.25 and 4.23, it is clear that we can maintain I(H), C1(H), C2(H)
and M(H).

Lemma 4.30 Given a graph G = (V,E), split graphs H, H + (v, w) such
that H and H ′ are subgraphs of G and H is a parent of H + (v, w), and
I(H), C1(H), C2(H) and M(H), we can obtain I(H ′), C1(H ′), C2(H ′) and M(H ′)
in O(|V |) time.

By Lemmata 4.29 and 4.30, the following theorem can be obtained.

Theorem 4.31 There is an algorithm for the split subgraph enumeration. The
time complexity of the algorithm to find each split subgraph of a given graph is
O(n) and the space complexity is O(n + m).

By considering the compliment, the following theorem is also obtained.

Theorem 4.32 There is an algorithm for the split supergraph enumeration.
The time complexity to find each split supergraph of a given graph is O(n) and
the space complexity is O(n + m).

40

4.2 Parent-Child Relation by Simplicial Vertex
Elimination

In this section, we develop an enumeration scheme by defining a parent through
a reverse search by a removal of a simplicial vertex. As contrasted with the
case of the previous section, given a graph G of n vertices, there are generally
exponentially many candidates of the children of G. However, we can enumerate
some graphs more quickly by this scheme than by that of the previous section. In
fact, chordal subgraph enumeration can be done in O(1) time for each chordal
graph, which we take O(n4) time by the algorithm in the previous section.
Moreover, we can enumerate some graphs that are subclasses of chordal graphs
even if we do not know about the relation by edge removals/additions.

4.2.1 Chordal Subgraph Enumeration

Definition of Parents

Let G = (V, E) be an arbitrary graph, and V = {1, . . . , n}. Suppose H is a
chordal subgraph of G and H has more than one edges. We define minimum
degree simplicial vertex of H as the simplicial vertex having the minimum degree,
and denote it by s∗(H). If there are more than one such simplicial vertices, we
choose the youngest (in vertices number) as s∗(H), so that s∗(H) is defined
uniquely. Note that any chordal graph has at least one simplicial vertex, hence
we can define s∗(H) for any chordal graph. We define the parent of H as
the graph obtained by eliminating s∗(H) from H. Since an elimination of a
simplicial vertex from a chordal graph results in another chordal graph, the
parent of H is also a chordal graph. If H is connected, then the parent of H
is also connected, since for any two neighbors of a simplicial vertex there is an
edge that connects the vertices (see Figure 4.2). The number of edges on the
parent chordal graph is always strictly less than that of its child. Thus, no
chordal graph becomes an ancestor of itself. Therefore, both the parent–child
relation defined on all chordal subgraphs of G and the parent–child relation
defined on all connected chordal subgraphs of G satisfy the conditions to be
used in the reverse search described in section 3.2.1. We illustrate an example
of the parent–child relation of chordal graphs in Figure 4.2. Root chordal graphs
are the graphs with exactly one edge.

Enumeration of Children

To enumerate all chordal graphs included in a given graph, we need an algorithm
to enumerate all root chordal graphs; we also need an algorithm to enumerate all
children of a given chordal graph. The former algorithm is very straightforward:
simply generate all subgraphs having exactly one edge. In the following, we
describe the algorithm to generate children of chordal graphs included in an
arbitrary graph. We consider both the case that the chordal graphs to be
enumerated are connected and the case that they do not need to be connected.

41

1

23

4

7

5

8

6

1

23

4

7

5

8

6

Figure 4.2: The left chordal graph has simplicial vertices 1, 3, 4 and 7. The
simplicial vertices of the minimum degree are 4 and 7. s∗(H) is 4. The right
chordal graph obtained by eliminating 4 from the left graph is the parent of the
left graph.

The parent of a chordal graph is obtained by eliminating a simplicial vertex.
Hence, given a connected chordal graph H in G, any of its connected children
is obtained by adding a vertex v to H. Adding a vertex v to H means adding
the vertex v to the vertex set of H and adding edges connecting the vertex v
and some other vertices C ⊆ V (H) to the edge set E(H). To obtain a child, it
is necessary that C contains at least one vertex, and is a clique in H so that v
is a simplicial vertex of the child. In the following, we characterize a necessary
and sufficient condition for the resulting graph to be a child of H.

We first introduce some notations. We denote the set of simplicial vertices
in H by S(H). The minimum degree in S(H) is denoted by k(H). We define
Sd(H) as the set of simplicial vertices of degree d in H, and particularly, we
denote Sk(H)(H) by S∗(H). We denote the youngest vertex in a vertex set X
by min(X). If X = ∅, we define min(X) is +∞. Suppose H be a connected
chordal graph included in G. Let v be a vertex of G and not of H. We denote
by N(H, v) the subgraph of H induced by the vertices which are adjacent to
v in G. We note that N(H, v) = H holds for any H and v if G is a complete
graph. Let C be a vertex subset in N(H, v). We denote by GH(v, C) the graph
obtained by adding v and edges connecting v and all vertices in C to H. It
is necessary that any connected child H ′ of a chordal graph H satisfies that
H ′ = GH(v, C) for some v and C, and C is a clique of H. We show below the
necessary and sufficient condition for H ′ = GH(v, C) to be a child of a chordal
graph H.

Lemma 4.33 For a vertex v 6∈ V (H) and a clique C in N(H, v), GH(v, C) is
a child of H if and only if one of the following conditions holds.

(1) |C| < k(H)

(2) |C| = k(H) and v < min(S∗(H) \ C)

(3) |C| = k(H) + 1, S∗(H) ⊆ C and v < min(S∗(H) ∪ (Sk(H)+1(H) \ C)).

In order to prove Lemma 4.33, we first claim the following propositions.

42

Proposition 4.34 Any simplicial vertex u (6= v) in GH(v, C) is simplicial in
H.

Proof If u is not adjacent to v, the neighbors of u form a clique in H. If u is
adjacent to v, the elimination of v from the neighbors of u also forms a clique
in H. Thus, in both cases, u is simplicial in H. ut

Proposition 4.35 GH(v, C) is a connected chordal graph, and v is simplicial
in GH(v, C).

Proof Let X be a cycle in GH(v, C) having at least four edges. If X does not
include v, then X is included in H, hence X has a chord. If X includes v, then
X includes at least two neighbors of v. The edge connecting the two neighbors
is a chord of X, thus any cycle in GH(v, C) of at least four edges has a chord.
Since the neighbors of v form C which is a clique, v is simplicial in GH(v, C). ut
Proof of Lemma 4.33 The above two propositions show that GH(v, C) is a
connected child of H if and only if s∗(GH(v, C)) = v. Thus, in order to prove
the statement, we only need to check whether or not s∗(GH(v, C)) = v holds in
the case of the conditions (1), (2) and (3). We consider the following four cases
according to the size of C.

(a) |C| < k(H): The degree of v in GH(v, C) is |C| and is smaller than
degrees of any other simplicial vertex in H. From Proposition 4.34, any
simplicial vertex in GH(v, C) is a simplicial vertex in H, hence v is the
unique minimum degree vertex among simplicial vertices in GH(v, C).
Thus, s∗(GH(v, C)) = v.

(b) |C| = k(H): Similarly to the above, v has the minimum degree (k(H))
among simplicial vertices in GH(v, C). However it is possible that there
are some other simplicial vertices whose degree are also k(H). Since the
degree of vertices of C in GH(v, C) is larger than k(H), S∗(GH(v, C)) is
equal to (S∗(H) \ C) ∪ {v}. Thus, s∗(GH(v, C)) = v if and only if v is
younger than min(S∗(H) \ C).

(c) |C| = k(G) + 1: In this case, v has the minimum degree in S(GH(v, C))
if and only if S∗(H) ⊆ C holds. Thus, s∗(GH(v, C)) = v if and only if
S∗(H) ⊆ C and v < min(S∗(H) ∪ (Sk(H)+1(H) \ C)) hold.

(d) |C| > k(H) + 1: In this case, C ∩ S∗(H) = ∅ since any vertex in S∗(H) is
adjacent to exactly k(H) vertices. Thus, it is clear that s∗(GH(v, C))(=
s∗(H)) is never equal to v.

From these observations, we obtain that for a vertex v 6∈ H and a clique C in
H,

43

• if one of (1), (2) or (3) holds, GH(v, C) is a connected child of H,
and
• if none of (1), (2) and (3) holds, i.e.,

one of the below holds,
(2’) |C| = k(H) and v > min(S∗(H) \ C),
(3’) |C| = k(H) + 1 and S∗(H) \ C 6= ∅,
(3”) |C| = k(H) + 1 and v > min(S∗(H) ∪ (Sk(H)+1(H) \ C)),
(4’) |C| > k(H) + 1,

then GH(v, C) is not a child of H.
ut

Lemma 4.33 characterizes the children of a connected chordal graph effi-
ciently. From the lemma, we obtain an algorithm to enumerate the children of
a connected chordal graph. It directly leads an algorithm to enumerate con-
nected chordal graphs in an arbitrary graph Ḡ. In Figure 4.3, we describe the
algorithm. Note that it is easy to generate all cliques whose size are restricted,
hence, if Ḡ is a complete graph, the algorithm becomes more simple.

procedure enum sub connected chordal(H, G = (V, E))
H: chordal graph, G: graph;
begin
1: output H;
2: if |V (H)| = n then return;
3: if k(H) = 1 then do

for each pair of vertices v 6∈ H and u ∈ H
such that (u, v) ∈ E and v < min(S∗(H) \ {u}),

call enum sub connected chordal(GH(v, {u}), G);
return;

end;
4: for each d such that Sd(H) 6= ∅,

compute Sd(H) and min(Sd(H));
5: for each vertex v 6∈ V (H) with non-empty N(H, v),

for each clique C in N(H, v) of size at most k(H)− 1 in H,
call enum sub connected chordal (GH(v, C), G)

for each v 6∈ G;
6: for each pair of vertex v 6∈ V (H) and clique C in N(H, v) of size k(H)

such that v < min(S∗(H) \ C),
call enum sub connected chordal (GH(v, C), G);

7: for each pair of vertex v 6∈ V (H) and clique C in N(H, v) of size k(H) + 1
such that S∗(H) ⊆ C and v < min(S∗(H) ∪ Sk(H)+1(H)),

call enum sub connected chordal (GH(v, C), G);
end.

Figure 4.3: Algorithm for connected chordal subgraph enumeration in an arbi-
trary graph.

44

Not Necessarily Connected Case

To characterize the children for the parent–child relation on general chordal
graphs, we simply modify the condition “C has to be a clique of H” to “C has
to be a clique of H, or a singleton of a vertex not in V (H) ∪ {v}”, which is
equivalent to “C is a clique in the graph (V (G), E(H))”. We can prove the
lemma below analogously. We do not need to modify the definition of parents
of chordal graphs.

Lemma 4.36 Let H be a chordal subgraph of G = (V, E). Let C be a clique
of H, or a singleton of a vertex not in V (H) ∪ {v}. For a vertex v 6∈ V (H),
GH(v, C) is a child of H if and only if one of the following conditions holds.

(1) |C| < k(H)

(2) |C| = k(H) and v < min(S∗(H) \ C)

(3) |C| = k(H) + 1, S∗(H) ⊆ C and v < min(S∗(H) ∪ (Sk(H)+1(H) \ C)).

In the case of Lemma 4.33, it is clear that there is a bijection between
GH(v, C) and a pair of (v, C). However, in the case of Lemma 4.36, if C is a
singleton of a vertex w 6∈ V (H)∪ {v}, we can sometimes swap v and w, that is,
GH(w, {v}) is also a child of H and GH(w, {v}) is equal to GH(v, C). Thus, if
we generate all children satisfying one of (1), (2) or (3), we sometimes generate
the same child twice. To avoid this, we must not generate a child if C is a
singleton w and w is younger than v.

From the proofs of the lemmas, we directly obtain the following corollary.

Corollary 4.37 If GH(v, C) is a child of H, then k(GH(v, C)) = |C|.

Enumeration of Cliques in a Chordal Graph

The algorithm described in Figure 4.3 requires a subroutine to enumerate cliques
of sizes at most k in a given chordal graph. We can enumerate cliques in a general
graph G = (V, E) in O(|V |) time for each by a simple backtracking algorithm.
However, we cannot use this algorithm for an enumeration algorithm that takes
O(1) time for each clique. Here, we describe a new algorithm to enumerate all
size-restricted cliques in a chordal graph H that takes O(1) time for each clique.

Our algorithm to do this is:

procedure enum cliques(H, k)
H : chordal graph, k : integer;
begin

Let v be a simplicial vertex of H.
Enumerate all cliques of size at most k that contain v.
Eliminate v from H.
enum cliques(H,k);

end.

45

1

23

4

7

5

8

6

Ḡ

1

23

4

7

5

8

6

G

1

23

4

7

5

8

6

G4

1

23

4

7

5

8

6

G6

Figure 4.4: Examples of G,H, G4 and G6.

Let v be a simplicial vertex of H. Consider a partition of the set of cliques in
H, all cliques including v, and all cliques not including v. Since the neighbors
of v form a clique, v and its neighbors induce a complete graph. Thus, we can
enumerate, as a vertex set, every clique that includes v and whose size is up to
k by combining v and every vertex subset whose size is at most k−1 and whose
elements are neighbors of v. We can enumerate the cliques of size at most k
and not including v recursively, that is, we can enumerate all cliques of size at
most k in the graph obtained by eliminating v from H. We choose the vertex v
in each level of the recursive calls along a perfect elimination ordering so that
only constant time is needed to obtain a simplicial vertex in each level of the
recursive calls, if a perfect elimination ordering of H is already known. Note
that we can generate each subset of size at most k−1 with reverse search, where
we define the parent subset of a subset P including more than one elements as
a subset obtained by removing the biggest element, as element number, from P .
It is easy to obtain every child of a subset in constant time simply by adding to
a subset of size at most k − 2 an element whose element number is bigger than
those of all elements in it; then the resulting subset is a child of the subset, and
all children are obtained in this way. Thus, the following theorems are obtained.

Theorem 4.38 We can enumerate all cliques of sizes at most k in a chordal
graph in constant time for each clique and additional time to obtain a perfect
elimination ordering, so that the size of the difference between two consecutive
cliques is constant.

If we think of the case that k is equal to n, the following theorem is also
obtained.

46

Theorem 4.39 We can enumerate all cliques in a chordal graph in constant
time for each clique, so that the size of the difference between two consecutive
cliques is constant.

Time Complexity

The remaining problem is about time complexity. We refer to the time com-
plexity of our algorithms here. First, we show that our algorithm to enumerate
all connected chordal graphs in a complete graph costs constant time on average
to enumerate every chordal graph. To show that the time complexity to enu-
merate every chordal graph in a complete graph is constant is done analogously.
Bounding the time complexity in the case of enumerating chordal graphs in G,
which is not a complete graph, needs some additional observations.

We define an iteration of the algorithm as the operations in a vertex of the
computation tree, which is a tree representation of the recursive structure of an
execution of the algorithm. Thus, an iteration corresponds to the operations
in an execution of enum sub connected chordal excluding the operations in the
recursive calls generated from it. Iterations and connected chordal graphs have
a one-to-one correspondence, thus we call an iteration inputting a chordal graph
H iteration of H. In the rest of this subsection, we show that the computation
time of an iteration of H is linear in the number of children of H. To show this,
we bound the computation time of each step in an iteration one by one.

It is clear that we can run steps 1 and 2 in Figure 4.3 in constant time. From
Corollary 4.37, we can compute k(H) in constant time. Thus, we can perform
the conditional branch in step 3 in constant time. In order to execute step 3
quickly in the case k(H) = 1, we maintain a sorted list of the vertices in S1(H)
at every iteration. We can delete a vertex from the list in constant time. When
the algorithm constructs GH(v, C) and adds v to S1(H) in some iteration, v
is always younger than any vertex in S1(H). Thus, we can add a vertex v to
S1(H) in constant time by attaching v to the head of the list.

To compute Sd(H) and min(Sd(H)) in step 4 takes O(|V (H)|) time. When
we execute step 4, we have k(H) ≥ 2. Thus, the set of cliques of sizes at most
k(H) − 1 includes cliques whose sizes are one. We can also execute step 7 in
O(|V (H)|) time, since at most one clique satisfies the condition of step 7. Since
the number of cliques of one vertex in H is |V (H)|, H has at least |V (H)|
children. Therefore, the computation time for steps 4 and 7 is linear in the
number of children of H. This means that the computation time is at most
linear in the number of children.

The enumeration algorithm of cliques in a chordal graph requires a perfect
elimination ordering. Since in each iteration the algorithm adds a simplicial
vertex to the graph, the ordering of the vertices added to obtain H reversely
forms a perfect elimination ordering. Thus, we can keep a perfect elimination
ordering of the current operating graph in memory, and update it in constant
time at each iteration.

Step 6 takes a long time in a straightforward way. To avoid this, we use
cliques C ′ of size k(H)− 1 found in step 5. We find all vertices u ∈ V (H) such

47

that there is a vertex v 6∈ V (H) satisfying v < min(S∗(H) \ (C ′ ∪ {u})). To
satisfy the condition, S∗(H) \ C ′ includes at most one vertex younger than the
minimum vertex not included in H. We can check this in O(|C ′|) time.

Above, we saw that steps 5, 6 and the maintenance of the sorted list of
the vertices in S1(H) take O(|C|) time for each child. We can reduce the time
to compute GH(v, C) in step 5 by using GH(v, C ′) where C ′ is the last clique
obtained. By modifying GH(v, C ′) to obtain GH(v, C), we can reduce the time
complexity to O((C \ C ′) ∪ (C ′ \ C)). Thus, from Theorem 4.38, the reduced
computation time complexity is constant time for each on average. From similar
observation, the computation time complexities for steps 5, 6 and the mainte-
nance of the sorted list of the vertices in S1(H) are bounded by a constant for
each child on average. Therefore, the following theorem is obtained.

Theorem 4.40 For a given complete graph Kn, we can enumerate all connected
chordal graphs, which are equivalent to all edge subsets of Kn inducing connected
chordal graphs, in constant time for each edge subset, and in O(n2) memory.

In an analogous way, the following theorem is also obtained.

Theorem 4.41 For a given complete graph Kn, we can enumerate all chordal
graphs, which are equivalent to all edge subsets of Kn inducing chordal graphs,
in constant time for each edge subset, and in O(n2) memory.

In the case of generating all connected or not necessarily connected chordal
graphs in an arbitrary graph G = (V, E), we have to compute N(H, u) for all u ∈
V \V (H), since N(H, u)\N(GH(v, C), u) = {v} 6= ∅ (In the case of enumerating
connected chordal graphs, since N(H, u) is always equal to N(GH(v, C), u), we
do not have to compute N(H, u) for each iteration). Computing N(H, u) for
each u with no information takes a long time. In order to reduce the time,
we maintain N(H,u) along the changes of the current chordal graph H. As a
result, we will show that the computation time to obtain all N(H ′, u) to be used
is O(|Chd(H ′)| + 1), where Chd(G′) is the set of children of H ′. This implies
that the computational time with respect to this operation is constant for each
output chordal graph on average, since the sum of the number of children over
all vertices in a tree is less than or equal to the number of vertices in the tree.

For each vertex not in H, let M(H, v) be the set of vertices in V \(V (H)∪{v})
and adjacent to v. We keep M(H, u) (u ∈ V \ V (H)) sorted in their indices.
Suppose that in an iteration we obtain a child H ′ = GH(v, C) of H for some
v and a clique C in N(H, v). To generate a recursive call with respect to H ′,
we compute N(H ′, u) and M(H ′, u) from N(H, u) and M(H,u) for each u ∈
V \ (V (H) ∪ {v}). The computation with respect to M(H ′, u) is O(|M(H, v)|),
since M(H ′, u) = M(H,u) \ {v} if u ∈ M(H, v) and M(H ′, u) = M(H, u)
otherwise.

For any vertex u in neither H nor M(H, v), N(H ′, u) is equal to N(H,u).
For any vertex u ∈ M(H, v), N(H ′, u) is obtained from N(H, u) by adding v and
edges connecting v and vertices both in N(H, v) and C. In this way, the compu-
tation time to obtain N(H ′, u) for all u ∈ M(H, v) is O(

∑
u∈M(H,v) |V (N(H,u))|),

48

where V (N(H, u)) is the vertex set of N(H, u). If |C| ≥ 2, we obtain a child
by adding an edge (u,w) to H ′ for any w in N(H ′, u), since k(H ′) ≥ 2 holds.
Hence, we have

|M(H, v)|+
∑

u∈M(H,v)

|V (N(H, u))| ≤ O(|Chd(G′)|).

Suppose that |C| = 1. We denote the unique element in C by w (i.e.,
C = {w}). In this case, N(H ′, u) \N(H, u) includes at most three edges, which
are (u, v), (u,w) and (v, w). Thus, we can obtain N(H ′, u) from N(H, u) in
constant time by looking the adjacency matrix of G. The computation time to
obtain N(H ′, u) for all u ∈ M(H, v) is O(|M(H, v)|). We first consider the case
that |S1(H ′)| = 1, that is, v is the unique simplicial vertex in H ′ whose degree
is one. In this case, for each u ∈ M(H, v), H ′ has a child obtained by adding the
edge (u, v) to H ′. Hence, |M(H, v)| = O(|Chd(H ′)|), and the time to compute
all N(H ′, u) for all u ∈ M(H, v) is O(|Chd(H ′)|).

Next, consider the case that |S1(H ′)| > 1. Then, v is the minimum vertex
among S1(H ′). Let v′ be the second minimum in S1(H ′). We have the following
property.

Lemma 4.42 For any descendant H̃ of H ′, s∗(H̃) < v′, the degree of s∗(H̃)
is one, and S1(H̃) includes at least two vertices no greater than v′ that are not
adjacent to each other.

Proof Suppose that H̃ does not satisfy the condition, and without loss of gen-
erality, any ancestor of H̃ satisfies the condition. Let P (H̃) be the parent of
H̃. From the assumption, s∗(P (H̃)) < v′, the degree of s∗(P (H̃)) is one, and
S1(P (H̃)) includes at least two vertices not greater than v′ that are not adja-
cent to each other. Then, s∗(H̃) has to be connected to at least two vertices in
S1(P (H̃)) that are not adjacent to each other. This contradicts the fact that
the neighbors of s∗(H̃) form a clique. ut

From the lemma, we can see that for any descendant of H ′, u > v′ will
never be added. Thus, N(H,u) does not need to be computed for any u > v′.
We compute N(H ′, u) and M(H ′, u) for all vertices u ∈ M(H, v) with u < v′.
We can do this in constant time for each u ∈ M(H, v) with u < v′ by tracing
M(H, v) in the ascending order. For each u ∈ M(H, v) with u′ > v, H ′ has
a child obtained by adding the edge (u, v) to H ′. Thus, |{u|u ∈ M(H, v), u <
v′}| = O(|Chd(H ′)|).

In every case, we have proved that the computation time to obtain N(H ′, u)
and M(H ′, u) is O(|Chd(H ′)|+ 1). Thus, the following theorem is obtained.

Theorem 4.43 For a given graph G, we can enumerate all chordal graphs,
which are equivalent to all edge subsets of G inducing chordal graphs, in constant
time for each. The memory space necessary to run the algorithm is O(n3).

49

4.2.2 Subgraph Enumerations with Forbidden Induced Sub-
graphs

Many graph classes are known to be subclasses of chordal graphs. Some of them
are characterized by forbidden induced subgraphs, where graphs are character-
ized by forbidden induced subgraph F means that the graphs do not contain
subgraphs isomorphic to F as induced subgraphs. (We sometimes say that the
graphs are F -free.) Chordal graphs are characterized by cycles of the size more
than three as forbidden induced subgraphs. Interval graphs are characterized
as asteroidal triple-free chordal graphs. Block graphs/Ptolemaic graphs are also
diamond/gem-free chordal graphs (see Section 2.2). In this subsection, we con-
sider subgraph enumeration of graphs belonging to subclasses of chordal graphs
and characterize by forbidden induced subgraphs.

Notice that we have only to consider the case that the forbidden graph F is
chordal, since otherwise F contains a chordless cycle as an induced subgraph,
and it means that graphs containing F as induced subgraphs automatically
contain cordless cycles as induced subgraphs and are not chordal.

The main idea of our algorithm is to enumerate chordal graphs in the way
of the previous section (Section 4.2.1), and when a forbidden graph is reached,
to stop searching the descendants. First, we show that, in this way, we can
enumerate all chordal graphs that have no given induced subgraphs.

Lemma 4.44 Given a graph F and given a non-F -free chordal graph H, any
descendant of H in the enumeration tree described in Section 4.2.1 is non-F -
free.

Proof We prove the equivalent statement: The ancestors of F -free chordal
graph H ′ are always F -free.

Given an F -free chordal graph H ′, the parent of H ′ in the enumeration
tree described in Section 4.2.1 is an induced subgraph of H ′. It thus does not
contain a graph isomorphic to F as an induced subgraph, as well. Applying this
recursively to the ancestors of H ′, we obtain the statement. ut
In the algorithm, we generate every child of a chordal graph H, and continue
the recursion only when the child does not contain the forbidden graph as an
induced subgraph. From the lemma above, the algorithm generates all the F -
free chordal graphs included in a given graph G.

We can enumerate F -free chordal subgraphs in given graph G by the algo-
rithm described above. The problem is that there may be exponentially many
children for a chordal graph. Thus, if we check each of them to determine
whether or not they contain the forbidden graph as an induced subgraph, and
if many of them do contain the forbidden graphs as induced subgraphs, the
algorithm becomes a non-polynomial time delay one. Therefore, it is not true
that we can always develop polynomial time delay algorithms in a naive way.
However, if F has some good properties, such as the sizes of F is constant, we
can develop polynomial time delay subgraph enumeration algorithms.

For the simplest example, we consider the case of block graphs. Given a
block graph H, we add a simplicial vertex v to a clique C in H and obtain

50

GH(v, C) in the algorithm. When |C| = 1, there is no possibility that GH(v, C)
becomes a non-block graph (it is impossible that GH(v, C) contains a diamond
as an induced subgraph).

When |C| = 2, it is possible that GH(v, C) contains diamond as an induced
subgraph. If the vertices of C have a common neighbor v′, then v, C and v′

induce a diamond (see Figure 4.5). Similarly, when |C| > 2, if two vertices in
C have a common neighbor v′ 6∈ C, then v, v′ and the two vertices in C also
induce a diamond.

Observation 4.45 Given a block graph H, clique C of H and a vertex v 6∈
V (H), GH(v, C) is not a block graph if and only if any two vertices in C do not
have a common neighbor v′ 6∈ C in H.

This observation is equivalent to the one below.

Observation 4.46 Given a block graph H, clique C of H and a vertex v 6∈
V (H), GH(v, C) is a block graph if and only if every vertex v′ adjacent to two
vertices of C is in C.

In order to avoid generating exponentially many chordal graphs whose ver-
tices induce diamonds, we use the binary partition method to enumerate every
clique C such that GH(v, C) is a child of H; we divide the problem into two
subproblems: to enumerate every clique C containing edge e where GH(v, C)
is a child of H, and to enumerate every clique not containing edge e where
GH(v, C) is a child of H.

To enumerate cliques containing edge e = (v1, v2), we first enumerate all the
vertices that are adjacent to both v1 and v2 in H. We denote the set of such
vertices by Ṽ (v1, v2). From the observation 4.46, when C contains v1 and v2,
GH(v, C) is diamond-free only if C = Ṽ (v1, v2)∪ {v1, v2}. Therefore, if vertices
of Ṽ (v1, v2) do not induce a clique, the child GH(v, C) for any C containing
v1 and v2 is always non-block. Nor, if some edge connecting v and a vertex
of Ṽ (v1, v2) is not in G, that is the edge is not allowed to be added, GH(v, C)
for any C containing v1 and v2 is always non-block. Thus, in such cases, we
stop enumerating cliques containing e. Otherwise, we have only to determine
whether or not GH(v, Ṽ (v1, v2) ∪ {v1, v2}) is a block graph, and if it is a block
graph, output Ṽ (v1, v2)∪{v1, v2}. From the observation above, there is no other
clique C ′ containing e and GH(v, C ′) is a block graph. To enumerate cliques
not containing e, we only have to remove the edge e from H and recursively
continue the enumeration by the binary partition.

The time complexity to enumerate one clique is thus O(mn2).

Theorem 4.47 There is an algorithm for block subgraph enumeration algo-
rithm that enumerates each block graph in O(mn2) time.

A Ptolemaic subgraph enumeration algorithm can be developed similarly.
GH(v, C) is Ptolemaic unless three vertices in C and a vertex w ∈ V (H) induce
a diamond. Thus, the observation for block graphs is slightly changed.

51

1

2 3

4

Figure 4.5: When we add a simplicial vertex 4 and connect it to vertices 2 and
3, we also have to connect vertex 1, since otherwise vertices 1, 2, 3, and 4 induce
a diamond.

Observation 4.48 Given a Ptolemaic graph H, clique C of H and a vertex
v 6∈ V (H), GH(v, C) is not Ptolemaic if and only if every vertex v′ adjacent to
two vertices v1, v2 ∈ C and a vertex that is adjacent to v1 or v2, is in C.

We redefine Ṽ (v1, v2) as vertices that satisfy the below, so that Ṽ (v1, v2) keeps
the property that when C contains v1 and v2, GH(v, C) is diamond-free only if
C = Ṽ (v1, v2) ∪ {v1, v2}.

• adjacent to v1 and v2,

• adjacent to w 6= v1, v2 which is adjacent to v1 and not adjacent to v2, or

• adjacent to w 6= v1, v2 which is not adjacent to v1 and is adjacent to v2.

Thus, obtaining Ṽ (v1, v2) costs O(n3). However it is still polynomial in n.

Theorem 4.49 There is an algorithm for a Ptolemaic subgraph enumeration
algorithm that enumerates each Ptolemaic graph in O(mn3) time.

52

Chapter 5

Conclusion

Focusing on polynomial time delay subgraph/supergraph enumeration algo-
rithms, we developed two types of algorithms based on the reverse search method.
One type defines a parent by an edge addition or an edge removal and the other
defines a parent by a simplicial vertex elimination. The first type uses the fact
that there are only O(n2) edges in Kn, and achieves polynomial time delay al-
gorithms. Both subgraph enumeration algorithms and supergraph enumeration
algorithms can be developed by this method. The second type of algorithm uses
nice properties of simplicial vertices and the fact that cliques in a chordal graph
can be enumerated quickly. This type of algorithm for chordal subgraph enu-
meration is faster than the first type (it needs only constant time to enumerate
each chordal graph). However, only subgraph enumeration algorithms can be
developed by this method.

In developing the first type of algorithm, We focused on edge additions and
edge removals on such graphs as chordal graphs and interval graphs. We showed
that rooted tree structures can be defined by these additions and removals on
all the chordal (or interval, strongly chordal, etc.) supergraphs of a given graph,
and on all the chordal (etc.) subgraphs of a given graph. Using the structures,
we introduced algorithms for the subgraph and supergraph enumerations. The
time complexity to find every chordal, interval, strongly chordal or split graph
containing a given graph are O(n3),O(n3), O(m · n2) and O(n) for each, re-
spectively. The time complexity to find all chordal, interval, strongly chordal,
weakly chordal or split graphs included in a given graph is O((n+m)2), O((n+
m)2), O(m · min(m log n, n2)), O(m4) and O(n) for each, respectively. This
method is general, and we think that it can be used to enumerate many graphs
not stated in this thesis. To develop a polynomial time delay subgraph enu-
meration algorithm for graph class G, we have only to show that we can always
obtain a graph in G by removing an edge from a non-empty graph in G. To
develop a polynomial time delay supergraph enumeration algorithm for graph
class G, we have only to show that we can always obtain a graph in G by
adding an edge to a graph in G that is not Kn, though, in order to obtain faster
algorithms, we have to prove some additional facts specific to each problem.

53

For the second type of algorithm, we developed an algorithm to enumerate
all the cliques of a chordal graph in constant time for each. Since we define
the parent of a chordal graph by simplicial vertex elimination, the children of
a chordal graph are obtained by adding a simplicial vertex to cliques. Thus,
using this algorithm, every child of a chordal graph can be generated efficiently,
in O(1) time for each. This method is specific for chordal graphs. However, we
also developed polynomial time delay algorithms for subgraph enumeration of
graphs which are chordal and have some forbidden induced subgraphs.

54

Bibliography

[1] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in
large databases, Proceedings of VLDB ’94 (1994) 487–499

[2] Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.:
Efficient substructure discovery from large semi-structured data, Proceed-
ings of Second SIAM International Conference on Data Mining 2002 (2002)
158–174

[3] Avis, D., and Fukuda, K.: Reverse search for enumeration, Discrete Applied
Mathematics 65 (1996) 21–46

[4] Beeri, C., Fagin, R., Maier, D., and Yanakakis, M.: On the desirability of
acyclic database schemes, Journal of the ACM 30 (1983) 479–513

[5] Bender, E. A., Richmond, L. B., and Wormald, N. C.: Almost all chordal
graphs split, Journal of the Australian Mathematical Society, (A)38 (1985)
214–221

[6] Bitner, J. R., Ehrlich, G., and Reingold, E.: Efficient generation of the
binary reflected Gray code, Communication of the ACM 19(9) (1976) 517–
521

[7] Blair, J. R. S., and Peyton, B.: An introduction to chordal graphs and
clique trees, Graph Theory and Sparse Matrix Computation, IMA56
(1993) 1–29

[8] Booth, K. S., and Lueker, G. S.: Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ tree algorithms, Journal of
Computing and System Sciences 13 (1976) 335–379

[9] Brandstädt, A., Le, V. B., and Spinrad, J.: Graph classes: a survey, SIAM
Monographs on Discrete Math and Applications, 3 (1999)

[10] Chandran, L. S., Ibarra, L., Ruskey, F., and Sawada, J.: Fast generation of
all perfect elimination orderings of a chordal graph, Theoretical Computer
Science, 307 (2003) 303–317

55

[11] Corneil, D. G., Olariu, S., and Stewart L.: The ultimate interval graph
recognition algorithm?, Proceedings of 9th Annual ACM-SIAM Symposium
on Discrete Algorithms, ACM, 1998, 175–180

[12] Dirac, G. A.: On rigid circuit graphs, Abhandl. Math. Seminar Univ. Ham-
burg 25 (1961) 71–76

[13] Endo, Y.: Bunkaikano moderu no rekkyo arugorizumu (in Japanese), grad-
uation thesis at Univ. Tokyo 2004

[14] Farber, M.: Characterizations of strongly chordal graphs, Discrete Mathe-
matics 43 (1983) 173–189

[15] Földes, S., and Hammer, P. L.: Split graphs, Proceedings of 8th South–
Eastern Conference on Combinatorics, Graph Theory and Computing
(1977) 311–315

[16] Goldberg, L. A.: Efficient algorithms for listing combinatorial structures,
Cambridge University Press, New York, 1993

[17] Golumbic, M. C.: Algorithmic graph theory and perfect graphs (2nd),
Elsevier, 2004

[18] Golumbic, M. C., Kaplan, H., and Shamir R.: Graph sandwich problems,
Journal of Algorithms 19 (1995) 449–473

[19] Gray, F.: Pulse code communications, U. S. Patent 2632058, 1953

[20] Kay, D. C., and Chartrand, G.: A characterization of certain ptolemaic
graphs, Canadian Journal of Mathematics 17 (1965) 342–346

[21] Micheal, H., Kurtz, S., and Ohlebusch, E.: Efficient multiple genome align-
ment, Bioinformatics 18(1) (2002) S312–S320

[22] Hammer, P. L., and Simeone B.: The splittance of a graph, Combinatorica
1 (1981) 275–284

[23] Hayward, R. B.: Weakly triangulated graphs, Journal of Combinatoric
Theory (B) 39 (1985) 200–208

[24] Hayward, R. B.: Generating weakly triangulated graphs, Journal of Graph
Theory 21 (1996) 67-69

[25] Hayward, R. B., Spinrad, J., and Sritharan, R.: Weakly Chordal Graph
Algorithms via Handles, Proceedings of 11th SODA (2000) 42–49

[26] Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for min-
ing frequent substructures from graph data, Lecture Notes in Computer
Science 1910 (2000) 13–23

56

[27] Kiyomi, M., and Uno, T.: Generating chordal graphs included in given
graphs, IEICE Transactions on Information and Systems E89-D (2006)
763–770

[28] Lekkerkerker, C. G., and Boland, J. C.: Representation of a finite graph
by a set of intervals on the real line, Fund Math 51 (1962), 45–64

[29] Makino, and K. Uno, T.: New algorithms for enumerating all maximal
cliques, Lecture Notes in Computer Science 3111 (2004) 260–272

[30] Nakano, S.: Enumerating floorplans with n rooms, Lecture Notes in Com-
puter Science 2223 (2001) 107–115

[31] Nakano, S.: Efficient generation of triconnected plane triangulations, Com-
putational Geometry Theory and Applications 27(2) (2004) 109–122

[32] Nakano, S., and Uno, T.: Constant time generation of trees with specified
diameter, Lecture Notes in Computer Science 3353 (2004) 33–45

[33] Nijenhuis, A., and Wilf, H. S.: Combinatorial algorithms for computers
and calculators, Academic Press, 1978

[34] Ott, S., and Miyano, S.: Enumeration of likely gene networks and network
motif extraction for large gene networks, Genome Informatics 14 (2003)
354–355

[35] Read, R. C., and Tarjan, R. E.: Bounds on backtrack algorithms for listing
cycles, paths, and spanning trees, Networks 5 (1975) 237-252

[36] Rose, D. J., Tarjan, R. E., and Lueker, G. S.: Algorithmic aspects of vertex
elimination on graphs, SIAM Journal on Computing 5 (1976) 266–283

[37] Savage, C.: A survey of combinatorial Gray codes, SIAM Review 39 (1997)
605–629

[38] Spinrad, J. P.: Doubly lexical ordering of dense 0-1 matrices, Information
Processing Letters 45 (1993) 229–235

[39] Taniguchi, K., Sakamoto, H., Arimura, H., Shimozono, S., Arikawa, S.:
Mining semi-structured data by path expressions, Lecture Notes in Artifi-
cial Intelligence 2226 (2001) 378–388

[40] Uno, T.: A new approach for speeding up enumeration algorithms, Lecture
Notes in Computer Science 1533 (1998) 287–296

[41] Uno, T.: Two general methods to reduce delay and change of enumeration
algorithms, National Institute of Informatics (in Japan) technical report
(2003)

[42] Uno, T., and Uehara, R.: Laminar structure of Ptolemaic graphs and its
applications, Lecture Notes in Computer Science 3827 (2005) 186–195

57

[43] Wells, M. B.: Generation of permutations by transposition, Mathematics
of Computation 15 (1961) 192–195

[44] Whittaker, J.: Graphical models in applied multivariate statistics, Wiley,
New York, 1990

58

Publication List

• Masashi Kiyomi, and Takeaki Uno: Generating chordal graphs included
in given graphs, Transactions on Information and Systems, IEICE, 2006

• Masashi Kiyomi, Shuji Kijima, and Takeaki Uno: Listing chordal graphs
and interval graphs, Proceedings of 32nd International Workshop on Graph-
Theoretic Concepts in Computer Science (2006)

• Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura: LCM ver 3.: Col-
laboration of array, bitmap and prefix tree for frequent itemset mining,
Proceedings of Open Source Data Mining Workshop (2005)

• Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura: LCM ver. 2: Efficient
mining algorithms for frequent/closed/maximal itemsets, Proceedings of
Workshop on Frequent Itemset Mining Implementations (2004) (Best Im-
plementation Award)

• Masashi Kiyomi, and Takeaki Uno: Enumerating split graph, The 9th
Japan-Korea Joint Workshop on Algorithms and Computation (2006)

• Masashi Kiyomi, and Takeaki Uno: Enumerating labeled chordal graph
on complete graph, Proceedings of 4th Japanese-Hungarian Symposium
on Discrete Mathematics and Its Applications (2005)

59

Acknowledgements

My supervisor Professor Takeaki Uno helped me many time to write this thesis
and other various thing. I began this research by his influence. He and his family
helped life at Switzerland where I visited him to discuss about this thesis. And,
of cource, he gave me many appropriate advices to write this thesis. I thank
him about these and other many things.

Mr. Shuji Kijima at the University of Tokyo gave some ideas in lemmas
about chordal graphs. He simplified the proof of Lemma 4.1. I enjoyed the
discussions with him.

60

