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Listing all the objects that satisfy a specified property, with no duplications, is calle
d “enumeration”. For example, the enumeration of substrings contained by a string
“abcab” is “a”, “b”, “c”, “ab”, “bc”, “ca”, “abc”, “bca”, “cab”, “abca”, “beab” and
“abcab”. Enumeration has many applications in engineerings such areas as data minin
g, optimization, and statistics, for example to find frequent patterns or to draw on so
me rules satisfied by the inputs. We sometimes use enumeration to prove mathematica
I theorems. Proving some mathematical theorems, such as the four-color theorem, req
uires considering whether they are true in so many cases that the help of computers
is needed. In such a case, we use enumeration. In this thesis, we study enumeration
with particular focus on graph enumeration: enumerating graphs belonging to some g
raph classes, such as chordal graphs, interval graphs, etc.

From early on, techniques to enumerate things in good ways are studied. Gray crea
ted an encoding of numbers so that successive numbers differ in exactly one bit; this
encoding is called “Gray code”. The concept that two successive objects differ in sm
all part has been used in enumeration. For example, Wells developed an algorithm to
list permutations in this way. Bitner et~al.~used Gray code to enumerate k-element s
ubsets of an n-element set. It is important for these researches that the successive tw
o enumerated objects differ in small part. With this property, we can efficiently do s
ome computations that need enumeration, and the question of whether there is a Gra
y code for a given class is itself an interesting mathematical problem. Classes to be e
numerated by this method are often very simple in structure, such as permutations or
k-element subsets. Since finding an encoding that satisfies Gray code like properties
is difficult and differs for each enumeration problem, little research has treated the e
numeration of complicated structures such as the graph classes that we treat in this t

hesis.

Enumeration is also used widely for solving problems in computer science, in which
methods are often very easy, and one does not even recognize enumeration is being
used. In the field of combinatorial optimization, we often use the branch-and-bound
method to solve integer programming problems. The branching process does enumerati
on, enumerating all the feasible solutions that satisfy a given condition. The divide-an
d-conquer method also uses enumeration. It corresponds to the binary partition metho
d in terms of enumeration. In column generation algorithms or in set covering appro
aches for some optimization problems, solutions of subproblems are enumerated, and
an optimal solution is found by combining them. In combinatorial game theory, we us
e enumeration to find the best move of a player. Indeed, we enumerate all the possib
le moves and select the move that obtains the best evaluation value in end game. In
these enumerations, the searches are done among tree structures, while enumerations
using Gray codes search along path structures. Searching along tree structures enable
s us to enumerate more complicated structures. However, in these area, researchers h
ave more actively studied how to omit enumeration where it is not needed; they have

researched how to cut the feasible domain where optimal solutions never exist. With



problems whose feasible domain and objective function are defined strictly, such as i
nteger programming, this is natural, since omitting vain enumeration means that we ¢
an solve the problems simply and in a short time.

Recently, due to the increase of computation power, we have come to be able to tr
eat huge amounts of data in practical amounts of time. Additionally, in areas such as
genome science, and data mining, enumeration has begun to be used. In these areas,
problems are often defined vaguely rather than strictly. Researchers in these areas w
ant o find some meaningful structure in huge data sets. Enumeration algorithms for g
raph structures such as paths, trees, and cliques are used in frequent péttern mining
problems. For example, we can find clusters by enumeration of cliques. Enumeration
of bipartite cliques is used in frequent item set mining. In these areas, since proble
ms are not strictly defined, research to obtain many possibly optimal objects or to ob
tain objects that at least have good properties is important, and enumeration has bec
ome a strong tool.

Once enumeration got to be a strong tool, demand surfaced for enumeration to app
ly more complicated structures. For example, some want to enumerate objects that sat
isfy some properties and are maximal; others want to enumerate very complicated gra
ph structures in a given graph. For researches to enumerate these complicated structu
res in short time is thus important.

For that matter, even though we can enumerate objects in a wide class, it does not
mean that we can enumerate objects in every subclasses of the class. It is characteri
stic of enumeration (in contrast, problems in areas such as optimization, can be solve
d if there is an algorithm for problems of their superclass's). For example, Chapter~4
contains a chordal subgraph enumeration algorithm that enumerates every chordal su
bgraph in a given graph and does so in a constant time for each, however, there is
not developed a constant time interval subgraph enumeration algorithm, although inte
rval graphs are a subclass of chordal graphs. Moreover, although we can of course e
numerate every graph of $n$-vertices in constant time, for many graph classes we do
not know whether or not we can enumerate them in constant time.

Hence, it is not sufficient to develop an algorithm for solving an enumeration probl
em that enuinerate graphs in a large class. Our results in this thesis is to develop fa
st algorithms for graph enumeration. In general, the number of objects to be enume
rated in an enumeration problem is very large. For example, think about enumerati
on of spanning trees in complete graph K,. The number of spanning trees is n"% Th
us, even if we take only O(1) time to find each spanning tree, it costs .Q(n“"‘) time.
We thus need to reduce the time used to output each object in order to keep the tot
al time reasonably short. Moreover, if the number of outputs is polynomial in the inp
ut size, enumerating each object in polynomial time in the input size automatically bo
unds the total time complexity to be polynomial in the input size. In order to use en
umeration for solving wide-ranging problems, such as optimization or data mining, en
umeration algorithms must be able to enumerate each object in polynomial time in th
e input size, and the faster this can be done, the better. Enumerating each object in

constant time is the best in the sense of time complexity. Thus, we estimate the effic



iency of enumeration algorithms by the time complexities for each output. If the del
ay between every consecutive two outputs is always polynomial in the input size, we ¢
all the algorithm “polynomial delay” or simply “polynomial”. Even though

it is difficult to develop a polynomial delay algorithm for enumeration problems, we ¢
an sometimes develop enumeration algorithms whose total time complexities to solve t
he problem are polynomial in the output size. Such enumeration algorithms are called
“output polynomial”. Polynomial delay enumeration algorithms are always output pol
ynomial. These criteria can be used to estimate how an algorithm is output-sensitive.

We also need to keep the total memory space reasonably small, as is the case for so
lving other computational problems. As for the space complexity, we use the usual sp
ace complexity criterion in enumeration problems, estimating the space complexity by

the size of inputs. Subgraph and supergraph enumeration have many applications. T
hese types of enumeration are special cases of graph enumeration in complete graphs.

We can thus use them for problems such as frequent pattern mining or optimizatio
n, as stated above. One application of the subgraph/supergraph enumeration appears i
n graphical modeling, in which we use graphs to model some systems. The vertices co
rrespond to random variables, and if two variables have a dependency, we connect th
em by an edge. If we know that graphs of a system belong to certain graph class suc
h as chordal graphs, we can investigate the system by enumerating such graphs. For
example, the system corresponding to chordal graphs is known as the decomposable m
odel, and was researched by chordal graph enumeration. However, the number of gra
phs of n vertices (n corresponds to the number of random variables) belonging to so
me graph class is often very large and enumerating all of them is impractical. In suc
h a case, if we know that some variables never have dependencies, we can omit enum
erating many systems, and this is done by subgraph enumeration. Similarly, if we kno
w that there must be some dependencies among some variables, we can use supergrap
h enumeration to reduce the total enumeration time.

Naive algorithms for an enumeration problem often take much time and/or space (t
ime exponential in the output size and/or space exponential in the input size). Develo
ping an output-sensitive enumeration algorithm that uses a small amount of memory i
s an important task. If we use an algorithm that finds neighbors (under some definiti
on) recursively, the algorithm often needs to store the objects previously output in m
emory in order to avoid making duplicate outputs. However, when we enumerate expo
nentially many (in the input size) objects in output-sensitive computational time with
a small memory, we have to avoid duplicate outputs without storing previously output

objects in memory, since storing them would require the size of the to be exponenti
ally large. Further, simple search strategies may fail with some problems. For examp
le, branch-and-bound type algorithms are not efficient if the subproblems related to t
he bounding operations are hard. Though it is not easy to develop an efficient algorit
hm for enumeration problems, efficient algorithms have been provided for some enum
eration problems, such as enumerations of vertices of a polytope, all cells in a hyper
plane arrangement, spanning trees of a graph, maximal cliques of a graph and perfec

t elimination orderings of a chordal graph.



There are some known results about subgraph enumeration. For example, given a g
raph G=(V,E), we can enumerate paths and cycles in it in polynomial time. The time
complexity for one output is O(|E|). Given a graph G, we can enumerate every tree
spanning G in constant time. Here, the number of edges of a spanning tree is oqv).
Thus, we must need O(]V|) time to output a spanning tree of G in the naive sense.
However, if the differences of any two consecutive outputs are in constant size, and
the algorithm always takes omly a constant time to obtain a graph from the previous
graph, we say the algorithm takes constant time to enumerate each graph. After the
establishment of the reverse search method for enumeration problems by Avis and Fu
kuda, enumeration algorithms have made a notable amount of progress. Many classes
have been proved to be enumerated in polynomial time in the input size. However, m
any graph classes remain that we do not know whether or not we can enumerate eve
n in polynomial time. Moreover, as for supergraph enumeration problems, little resear

ch has been done on them to the best of our knowledge.

In this thesis, we introduce some schemes for graph enumeration for both subgraph
enumeration problems and supergraph enumeration problems, and we develop our en
umeration algorithms that enumerate each graph in polynomial time using the scheme.
The algorithms are for chordal graphs, interval graphs, split graphs, block graphs,
Ptolemaic graphs, strongly chordal graphs and weakly chordal graphs. These graph cl
asses (except for chordal graphs itself and weakly chordal graphs) are subclasses of ¢
hordal graphs. To the best of our knowledge, our results are the first results about e

numeration of these graphs.

The organization of this thesis is as follows. We first introduce enumeration, focus
ing particularly on graph enumeration. Chapter 2 provides the preliminaries, notes ab
out terms that we use in this thesis, and explanations about graph classes. In Chapte
r 3, we discuss the difficulties of our enumeration problems, and explain the framewo
rk of the classical reverse search method. In Chapter 4, we develop algorithms for o
ur enumeration problems. They are of two types: one defines parents such that the di
fference between a graph and its parent is exactly one, and the other defines parents

such that the parent of a graph is obtained by eliminating a simplicial vertex. And,
we conclude the thesis in Chapter 5.
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