Computation in Classical Logic
and Dual Calculus

Daisuke Kimura

DOCTOR OF PHILOSOPHY

Department of Informatics,
School of Multidisciplinary Sciences,
The Graduate University for Advanced Studies
2006 (School Year)

March 2007

Acknowledgments

I would like to thank my supervisor, Professor Makoto Tatsuta, for his invaluable discus-
sions, helpful advice and encouragement. I would also like to thank him that he gave me the
chance to visit the University of Edinburgh and to discuss with many reseachers including
Philip Wadler.

I would like to thank Kazushige Terui and Makoto Kanazawa for very helpful comments
and discussions on this work.

I would like to thank Philip Wadler for valuable discussions and helpful comments.
Particular, his work on the dual calculus gave me the starting point of my thesis. I am
grateful to him for hosting me at the University of Edinburgh for a month. My visit was
funded by Sokendai student dispatch program. In this time, I had many fruitful discussions
with him about the dual calculus and his open question.

Finally, I wish to thank my family and friends, Kazuo Kimura, Keiko Kimura, Satoshi
Kimura, Haruki Kimura, Tatsuya Abe, Ryo Yoshinaka, Camille Yamada, Takeshi Ozawa,
Sebastien Duval and Atsuko Tanji, for their support and encouragement all along the way.

Contents
1 Introduction 1
1.1 BaCK@IOUNA *++ ++ =+ s sssmstasssssrsases et tatai bttt 1
1.2 COMULIDULIOMS +++++e#+eetereresrmserreeraeereeeetenntetteentettrnreae sttt aataeiaes 6
13 OVCrVieW of thlS thCSiS .. 7
2 Duality Between Call-by-value Reductions and Call-by-name Reductions 8
0.1 TrOQUCHON *++++++=+"+++++serersrnnrnnnssmmreetsetenssesaenunusaiiireresesssiaiessiinans 8
2.2 The AU-CAlCUIILS *++++#+ s +sssssssssensssesrssstaiss ettt 12
22.1 The call-by-name 1 ,u-calculus ... 14
222 The call-by-value du-caloulus =+ =+ wrssesssssssssssesensnsinnss 22
23 The dual Calculus ... 32
2.4 Translations from the Au-calculus into the dual calculus «==wx=rerrrerereereeeeess 38
24.1 The naive translation .. 38
2.4.2 The translation from CBN Au-calculus into CBN dual calculus- -+ 41
2.4.3 The translation from CBV Au-calculus into CBV dual calculus®*-** 49
2.5 Translation from the dual calculus into the Au-calculus «=-r-=soereeermrrereereees 55
251 The naive translation .. 56
2.5.2 The translation from CBN dual calculus into CBN Au-calculus®*-=**** 58
2.5.3 The translation from CBV dual calculus into CBV Au-calculus:-----** 62
2.5.4 Reloading property ... 67
2.6 Duality of call—by-narne and call—by—value .. 76
2.7 Appendix: Wadler’s systems and translations =« +x=reererrerresseress s sesreeneee 80
3 Polarized dual calculus and logical predicates for polarized linear logic 84
3 . 1 IntrOducti()n ... 84
30 LLP And P~ ++++eereeerereeeeraemmmmmmeeene ettt 86

3.3 The Systemm DOP™ +eeessesesesssssssssmrai ittt 87

3.4 The Au-calculus and the translations into DCP™ »xerererrrerrmrrreseseeseeseeees 90
3.4.1 The Au-caloulus -+ e+ e sressrasssrssrsssssssss et 90

3.4.2 The negative-translation from the Au-calculus into DCP™--svexeeeeeeee 92

3.4.3 The positive-translation from the Au-calculus into DCP™ «+xvexeeereees 98

3.5 Logical Predicates and Basic Lemma =+« +-++teseeserseessesssseninesnsaies 111

3.6 Fullness of the negative-translation -+ +-++++« =+ wssessesesssnsssnsniaseniieens 116

3.7 Fullness of the positive-translation:«+ -+ ++++ssssssssssssssnsnrssissiennes 119

4 Conclusion and Future Work 123

i

Chapter 1

Introduction

1.1 Background

The Curry-Howard correspondence

The Curry-Howard correspondence is a close relationship between computation and formal
logic, which was first observed by Curry and Feys [10] and Howard [30]. Computation
means the procedure that a computer follows according to its program, especially programs
described by functional programming languages. Under the Curry-Howard correspondence,
a formula of the logic is regarded as a type of a program, a proof is regarded as a program,
and a normalization procedure of a proof is regarded as a computational procedure of a
program. Therefore Howard called this correspondence ‘formulas-as-types’.

This correspondence plays the role of a bridge between theoretical computer science and
proof theory. From the computer science point of view, the Curry-Howard correspondence
gives the theoretical foundation of programming languages. This correspondence enables
us to see a logical proof as a program with the proof of its correctness. Therefore it gives
us a method ‘program extraction’ to verify a program, and obtain a correct one from a
logical proof. On the other hand, from the proof theoretic point of view, this correspondence
gives the interpretation of logical systems as programming languages. Logical systems that
have such a property are called constructive logic; a typical example of such a logic is
intuitionistic logic.

Although some mathematical models of computation have been proposed, the lambda
calculus introduced by Church [7] is widely used today. This calculus has powerful expres-

sive power though its simple grammar. The typed lambda calculus was also introduced by

—1-

R T .

Church, and is a foundation of functional programming languages. Gentzen introduced the
two most widely used formulations of logic: natural deduction and sequent calculus, in both
intuitionistic logic and classical logic. One of the most simple and essential formulation of
the Curry-Howard correspondence given by Howard is the interpretation between proofs of
propositional intuitionistic logic and terms of simply typed lambda calculus. For example,

a derivation of simply typed lambda calculus

x:A—=Bv:A—>Crv:Ad—>C z:Avrz: A
x:A—-Bv:A—>Cz:Avrvz:C
vViA—>Cz:Ar Axvz: (4 — B) =

(application)
C (abstraction)

corresponds to the following proof of intuitionistic logic

A—>BA—>CrA—-C Avr A
A—>BA—->CArC
A—>CAr(4—B)—

(— Elim)
C (— Intro)

A lot of works has been done to extend the Curry-Howard correspondence. Girard [20]
introduced system F, which corresponds to second-order propositional logic, and Reynolds
[43] independently invented this system in his study of polymorphism in typed functional
programming languages. Girard [20] extended this correspondence to higher-order intu-
tionistic propositional logic. Coquand and Huet [8] proposed the Calculus of Constructions,
and extended it to higher-order intuitionistic predicate logic. Moggi [37; 38] observed real
programming language features such as non-termination, non-determinism and side-effects,
and proposed the computational lambda calculus. Benton, Bierman and Paiva [6] extended
the Curry-Howard correspondence to intutionistic modal propositional logic using Moggi’s

calculus.

Continuations and the Au-calculus

In the recent years, extensions of the Curry-Howard correspondence that handle classical
logic have been formulated. Felleisen [16] introduced the C operator to model call/cc,
which is found in practical programming languages such as Scheme and SML/NJ. call/cc
means ‘call-with-current-continuation’, and it is one of the most typical examples of the
operators that provide explicit handling of the current control continuation, i.e., the current
control context. This operator makes functional languages more expressive, for instance,

exception handling and global jump, and allows us to describe more complicated programs.

2

Griffin [25] observed the type of Felleisen’s C operator, and showed that call/cc cor-
responds to Peirce’s Law, and extended Curry-Howard correspondence to classical logic.
Here we give an informal explanation of call/cc operator. It is modelled by call-by-name
- simply typed lambda calculus with the following constants:

call/ccyp: (A —>B)—A4)—> 4

abort,: L — 4

where 4, B are types and L means the result type. Reduction rules about these constants are

defined as follows.

E[call/ccyp M) — E[M(Az" .abortp E[z])]
E[aborty M] — M

where E[-] is an evaluation context accepting a term of type A. Intuitively the call/cc
operator carries the current context into its argument, and the abort operator aborts the

current context. The following is an example of Scheme programs using call/cc.

(define multlist
(lambda (inputlist)
(call/cc
(lambda (cc)
(letrec ((1s*
(lambda (list)
(if (ull? list)

1
(let ((x (car list)))
(Af =0 x)
(cc ®)

(* x (Is* (cdr 1ist))))1))))
(1s* inputlist))))))

When multlist receives an integer list as its argument, it recursively multiplies the list
elements. However, if it encounters an element equal to 0 during the calculation, multlist
immediately returns 0.

In this line of works, the Au-calculus introduced by Parigot [40] is well known. It cor-

responds to classical natural deduction, has a simple structure, and enjoys confluency and

-3 -

strong normalization. The Ap-calculus is as expressive as other popular functional pro-

gramming languages with control operators. For example, above call /cc and abort are

expressed by the following encodings:

(call/ccyp M) = pa Ja] M (A" pBP [e]x)
(abort, M)* = uo.M*

Later, a call-by-value variant of the Au-calculus was proposed by Ong and Stewart [39].

Computational duality and logical duality

Call-by-name strategy and call-by-value strategy have been well studied as evaluation strate-
gies of programming languages. Filinsky [17] suggested that duality between call-by-name
and call-by-value is clarified by the two notions of programs and continuations. Selinger
[45] gave categorical semantics of the call-by-name Au-calculus and the call-by-value one,
and explained Filinski’s duality in terms of categorical duality.

It is well known that the cut-elimination and normalization procedure of classical sys-
tems are non-deterministic. For example, if we consider the usual cut-elimination procedure

of LK, then we can rewrite in the following two ways.

Ar A B+ B
Ardc 7k C,BI-BW]; Ar 4 BrB
A BrA,B U A BrAB and A, BrA4,B

This phenomenon does not depend on the formulation of classical logic, but depends on the
duality of classical logic. There are numerous attempts to clarify the computational content
of this duality of classical logic. Barbanera and Berardi [4] proposed the symmetric A-
calculus, which corresponds to natural deduction style of classical logic with a clear notion
of duality. Curien and Herbelin [9] introduced the Aufi-calculus based on Gentzen’s classical
sequent calculus LK, and Wadler [48] proposed the dual calculus, which also corresponds
to LK.

The feature of the dual calculus is that it has both of terms and continuations as primi-
tives. The computational meaning of the duality of classical logic is expressed in the dual
calculus by the duality of terms and continuations. In the dual calculus, the call-by-name and
call-by-value strategies become dual strategies. Wadler [49] gave both directions of trans-
lation between the Au-calculus and the dual calculus, and showed that these translations

preserve the call-by-value and call-by-name strategies of each systems. In other words, he

—4—

explained Filinski’s duality in a purely syntactical way. However, the Au-calculus and the
dual calculus adopted in his paper are the equational systems, and he showed only preser-
vation property of the equality rules. This is because some rules are problematic to be
introduced as reduction rules, such as (n)-rules. However, when we discuss his results from
the point of view of correspondence between cut elimination procedure of sequent calculus
and normalization procedure of natural deduction, we should consider reduction rules. In
fact, Wadler noted an open question in his paper: whether one can replace the equations of
his paper by reductions, and extend the properties for equations to those for reductions.

Constructive aspect of classical logic

There is also a proof-theoretical approach to extract computational content from classical
proofs. The aim of this approach is to find a constructive classical system, which is complete
w.r.t. classical provability and has a deterministic normalization procedure. There is a lot of
works following this approach; FD and the Au-calculus [40] by Parigot, LC by Girard [23],
LKT and LKQ by Danos-Joinet-Schellinx [11], and polarized linear logic (LLP) by Laurent
[33]. LLP is a variant of linear logic with a good denotational semantics in terms of coherent
spaces. The most fundamental feature of LLP is that it has a clear distinction between
negative formulas, for which structural rules can be freely used, and positive formulas, for
which structural rules are forbidden. LLP is useful for understanding the constructive aspect
of classical logic. In particular, LLP suggests some close relationships between the call-by-
value / call-by-name computational duality and positive / negative logical duality.

Laurent defined two translations from the call-by-name and the call-by-value Au-calculi
into LLP, and showed their soundness, i.e. these translationé preserve reductions. The call-
by-name translation (-)° translates a classical formula into a negative one, in particular
a classical implication 4 — B into a negative formula 14° — B°. Therefore we call it
“negative-translation” in this paper. On the other hand, the call-by-value translation (-)*
translates a classical formula into a positive one, in particular a classical implication 4 — B
into a positive formula !(4° — ?B*). Therefore we call it “positive-translation” in this
paper. Furthermore, Laurent showed fullness of the negative-translation, i.e., every proof of
A° is equivalent to an image of a proof of 4 in classical logic via the negative-translation in
[34]. However, Laurent did not give a direct proof of the fullness of the positive-translation.
Another work to be done is to give a term syntax for LLP. Although the formulations of LLP

are given by the sequent calculus style and the proof-net style, proof-nets are mainly used

—5-

to study LLP. However, it is natural and worth introducing a term syntax which corresponds
to the sequent calculus style of LLP. Using such a term calculus, LLP will be understood
better by comparing the proof-net style with the sequent calculus style, and by considering

the relation to standard programming languages.

1.2 Contributions

The main theme of this thesis is to investigate the relationship between the computational
duality and the logical duality. We will discuss this theme in the following two ways.

First, we will discuss the relationship between the computational duality of call-by-value
/ call-by-name and the logical duality of Gentzen’s sequent calculus in chapter 2. Though the
research in this approach has already been done by Wadler [49] using the Au-calculus and
the dual calculus, he did not consider these systems as reduction systems but as equational
systems. However, when we discuss his results from a point of view of correspondence
between computational procedure and cut elimination procedure of sequent calculus, we
should consider reduction rules. So we refine the call-by-value and the call-by-name systems
of the Au-calculus and the dual calculus given in Wadler’s paper. These systems are defined
as reduction systems, and the main results of this chapter are Theorem 2.16, Theorem 2.21,
Theorem 2.28, Theorem 2.34, Proposition 2.35, Proposition 2.36, and Theorem 2.40. The
results of this chapter give the best possible answer to Wadler’s open question: whether
one can replace the equations of his paper by reductions, and extend the properties with
equations to properties with reductions.

Second, we discuss the relationship between the computational duality call-by-value /
call-by-name and the logical duality of positive / negative in chapter 3. We introduce a term
calculus for (a sufficiently large fragment of) Laurent’s polarized linear logic (LLP), called
polarized dual calculus (DCP~) which is based on the idea of the dual calculus. Laurent
gave the two kinds of formulations for LLP: the sequent calculus style and the proof-net
style. Proof-net is a well-known tool to observe computational properties of LLP, but there
is no term syntax corresponding to the sequent style formulation of LLP. Hence it is natural
to introduce a term syntax, which is compact and moreover well-related to standard func-
tional programming languages. Then we define two translations from the call-by-name /
the call-by-value Au-calculi into DCP~, and show their soundness (Theorem 3.4 and The-
orem 3.7). These translations are almost straightforward adaptions of Laurent’s, but the
positive translation is slightly different. Finally, we prove the fullness of these translations

—6—

in a way similar to the logical predicate method used by Hasegawa [27] (Theorem 3.19 and
Theorem 3.27).

1.3 Overview of this thesis

In chapter 2, we give the best possible answer to Wadler’s question. First, we analyze
Wadler’s results, and specify the problematic rules to solve his open question. Second, we
refine the Au-calculus and the dual calculus by the following steps. We adopt essential rules
in the point of view of computation and normalization of proofs, and exclude the problematic
and not essential rules. Then we give natural directions in the sense of computation and
normalization of proofs. Third, we give a translation from the call-by-name Au-calculus and
the call-by-name dual calculus, and its inverse translation. We show that these translations
preserve derivations and reductions. Further, we show the reloading properties of the call-
by-name translations: the composition of the call-by-name translation become identity maps
up to the call-by-name reductions. We also give call-by-value translations, and show the
preservation and reloading properties for the call-by-value translations. Finally, we obtain

our duality translations between the call-by-value Au-calculus and the call-by-name one by

"~ composing our translations with duality on the dual calculus. Our results correspond to

Wadler’s, but they are based on reductions.

In chapter 3, we introduce a term calculus for a sufficiently large fragment of LLP,
called polarized dual calculus (DCP™), which is based on the idea of Wadler’s dual calculus.
Then we define two translations from the call-by-name / the call-by-value Au-calculi into
DCP-, and show their soundness. These translations are almost straightforward adaptions
of Laurent’s, but the positive translation is slightly different. Finally, we prove the fullness
of these translations in a way similar to the logical predicate method used by Hasegawa
[27]. The notion of logical predicate (unary logical relation) is a well-established tool for
studying the semantics of various typed lambda calculi. In particular, logical predicates for
intuitionistic linear logic were introduced by Hasegawa [26] for category-theoretic models
of linear logic, and applied to prove full completeness of Girard translation from the simply
typed lambda calculus to the linear lambda calculus [27]. We adopt this method to show the
fullness of Laurent’s translations. The use of logical predicates allows us to give a uniform
proof to the fullness of the two translations. In particular, single Basic Lemma is sufficient

for both the positive- and the negative-translations.

Chapter 2

Duality Between Call-by-value
Reductions and Call-by-name

Reductions

2.1 Introduction

The Curry-Howard correspondence for classical logic

In the last twenty years, a lot of work has been done to extend the Curry-Howard corre-
spondence to classical logic. Felleisen[16] introduced the C operator to model call/cc,
Griffin[25] observed that the type of call/cc corresponds to Peirce’s Law and extended
the Curry-Howard correspondence to classical logic. In this line, the Au-calculus introduced
by Parigot[40] is well known. This calculus corresponds to classical natural deduction and
has a simple structure, sufficient expressive power, and nice computational properties such
as confluency and strong normalization. Later, a call-by-value (CBV) variant of the Au-

calculus was proposed by Ong and Stewart [39].

Duality

The call-by-name and call-by-value strategies have been well studied as evaluation strate-
gies of programming languages. Filinski [17] suggested that duality between call-by-name
and call-by-value is clarified by two notions of programs and continuations. Selinger [45]

gave categorical semantics of the call-by-name and call-by-value Au-calculi and explained

—8—

Filinski’s duality in terms of categorical duality.

The dual calculus and Wadler’s open question

Wadler[48; 49] proposed the dual calculus, which corresponds to Gentzen’s classical se-
quent calculus LK. LK is an appropriate formulation of classical logic that clearly expresses
the duality that exists inside classical logic. The main feature of the dual calculus is that it
has both terms and continuations as primitives. The computational meaning of the duality
of classical logic is expressed in the dual calculus by the duality of terms and continuations.
In the dual calculus, call-by-name and call-by-value strategies become dual strategies.

Wadler [49] introduced the translation from the Au-calculus into the dual calculus, and its
inverse translation from the dual calculus into the Au-calculus. He showed that these transla-
tions form an equational correspondence, as defined by Sabry and Felleisen [44]. Moreover,
he gave the translation from the Au-calculus into itself by composing the above translations
with duality on the dual calculus. This translation satisfies the following properties.

— It takes call-by-value equalities into call-by-value equalities, and vice versa.
— It is an involution up to call-by-value/call-by-name equality.

In other words, he explained Filinski’s duality in a purely syntactical way. However, the Au-
calculus and the dual calculus adopted in his paper were equational systems, and his results
are based on equalities. This is because some rules of the Au-calculus are not simulated by
reductions of the dual calculus, and it is also problematic to introduce some rules, such as
(m)-rules, as reductions. But when we discuss whether duality between call-by-value and
call-by-name also holds as a computational procedure, we should consider reductions. In
fact, Wadler noted an open question in his paper whether one can replace the equations of his

paper with reductions and extend the properties with equations to properties with reductions.

Our purpose, problems, and solutions

Our purpose in this paper is to answer his question. We encounter problems when we try
to obtain refined results by replacing the equations of his paper with reductions. These

problems are grouped in the following three cases.
Problem 1 ({)-rules of the Au-calculus
To simulate ({)-rule under Wadler’s translation (—)*, we need (Bz)-reductions of the dual

calculus in both directions. We give a typical example of this problem.

(we-[y)x[al)2)" = ([0’ »)]not e 7). » (z@))
=rred (1207 + G@B))Inot o 7).8
=torery (20 * 2@0)).6 Hnot =).8
= (uB.[y1Ax.[B1(2))"

Problem 2 (ny)-rule of the Au-calculus: M =, u(e, B).[a,BIM
To simulate (7y)-rule under Wadler’s translation (=)*, we need both of (n,)-reduction and
(1v)-expansion of the dual calculus.

(u(er) [, BIM)" = ({({(M" @ [, B]).dinl o 7). B)inr » 7).

=tmrexp (KL » [, B]).dinl o) B)inr o [x.((x)inl o), .((¥Yinr)]y

(e ({1 @ [2,B]).0)inl y).8 o y.(dinr).y

=g (M ¢ [, y.((inr o Y)]).cinl o).y

ey (M @ [@,3.((inr 0 y)]).cinl o [x.((x)inl o 7). y.(inr ¢ 7)])y

=0 (O o [e,p.()inr o Y)]).cx x.((x)inl o)y

= (M" @ [x.(C0inl 0 9), y.((inr o Y)]).y

=tyred (M @ V)Y

=ty M
However, if we simply omit (5y)-rule to avoid this problem, then we meet another problem.
If we want to obtain the equational correspondence formed by (—)* and ()., which is one

of Wadler’s main results, then we should to show ((u(, 8).8)*), =, pu(a,B).(S*).. We need
(rv)-rule to show this claim.

(e B)-5)"). = (((4S™.dinl o 7) Binr o 7).y).
= py[ylu@’, B).18'1uB.[ylu(e” . B”) [Jue.(S*).
=P e B[B Ty VI B).IB MBIy lu(e” B”).[o Juer (S,
=) w(e”,) [B (e, B).[B JuB. [, 8" Ju(e”, B").[" Jua.(S*).
=0 wa, 7). 18" B [Juer(S™).
= u(@”, BV (S [ol” 1]
= p(@,B).(S")

Problem 3 (n-)-rule of the Au-calculus: M =, Ax.Mx
To simulate (77-)-rule under Wadler’s translation (-)*, we need both (1-)-reduction and (..)-

-10-—

expansion of the dual calculus.

(Ax.Mx)* = [x.(M" o not(x)) |not
=t ([*-(M" ® not(x)) Jnot e 7).y
=0 -exp ([¥-(M" ® n0(x)) Jnot e not(([@]not e y).a')).y
=y ([@]not e y).a e x.(M" e not(x))).y
=g,y (M @ not(([e]not e y).a)).y

=E'r7_‘)-red (M g 7)‘y
M

_n
~(r)

However, we need (77-)-rule to simulate x(ue.S) =, S[*/4-], which is defined in the
call-by-value Au-calculus as a part of ({)-rule. For example,

(x(ue.[B)Az.[e]y))" = x o not(([z.(y » @)Inot « §).c’)
=(p)-exp [V (¥ @ n0t(/))]not o not(([z_(y e a)Jnot e B). a)
=% ([z(y » @)Inot ¢ B).c o ¥/ (x ® not()'))
=y [2.(v #¥'.(x e not(y")))]not ¢ 3
=gy [2-(x ® not(y))]not e 3
= (Blz.()

For (n5)-rule of the Au-calculus, we also encounter a problem similar to this one.

Problem 1 is due to the so-called administrative redexes, and can be solved by modi-
fying Wadler’s translations. The idea of this modification is similar to the modified CPS
translation introduced by de Groote [13; 14]. However, we need different modifications for
call-by-value and call-by-name calculi.

Problem 2 is caused by the difference in how sums are formulated in the Au-calculus and
the dual calculus. Wadler added sum types to the Au-calculus following Selinger [45]. This
formulation is based on multiple-conclusioned sequents as follows.

T|SFyuAa:4B:B ThyuAlM:AVB
ChypAlp@p)S :AVB [|[a,pIM}), A,a:4,8:B

The formulation of sums in the dual calculus, on the other hand, is based on single-concluded
sequents :

ThpeAlM:4 I'heA|N:B TheA|N:B
TFeA|(Mynl:AVB TFLA|(Minr:AVB [KL:AVB|TFgA|(Ninr:4VB

-11-

RS i »

Our solution to this problem is to refine the formulation of sums in the Au-calculus, and
omit (nv)-rule. We introduce sums of the Au-calculus by using usual injections and case-
expressions.

To avoid Problem 3, we remove (7-) and (r75)-rules, and restrict the call-by-value Au-
calculus by omitting some rules that cannot be simulated without (77-) and (15)-rules.

We also encounter problems when we consider the inverse translation from the dual cal-
culus into the Au-calculus. Since they are similar to the above Problem 1, we can solve them
by modifying Wadler’s original translation. However, we also need different modifications

for call-by-value and call-by-name.

Overview

In section 2, we present the detailed formulation of our call-by-value and call-by-name
Ap-calculi, and compare them with the Au-calculi given by Wadler (2005). In section 3,
we present the dual calculus as a reduction system. In section 4, we define the call-by-name
translation from the call-by-name Au-calculus into the call-by-name dual calculus, and show
that this translation preserve call-by-name reductions (Theorem 2.16). We also define the
call-by-value translation, and show that it also preserves call-by-value reductions. In section
5, we give the inverse translations from the dual calculus into the Au-calculus for each of
call-by-name and call-by-value, and show that they preserves reductions (Theorem 2.28,
2.34). We also show that the compositions of the call-by-name translations become identity
maps up to the call-by-name reductions, and show the similar property for the call-by-value
translations (Proposition 2.35, 2.36). In section 6, we introduce translations between the
call-by-value and call-by-name Au-calculi by composing the above translations with duality
on the dual calculus. We finally obtain results corresponding to Wadler’s (Theorem 2.40),

but our results are based on reductions.

2.2 The Au-calculus

In this paper, we consider the two variants of the Au-calculus, call-by-value and call-by-
name, as reduction systems.

In this paper, we follow Wadler for the types of the Au-calculus, i.e.. let 4 and B range
over types, then a type is atomic X, a conjunction 4 A B, a disjunction 4 V B, a negation —4,

or an implication 4 D B.

-12-

Types of the Au-calculus
A,B:=X|AANB|AVB|ADB|-4

Two disjoint countable sets of variables for the Au-calculus are given, one is called vari-
- ables (denoted by x,y,z,...) and the other is called covariables (denoted by @,8,7,...)-
- We also follow Wadler for the expressions. The expressions consist of terms (denoted by
- M, N,...)and statements (denoted by S, T, ...). A term is a variable x, a A-abstraction Ax.M
or Ax.S, an implication application OM (where O : 4 D B), a projection fst(M) or snd(M),
a pairing (M, N), a py-abstraction ua.S, or a term for sums. A statement is a covariable ap-
plication [@]M, a negation application OM (where O : —4), or a statement for sums. Any
free occurrence of x in M and S is bound in the terms Ax. M and Ax.S respectively. Any free
occurrence of @ in § is bound in the term ua.S.

Our formulation of sums is different from Selinger’s [45]. A term for sums is a left
injection inl(M), a right injection inr(M), and case (O, x.M,y.N), and a statement for sums
is a case 6(0, x.S,y.T). Any free occurrences of x in M and y in N are bound in the term
6(0,x.M,y.N). Similarly, any free occurrences of x in S and y in T are bound in the term
6(0,x.S,y.T).

" Terms and statements of the Au-calculus
M)N,O :=x| Ax.M| 2x.S | MN | pa.S | fst(M) | snd(NV) | (M, N)

| inl(M) | inr(N) | 6(0, x.M,y.N)
S, T :=[a]M| MN | 80, x.5,y.T)

We consider the term modulo a-conversion of variables and covariables. The sets of free
variables of M and S (denoted by FV(M) and FV(S)), and the sets of free covariables of
M and S (denoted by FCV(M) and FCV(S)) are defined as usual. A #yping judgment of the
Ap-calculus takes the form T, A| M: 4 orT | S | 4 A, where I' denotes a A-context, i.e.
X1t Ay,...,x, 1 Ap, and A denotes a pu-context, i.e. a; : By,...,a,, : B,. We note that Fay is
sometimes written as |-. The #yping rules for the Au-calculus are defined in figure 2.1.

We use two kinds of substitution for the Au-calculus. The first M["/,] and S["/,] are
the usual substitutions of a term N for all free occurrences of the variable x in M and S. The
second M[" 7} /(41-)] and {7t /(4] are substitutions of a statement context 7 (-} (i.e. a
statement with a single hole accepting a term) for a covariable a. This second substitution

is defined by induction on M and S using the following clause.
(M) fiaym] = TAM g0}

13-

Ix:AdbypAlx:4 AX

Oox:AbypAlM:B Py AIM:ADB I"}—,{PAIN:ADE
TFaublaeMA5E "] TFy Al MN: B
Tl Al M:ANB ThyuAlM:AAB
l_/w | AE; s - AE,
TFy ATt < 4 TF,, A snd(3): B
ThyAlM:4 ThyAlM:id
2

I

TFyAln(3M):AVE * T A |ine(3) : AVE *

ThyuAlM:A Thy,A|N:B
TFpAl(LN): ANB

Tl AlO:AVB T,x:AF,A|M:C T,p:BRuAIN:C

Al

TF,Al6(0, x. My N): C VE
Tl AlO:AVE T,x:d|S kA Ly:BIThyd
I'16(0,x.8,.T) 3, A

T,x: 4S8 b A ThyuAlM: =4 Thy,AIN:4
Ty Al s A T MN 5 A B
T|SFyAa:d Tl Al M:A

Act — Pass
FhypAlpasS : 4 Flle]Mlp, A a: 4

Figure 2.1: Typing rules of the Au-calculus

The other clauses are defined homomorphically like

(MM 1g3] = MO /1IN a0

Note that M[¥1)/1gyy] and S[PI) /4] are sometimes written as M[?/,] and S[£/,] re-
spectively.

2.2.1 The call-by-name Au-calculus

We need a notion of call-by-name evaluation and statement contexts to introduce the call-by-
name Au-calculus, which is equivalent as an equational theory to the one given by Wadler.
A call-by-name evaluation term context (denoted by E,,E,,...)is a term context with a
hole, and a call-by-name evaluation statement context (denoted by D,, D, ...)is a statement
context with a hole. We write {-} for a hole, and the results of filling a term M in an
evaluation context E,, and a statement context D, are written E,{ M} and D,{ M}, respectively.

Call-by-name evaluation term and statement contexts
En, E,, B} 2= {-}| E,M | fs((E,) | snd(E,) | 6(E,, x.E,{x},y.E" (¥}

—14-

Bs) (Ax.MN —, M["V/,]

Br) SUMNY) —, M
snd(M,N) —, N

(Bv) 6(nl(0), x.En{x},y.EL(y)) —n En{O}
6(inr(0), x.En{x}, y.E;{y}) —n EL{O}
8(inl(0), x.Du{x}, y. D} (¥}) —n Dp{O}
6(inr(0), x.Dn{x}, y.Dy{y}) —n D;{O}

(B-) AxS)N —, S[V/4]

(@) Enlua.S) —s, uB.S[PE jr9] (where E,, is not {-})
Dyp{pa.S} —, S[P /10121

) M—,pala]M (where a ¢ FCV(M))

() En{6(0,x.M,y.N)} — 6(0, x.Ep{M},y.En{N}) (where Ej, is not {-})

Dp{6(0, x.M,y.N)} —y, 6(0, x.Dp{M},y.Dn{N})
» 80,x.8,y.T) —, (p.T)uB.6(0, x.S,.[B]y)
(if T is not a simple form w.r.t. y)
6(0,x.8,y.Du{y)) —n (Ax.S) ua.8(0, x.[a]x, y.Dy{y})

(if S is not a simple form w.r.t. x)

Figure 2.2: Reduction rules of the call-by-name Au-calculus

D,,D, :=[a]E, | E,M| 8(E,, x.Dy{x},y.D;{y})

In the following, we say a term M is a simple form with respect to x if there is a call-by-
name evaluation term context E such that M = E{x} and x is not free in E, and a statement
S is a simple form with respect to x if there is a call-by-name evaluation statement context
D such that S = D{x} and x is not free in D.

The one-step call-by-name reduction relation for the Au-calculus, denoted by —,, is
defined as the compatible closure of the rules in figure 2.2. We write —,* for the reflexive
transitive closure of —,,. Similarly, we write —,* and =, for the transitive closure and the
reflexive symmetric transitive closure of —, respectively.

In the following, when expressions X and Y are in a relation R of system S, we write
S + XRY. For example, we write Au - M —, N if a term M of the Au-calculus reduces a
term N by the one-step call-by-name reduction of the Au-calculus.

(B)-rules reduce a deconstructor applied to a constructor. Note that (By)-rule has an
unusual and restricted form using the call-by-name evaluation and statement contexts. This

restriction is needed to obtain sums equivalent to ones formulated in Wadler’s call-by-name

—15—

system, (£)-rules substitute an evaluation context and a statement context for a covalue, and
(1,)-rule introduces a u-abstraction applied to a covariable application. (x)-rules correspond
to the permutative conversions, and (v)-rules expand a case statement 6(M, x.S,y.T) when S
or T is not a simple form, and introduce new bindings. These rules are also needed to obtain
sums equivalent to sums formulated in Wadler’s system.

We write the Au-calculus given by Wadler by Au** and write the call-by-name and call-
by-value variants of Au**? by Au**® and Ay respectively. Detailed definitions of these

systems can be found in appendix. We compare our call-by-name system with the Au'%-

calculus. The differences between them are summarized in the following three points:

e Our system is based on reduction relations while 2% is based on equations,

o the formulation of sums in our system is different from that in Au*?, and

e our system does not have (57)-rules related to implications, negations, pairs, and sums

while his system does have them.

We give two translations, [~] and { —), between our Au and Au** that interpret sums as

follows.

Translation [~]) : from Au™* into our Ay
[u(e. B8] = wy IS TP 1oy, PP /)
[le. B1M] = 6([M], x.[e]x, y.[BLy)
The other clauses are defined homomorphiéally like [MN] = [M][N].

Translation { =)) : from our Au into Au™*?

(inl(M))) = (e, B)-[]{ M)
(inr(N)) = p(a, B)-[BIKND
(8(0,x.M,y.N)) = pry. (. [y (VD) (B (. [Y I MM (e[, BIKOW))
(60, x.8,y.1)) = (Ay.(TY)(1B-(Ax.LS M (uev[a, BIKON))
The other clauses are defined homomorphically like { MN)) = { MP{N)).

We define the call-by-name system Ay as the one generated by the rules in figure 2.2
and the following (r)-rules,

() M —, Ax.Mx (where M : 4 > B)

~-16—

(ma) M —, (fst(M), snd(M)) (where M : A A B)
(nv) M —s,, 6(M, x.inl(x), y.inr(y)) (where M : AV B)
(n-) M —, Ax.Mx (where M : =4)

A is equivalent to Wadler’s call-by-name system 1u**? as an equational system. To
= show this, we need some preparations. Let E, and D, be the call-by-name evaluation con-
*texts of the Aul-calculus. Then, we define the call-by-name contexts E, and D, of the

Au*-calculus as follows.

-1=1{) E,N = E,{(N)
fst(E,) = fst(E,) snd(E,) = snd(E,)
S x E{x},y BN = 1y [VIE, (B [V {ue. [, BIE,))
[a]E, = [a]E, E,N = E,{(N)

S(En> x.Dnfix),y. D)) = Dj{uB.Dylpsce. [, BIE,)}
For the call-by-name contexts E, and D,, defined above, the following lemma holds.

Lemma 2.1

(1) A v (EAMY) =, E({MP} and Ay + (D,{M}) =, Dy{{M)} hold for any

term M of our Au-calculus.

@) 4 b MNP] =n (M 1) and 42 v (SHP igm] =n
S P 103141 hold.

(3) Ay r Byper.S} =, pB.S [P [y)] and 42 + Dyfpa.S} =, S22 /iy hold.

Proof. (1) is easily shown by induction on E, and D,. (2) is shown by induction on M and
S using (1). We give the key case.

(IMYPO [agn] = (TN agimy] = Dol {MHP 3]}
L DM 1)) S (DM g 11 = (TIMIP aga])

(3) is also shown by induction on E, and D,. For example, the case of
6(E,, x.Dy{x}, y.D,{y}) can be proved as follows.

8B, %D, 7).y D,)5} = D {8 Dy e[, BIEn (a5 1)}
=, D;{uBDyue[o. Blue’ ST g1}
=, Dy{uB Dfpa S5 13, 1})

—-17-

Y DB ST [y P o]
2 SO P g I]
= S [C@AEDO fen P il

Q g Dwe Db tol BN 1

= 5[5(En.x-Dn{x}J-Dn{y})(—} /[a][_}]

where 1.H. means the induction hypothesis, and (*) is by the definition of the substitution

for a covariable. O

Proposition 2.2
() If Az v M =, N, then 413 v (M) =, {N), and if 4] + S =, T, then Au" r
«SH =0 T).
) If 4™ v M =, N, then 4] + [M] =, [N], and if A + S =, T, then Au] r
[[S]] =n H:T]]
() Ay v [KMN] =, M and A v [{SH] =, S.
) Ay v (IMI) =, M and 422 + ([STH =, S.

Proof. (1) We can show this by induction on the call-by-name equation of the Au]-calculus.
We consider only the rules about sums, i.e., (8y), (¢), (m), (v), and (5y)-rules.
Case of (By)-rule :

(8(inl(0), x.E, {x}, y.E} ()
= 17 (- IGE; 1)) (B.Cx YB3 W) e [, BICinI(O)Y)
= 1. (. ICE, 1)) (B (e[EL e W) e [, Blu(@,B).['1KOW)
= 17 (W7D ICE, 1) (B I E ()) e [T OY))
=n 17 (. [YICE; 1)) (8. 1B, ()))(O))

=n 1y(.[Y1E;) (8. (Ax. [EL () O)) (by Lem 2.1 (1))

=5 1y.[YIE; {uB.VIEL K ON)

= y-IVIE,1(ON) (by Lem 2.1 (3))

=, E,{(O))

=n (E,{0}) (by Lem 2.1 (1)
~-18-

N S e S

The other rules of the (8y)-rule can also be shown similarly.
Case of ({)-rule :

(Bnlua.8Y) =, Brl(ue.S)) (by Lem 2.1 (1))

= E {ua S W) = uBUS WP 194] (by Lem 2.1 (3))
=n (uB.S [P 51D (by Lem 2.1 (2))

(Dalue.S}Y =, Dafua.SH} =, Da{ua.{SH)
= SP" 1] =0 S TP fiayim 1)

Case of (n)-rule :

(E8(0,x. M y.NY) =n Ex[(6(0, x.M,y.N))) (by Lem 2.1 (1))

= En{py (9. Iy VY) (1B.(Ax. I MY) (e[, BIKOW)))

=n 1ty (29[TEn{ 4N W) (8. (e [y TEn{ € MY e[, BILOW))
=p 1y’ (ALY JEn{NYY)(1B.(Ax.[Y WER{ M) (iex. [, BIKON))
= (5(0,x.Eq{M),y.En(N]))

(by Lem 2.1 (3))
(by Lem 2.1 (1))

The other rule of the (7)-rule can also be shown similarly.

- Case of (v)-rule :

€6(0,x.8,y.T)) = (-LTH)(1B.(2x.(S M(ue.[a, BIKON))

=n (Ay-LTY) (18- [BL) B (xS Wuer.[a. F1KOW)))

(LT) (B LIBY N)UB (Ax.4S W) (ue. [, B 1CON)))
= (- T)uB.6(0, x.8,y.[B))
(Ay-4 D)) (8- (Ax.4S Ve[, BICON))
=n (9. Daly})(1B.(Ax.(S (e[BIKOW))
=p Dy{uB.(Ax.{S M (e[, B1KOY))
= Dy {B.(2545 W) (e (A [B)uB’ (Ax.[e)x) (e’ [, BIKOM)}
= (Ax.4S))(ue-(y Dy s’ (Ax.[a)x) (e [, B'1(ON))
=, (.48) (oA DalyIN W (Ax ([l e’ [, B 1(ON))
(A4S) (1a-8(0, x.[alx.,y.Da (YD)
= ((Ax.8) (ue.5(0, x.[])x, y.Daly)))

(80, x.8,y.DyyD)

Case of (y)-rule :
(8(M, x.inl(x), y.inr(y))) = ry.(Ay.[y}inr)) (1B.(2x.[y)inr(x)) (e [, BIEMN))

-19 -

= uy. ([lu(@”, B).18") (4B.(Ax.[y (', B).[e Tx) (uer. [, B MY))

=n, (e, B1). L1, By (Ay.Lylu(e” . B). 18" 1) (B (Ax. [y (el B). [J) e [, BTG M)
=¢, 1(@1,B1)-(.[en, B Tu(@” B7).[8") (B (e, By Ju(e B) [1x) (e[, B M)
=g, 1(@1,B1)-(Ay.181 1) (uB.(Ax.[en 1) e [, BI M)

=@.) H@1, B1).[B11uB.[ar Jua.[e, BIC M)

=g, (a1, B1).[a1, 811K M)

=p (M)

(2) We can show this by induction on the call-by-name equation of the A**?-calculus. We
consider only the rules about sums, i.e., (8v), (¢v), (7v)-rules.
(By)-rule :

[le’, 8. B).S] = ([, B).S], x.[e/ 1%, y.[B'Ty)

= 8(ky- IS IO g) 010, [0, . [BD)
= [[S]] [5(inl(-l,x-[a’]xy-[/3’1y) /[u]) ,5(inr[~l,x.[a’]x.y-[ﬁ’1y) /[ﬁ] -]

=g, [T /103, ¥ 10 /133001 = [ST% /o /611
(¢v)-rule :
[le.Bluy.S] = 6([py-ST, x.[e)x, y.[Bly) = 8(uy.[S], x.[a)x, ».[BLY)
=, [SPPI e iby g) ST /1]

() is shown by induction on terms and statements. The key case is as follows.

[M) B] = ([M= edm0 by]
= 5([[M=) [0 x [, . [,B]y)
L (M= 111, [, .181)
= [, AIMI 3D = [I /yoT]

(nv)-rule :

[k, B).[a. BIM] = pey.[lee, BIMII™) 1030, DP™) J1g0]
= py ([M], x.[a)x, p. B /19, P57 gy)]
= py.8([M], x.[y]inl(x), y.[y]inr(»))
= py-[Y16([M], x.inl(x), y.inr(»))

~20-

=, 6([M]}, x.inl(x), y.inr(y))
:ﬂv [[M]]
(3) We can show this by induction on term M and statement S of the Au)-calculus. We

consider the cases of inl(M), inr(M), 6(O, x.M, y.N) and 6(0, x.S,».T).
Case of inl(M):

[Ginl(AY] = [u(e. B).[edCMW] = ey ([ALEMNT) T /g PP /)]
= py [y linl([(A)) =5 pry. [lind(M) =, inl(M)

The case of inr(M) can also be shown similarly.
Case of 6(0, x. M, y.N):

[46(0, x.M,y. NN = [y (4. Ly IEN Y) (8. (Aoe. Ly I M) (e [, BICON))
= py(Ay. LN (8- (A [T M) D (e [[, BIKON D)
= py (. T8 (A LA MY D e S OD], x.[e1x, 3. [BD)))
=5 1y (. [yIN) (B.(Ax.[YI M) (ue.6(0, x.[a)x, y.[B1Y)))
£ 1y.8(0,x.[y1M.y.[yIN)
=m 1y-[v16(0, x.M, y.N)
=@,y 60 x.M,y.N)

(*) is shown by case analysis of M and N. If M and N are not simple forms w.r.t. x and y

respectively, then we have

11.8(0,x.[YIM,y.[¥IN) =) p7.(Ay.[yIN)(@B.6(0, x.[Y1M; y.[B1y))
=0y 17-((- Y IN)Y(WB.(x.[y) M) (. 5(0, x.[@]x, y.[B1y)))

If Mis E,{x} and N is not a simple form w.r.t. y, then we have

1y-8(0, x.[Y1En{x}, y.[YIN) =y py-(.[YIN)WB.6(O, x.[Y1EW{x}, y.[Bl))
= 17-(([IN) B[V En{uc.5(0, x.[a]x, p.[B1))))
=) 1y (A LyIN)B.(Ax. [Y) Enlor)) (uet.5(0, x.[0]x, y.[BD))))

The rest of the cases are shown similarly.
Case of §(0, x.S,y.T): this case is similar to the above case.

—21-

HECI = Lii—”&;“.":ﬁ"’-
i »%‘m., T

(4) We can show this by induction on term M and statement S of the Ap®-calculus. We
consider only u(a,f).S and [a,] M.
Case of u(a,B).S:

(M. B)-ST) = Cuy-LS ™ /a3, P 1 1)

= py QLS TP /g, P iy 1)

= pry QIS IR gy PGBy)]

= py (IS IHIEPW S gy) BV 0 1]

=) M@ B [ar, By (IS IHIPHE O o) DUV /0 1]

=y (@1, B[S TH[@O 0 [0 AU SVBUD]

=Gy 1@, B)- LIS INE /10y, P17 14331

= u(a B)-KISTH

2 ue.p).s

Case of [, B]M:
([l B1MD) = (6([M], x.[a]x, 3.[8]y) »

= ((.1BD) @B -(Ax.[elx) (e [, I MIN)
=) [BIuB [aua’ [, B 1K M)

=@, [@. B[M])
2 [e.B1M

2.2.2 The call-by-value Au-calculus

For the call-by-value calculus, we need a notion of values. A value (denoted by V, W,...)
is a variable, a A-abstraction, a pair of values, or an injection of a value.

Values of the call-by-value Au-calculus
VW i=x| Ax.M| (¥, W)y | inl(V) | inx(W) | Ax.S

We also use a notion of the call-by-value evaluation and statement contexts to introduce

the call-by-value calculus. However, in this case, it is useful to give the evaluation contexts

-2

as singular contexts. The call-by-value evaluation singular contexts (denoted by E,, £, ...)
are grouped into the elimination contexts (denoted by E,, E’, . ..), which are obtained from
an elimination rule. The introduction contexts (denoted by E;, E?, . . .), which are constructed
by an introduction rule, and the contexts which have a hole as the argument of a lambda ab-
straction, i.e., (Ax.M){-}. The call-by-value evaluation singular statement contexts (denoted
by D,,D,,...) are grouped into the elimination contexts (denoted by D,,D.,...) and the
contexts which have a hole as the argument of a lambda abstraction,i.e., (1x.S){-}.

Call-by-value evaluation term and statement contexts

E, :=(x.M)(-} | E.| E;
E, :=(~}M| fst({~)) | snd((-}) | 6((-}, x.M, y.N)
E; z=inl((-)) | inr({=)) | (=), M) | (7 (=)

D, :=(x.S)(~} | D.

D, ==[a}{-} | (-}M | (-}, x.5,».T)

The one-step call-by-value reduction relation for the Au-calculus, denoted by —,, is
defined as the compatible closure of the rules in figure 2.3. We write —,” and —,*
for the reflexive transitive closure and the transitive closure of —, respectively. (8)-rules
* reduce the deconstructor applied to a constructor with call-by-value restrictions, ({)-rules
substitute a call-by-value evaluation context and a statement context for a covalue, (1,,)-rule
introduces a p-abstraction applied to a covariable application, and (7r)-rules correspond to
the permutative conversions. The (name)-rules push the next term to be evaluated out as an
argument of the function. These rules correspond to the (name)-rule of the Au**?-calculus.
The (comp)-rules are associativity rules, which correspond to the (comp)-rule of the Au**?-
calculus.

We now compare our call-by-value system with Wadler’s call-by-value system. The

differences between them are summarized in the following four points:

e Our system is based on reduction relations while his system is based on equations,

e the formulation of sums in our system is different from that in A9,

e we defined values differently: a projection from a value is not a value in our system,

and

e our system does not have (7)-rules related to implications, negations, pairs, and sums

while his system does have them.

—23-

6-)
Bn)

(Bv)

®

(comp)

()

(1)
(name)

(Ax. MV —, M[7/,]

SV, Wy —s, V

snd(V, Wy —, W

S(inl(V), x. M, y.N) —, M[” /]

S(nr(V), x.M,y.N) —s,, N[V /]

8(inl(¥), x.8,y.T) —s, S[V/.]

S(inr(V), x.8,y.T) —, T[" /4]

(xS —, S[¥/4]

Eei(ua.S) —s, uBS[F¥E=} /011 (where E,; is E, or (Ax.M){-})
Dy{pe.S} —y S[P7 /14151]

Eea{(Ax.M)N} —, (Ax.Ec){ M))N

Dy{(Ax.M)N} —,, (Ax.D,{M)N

Eea{6(0, x.M,y.N)} —, 6(0, x.Eca{ M}, y.Ecp{N})
Dy{6(0, x.M, y.N)} —, 6(0, x.D,{ M}, y.D,{N})

M —, ua.lalM (where a ¢ FCV(M))
Eie{O} —y (Ax.Ep(x))O (where O is not a value, Ej, is E; or E,)
D.{0} —, (Ax.D.{x})O (where O is not a value)

A AR e
- 3 MRRLLIRGT,

Figure 2.3: Reduction rules of the call-by-value Au-calculus

—24—

We introduce the call-by-value calculus A as the system generated by the rules in figure 2.3
and the following (7)-rules.

(M) V—,xVx (V:4>B)
(M) V2 (f8t(V), snd(V)) (V:4AB)
(nv) M —, 6(M, x.inl(x), y.inr(y)) (M:A4vV B)
(n-) V —, Ax.Vx (V :=4)

We define the Au**#~-calculus as the restricted system of the Au*-calculus obtained by
excluding a projection from a value from definition of values. We again consider translations
{ - and [-] given in the previous subsection. Our call-by-value system Au; with (r)-rules

is equivalent to the Au**“~-calculus as the equational systems.

v

Proposition 2.3
(1) If] v M =, N, then 4 + (M) =, {N), and if 3] + § =, T, then A~ +
&SH =v T
() If Au¥* + M =, N, then 4] + [M] =, [N], and if Au¥*¥~ + § =, T, then
Ay v [ST =, [T]
(3) 4y r [{MP] =, Mand Ay + [{SH] = S.

@) Ay v ([MD) =, Mand 4= v (IST) =, S.

v v

Proof. (1) We can show this by induction on the call-by-value equation of the Au]-calculus.

We consider only the rules about sums, i.e., (Bv), (£), (1), (comp), (name), and (ny)-rules.
Case of (By)-rule :

(BGnl(V)x. M,y N)Y = pry (4. LyIEN Y)(B.(Ax. Y1 M) (e[, B ini(P))))
= oy (Ap.LyINY) (B (Ax. [y I MM (e [, Blu(e’ . B) [/ 1K VW)
=@y 17-(9- YN (B.(x. [y I MM e [2] (P)))
= 17 (2 N Y)(B.AxYIMME YY)
=@ 1y (A [YIEMMLT Y
=@y 1y I 1]

Q py. Iy M7 1:1)
=y, (MT"1:])

—25—

() comes from the claim: {MY[“"/,] = (M["/,]) and (SHIV/.] = (ST'/:]). This

claim is shown by a straightforward induction on M and S. The other rules of the (8y)-rule

can also be shown similarly.
Case of ({)-rule : This case can be shown by a case analysis of the evaluation contexts. The

key case is when E, is 6({—}, x.M,y.N) and D, is 6({-}, x.S,3.T).
Subcase of E, is 6({-}, x.M, y.N) :
(8(uerS, x. M y.N)Y) = uy.(Ay.[YINY) (B -(x. Y J MY)ue! [B Tue (S Y)

=@ 1y (LN (B (Ax.[yIMD)e! (S DI /pgy1)))
=@ Y (S YL [TN /MH][(Ay.M«N))){—x Sl
= uy. « S»[([al ﬁ'](_])[(a-r-[ﬂ((m»l-l /[w,]l_l][(ly-[vk(lv)))(—) /lﬂ’](—)] /[a]{_}]
= 1y (S NN Gy XNl [8D 1
=(5,) 1y (S V[T oLy KONl Oy KMt L U 1

Q py (SR M N o0 D = (uy SEEMN Ty

(*) is shown by a straightforward induction on terms and statements. We abbreviate
M[ﬂm” WLy KN @B’ (Ax.[y KM (e [a’ B 1{-D) /[a] (] and

S [B7 AL NN ALy N6 & BHAD /0 11 in 3 and § respectively. The key case is

proved in this way.

([2T0) = [61K0Y = [yluy’.(Ar.[y KNWWB - (Ax.[y KMy e’ o, B 1(ON)
E Iy (. [1MW (Ax.[Y I MM (e [, B IO[IxMp D 10
= ([Y16(O[WA=MyNy 10 1, X M y.N))
= (([@]O)[e=d=My-) o 0 11D
Case of ()-rule : We can obtain =, from [@]6(0, x.M, Y-N) =, 8(0, x.[e] M, y.[a]N) with
(m,)-rule and (¢)-rule in the following way. Let E be E, or (Ax.M){-}, then
E{6(0, x.M,y.N)} = Elua.[a]6(0, x.M,y.N)} =, E{ua.5(0, x.[a]M, y.[a]N)}
=) UB-6(0, x.[BIE{M}, y.[BIE{NY)} =, uB.[B16(0, x.E{M)},y.E{N})}
=@, 6(0, x.E(M)},y.E{N})}.

We can obtain D,{5(0, x.M,y.N)} =, 6(0, x.D,{M},y.D,{N}) in a similar way. Therefore, it
is sufficient to prove ([]6(0, x.M,y.N)) =, {5(O, x.[a] M, y.[«]N)).

([e16(0, .M y.N)) = [eluy.(.[YIN N WB (Ax.YIMY)e’ e, £ 1KOY)
=@ (W [NV WP (Ax.[al{ MY)ua' [o/, f1(ON)

~26—

= (60, x[e]M,y.[aIN))

Case of (comp)-rule : To show this case, it is sufficient to have
. Lal((x.MN)) =, {(2x.[@]M)N})) by the discussion similar to that for («)-rule.

([1((Ax.;M)N))) =, [a](Ax.LMMENY)
=comp) (Ax.[](MN(N) = ((Ax.[a]MN)

Case of (name)-rule : We can easily show Au*®~ + (E{O}) =, {(1x.Ei{x})O) by a case
analysis of E£;. On the other hand, we have

([2]0) = [a]CO) =(omp) (Ax.[a]0)(O) = (Ax.[]X)O)),

therefore we obtain 4"~ + {E{O}) =, {(Ax.E{x})O)), since Ay, + E{O} =, (Ax.E{x})O
can be shown from Au + [@]O =, (Ax.[a]x)O with (), (17,) and (comp)-rules as follows.

E {0} =(,) Eelua.[@]O} =y E {ua.(Ax.[a]x)O} =) uB.(Ax.[B]E.Ax})O)
=(name) UB.[BI(Ax.Ec(x})0) =(z,) (Ax.Ec{x})O

Case of (py)-rule :

(6(M, x.inl(x), y.inr(y))) = py.(y.LIGnr)Y)(uB.(Ax. Ly (inr(e))) (e[, BIEMN))
= py. (. [ylut@”, B").18" 1) (B [ylu(e ., B).[e/ 1x) (e[, BIC M)
=@ 1@, B1)[en, iy (Ay.[ylu(e”, B).18" 1) (uB.(Ax. [y lu(@ , B').[e 1x) (e [or, I M)
=@ 1(e1,B1).(Ay.Ler, Brlu(@”, B").[8") (uB.(Ax.[er, B I, B). [1) (e [r, Y M)
=) (@1, 81).(1.181) (1B-(Ax.[er1) (uev. [, BIE M)
=(name) (@1, B1).[B1]uB.[a1 Jua.[a, BIK M)
=@,y H(@1,B81).[a1, BLI{M)
=y (M)

(2) We can show this by induction on the call-by-name equation of the Au**?-calculus. We
consider only the rules about sums, i.e., (8v), (£), (nv), (name), and (comp)-rules.
Case of (By)-rule :

[le. 8)u(e. B).ST = 6([u(. B).S T, x.[e/ 1%, y. 18)
= 6y LIS I™ o ™) figy), 2. [T,y [B'D)
=0 [[S]][d(inll—},x.[a’]xy.[ﬁ’]y)/[a](_],E(inr[—],x.[a']x,y.[ﬂ’]y) /[ﬂ]l—)]

E ST /oo B figyai] = [ST7 ¥ 1611

—27—

(*) can be shown by the following claim: §(inl(M), x.[a]x, y.[Bly) =, [@]M for any M. We
show this. If M is a value, then the claim is obtained by (B,)-rule. If M is not a value, then
S(inl(M), x.[@]x, y.[BY) =rame) (A2.5(z, x.[@]x, y.[By))inl(M1)

=(rame) (12.0(z, x.[]%,y.[B1) (A2 .inl(z')) M)
=(comp (12 (A2.8(z, x.[]x, y.[B1))inl(z')) M
=(,) (42".8(inl(z), x.[a]x, y.[Bl)) M
=) (A2 .[@]Z)M =rame) [2] M

Case of ({)-rule : to show this case, we introduce evaluation singular context E,, and singular

wad-

statement context D,, of the A" ~calculus.
Ey i= SN | VI=YKVA=D | (=) M) | fst({=)) | snd({-))
D, = [e){=}] [, BI{=} [{=}M | V{-}
It is easily shown that if we have the following claims:
[Ew{ne.S}] = [uB-S[P¥ /1011 and [Dyine.S}] =, [S[P/ o]l

then we can show this case. We can prove the claim by a case analysis of E,, and D,,. We

consider the key cases:
-E, is x{-}:

[xua.S] = xuc.[S] =@, (zx2)pe.[S] =¢ wB.ISTF= /104]
=) HBLS T fray] 2 BIS TP Ji]
() can be shown by induction on terms and statements. The key case is proved as follows.
(M) /] = (AIMDE /a] = BIEAMIT /)
Z BIMP Jiagia]] = [AIMDPH /g1

- D,, is x{—}: this can be shown in a way similar to the above case.
- D, is [, B){-}:

[le. Bly.S] = 6([uy-S], x.[alx, .[61y) = 6(uy.[ST, x.[e]x.y.[8L)

~LX. | a]X). (1) Q, -
=0 1[5]][6((}x.[a] ,y[ﬂlv)/[y][_)] = l[S[[Bl)/m{_]]]]

~28—

(*) is already shown in the proof of Proposition 2.2.
Case of (ny)-rule :

[1(e. B).[a. BIM] = py. [l BIMYI™) /1y, gy
= py.5([M], %L1, 3[BT /1oy T i3]
= py.6([M], x.[y]inl(x), y.[y]inr(»))
=@y 1y-[y16([M], x.inl(x), y.inr(»))
=(1) S([M]), x.inl(x), y.inr(y))
=@y [M]

Case of (name)-rule : Let D be a statement context of the Au**~-calculus, then we can
obtain (name)-rule of the Au¥* -calculus from ¥~ + (Ax.[a]x)M =, [a]M with (7,),

v v

and (¢)-rule in the following way.
D{M} =4, Dipa.[d]M} =, Diga.(Ax.[e]X) M} =¢) (x.Dix)M
Therefore, it is sufficient to prove (Ax.[e]x)M] =, [[a]M] in our call-by-value Au-calculus.
[(2x.[a]x)M] = (Ax.[a]x)[M] =(name) [[2]1M]

Case of (comp)-rule : Let D be a statement context of the A -calculus, then we can
obtain (comp)-rule of the Au**-calculus from [e]((Ax.M)N) =, (Ax.[a]M)N, (n,), and

v

(¢)-rule in the following way.
D{(Ax.M)N} =g, D{pa.[e](Ax.M)N} =, D{pe.(Ax.[a] M)N)} =¢) 2x.DIM)N
Therefore, it is sufficient to prove [a]((Ax.M)N)] =, [Ax.[a]N].
[[2]((2x.MN)] = [)(Ax.[MDINTD) =(omp) (x.[][MDIN] = [(Ax.[a]M)N]

(3) We can show this by induction on term M and statement S of the Au)-calculus. We
consider inl(M), inr(M), 6(0, x.M,y.N) and 6(O, x.S,y.T).
Case of inl(M):

[€inl(A)N] = [ecer, B).[edq MM = ey ([TLMNDT™ fpagoy, 75 /]
= py [ylinl([{MY]) 25 py.[ylinl(M) =, inl(M)
inr(M) can be shown similarly.

—29 -

Case of 6(0, x.M,y.N):

[(8(0, .2, y.NYN] = [y (- LYICN D) (B.(0x.LyIC M) (uce.[r, BICON))
= 7. (ATV (8- AT MY D e [[, BICOY)
= 1y AN YD) (8. Cx. AT MY (e SOV, x.[alx, ».[8D))
= 1y (9. IN) (1B (Ax. [y M) (0. 8(0, [, y.1B1)))
=@ 1y-6(0, x.(Ax.[y1M)x, y.(Ay.[YIN)y)
=(g.) 1y-6(0, x.[Y]1M, y.[y]N)
=(n) HY.[¥16(0, x.M, y.N)
=@, 6(0, x.M,y.N)

The other cases are shown similarly.

Case of 6(0, x.S, y.T): this case is similar to the above case.

(4) We can show this by induction on term M and statement S of the Apad_calculus. We
consider only u(a, 8).S and [a, B]M.

Case of u(a, B).S':

(e, B)-STH = Guey-LS T /gy 1Y 1)
= py QLS TI /ia,2) Jig 1)
= py KIS IHIPIT g) DD e 1]
= py (ISINIOVE LN 1y) PR EVEN) 0 1
=) M1, Br)-[ar, Biluy L[S TP FHEI) DM EIBN) /0
=) #(e1, B) (IS TH AR /o) Jerbule LN 0
=@y 1 B)-LISIH /o), B Iy 18-}
= u(e, B)-(ISTH
2 (@, B).S

Case of [a, B]1M:

(lle. BIMIY = (S([M], x.[e]x, y.[81))
= (([B)EB' - (Ax.[a]x)(ue [, 1[I M)
=(ame) [BIf’ [alue’ [o/, B 1K M])
=@, [B1([M])

~-30—

Y e pIM

‘We mention some basic properties of the Au-calculus at the end of this section.

Lemma 2.4 (Substitution lemma for the Au-calculus)
Let M and N be terms, and S and T be statements of the Au-calculus.

(1) Suppose'by, A|M: 4.
KEx: AR A|N:B,thenT'|-;, A | N[™/,]: B, and
ifT,x: 4|8}y, A, thenT | S[M/.]k A.

(2) Let 7{-} be a statement context, that is, a statement with a single hole, and suppose
I,x:A|7T{x}F,, A then
ifTFy, Aa: A|N:B,thenT |, A| N["" /1y : B, and
ifT,|S by Aa: A, thenT | ST o] Fa A.

Proof. (1) is shown by a straightforward induction on N and S. (2) can be shown by an

induction on M and S using (1). The key case of (2) is S = [@]M. Suppose I' | [@]M |-,
| A, @ : A4 is derived. Since the last rule to obtain this sequent is (pass), we obtainI'|-,, A, @ :
A| M : A. Hence we have T |y, A | M[”7 /()] : 4 by the induction hypothesis, and then
T| T{M["} 10301} Fau A by (1). This means T | ([@]M)[" 7/ ay)] Fay A o

Proposition 2.5 (Subject reduction for the Au-calculus)
Let M and N be terms, and S and T be statements of the Au-calculus.

(1) fTF, Al M: Aand A+ M —>, N, thenT -, A| N : 4,
IfT|S by Aand Au+ S —s, T, thenT | T |y, A.

(2) T}, A|M: Aand du+ M —>, N,thenT |-, A| N : 4,
IfT'|S by Aand u+ § —>, T, thenT | T |y, A.

Proof. Using the substitution lemma, (1) and (2) are shown by an induction on —,, and
—, respectively. O
The call-by-name and call-by-value Au-calculi given in this paper are confluent. This is

proved as a corollary of the results in Section 2.4 and 2.5 (see Proposition 2.37).

—31—

2.3 The dual calculus

The dual calculus was proposed by Wadler [48; 49] as a term calculus that corresponds to
the classical sequent calculus LK. Wadler [48] first gave the dual calculus as a reduction
system, and introduced it as an equation system in his later paper [49]. Detailed definitions
of the later version can be found in appendix. Since we want to consider the system based
on reduction relations, we will give the reduction system of the dual calculus referring to
the system in his first paper.

Types, variables, and covariables of the dual calculus are the same as those of the Au-
calculus.

Types of the dual calculus
A,B:=X|AANB|AVB|ADB|-4

where X is an atomic type.

The expressions of the dual calculus consist of terms (denoted by M, N,...), coterms
(denoted by K, L, .. .), and statements (denoted by S, 7,...). A term is either a variable x,
a pair (M, N), a left injection (M)inl or a right injection (N)inr, a complement of a coterm
[K]not, a function abstraction Ax. M, with x bound in M, or a covariable abstraction S.e with
a bound in S. A coterm is either a covariable «, a case [K, L]; a projection from the left of
a product f5t[K] or a projection from the right of a product snd[L], a complement of a term
not(M), a function application M@K, or a variable abstraction x.S with x bound in §. A
statement is a cut of a term against a coterm M e K.

Expressions of the dual calculus

M, N :=x|(M,N) | (M)inl | {M)inr | [K]not | Ax.M | S.« (terms)
K, L :=a|[K,L]| fst[K] | snd[L] | not{M) | M@K | x.S (coterms)
S, T:=MeK (statements)

The set of free variables and covariables occurring in M, K, and S are denoted by
FV(M), FV(K), and FV(S) respectively. We identify the two expressions in the a-equivalence
relation and will use = for the syntactic identity on the expressions. The expressions M["/,],
K["/,], and S["/,] denote the expressions obtained by substituting N for every free occur-
rence of the variable x in M, K, and S. The expressions M[*/,], K[*/.] and S[/,] are
similarly defined.

-32-

Tx AFgblx: 4 R o AITEL Ao 4L
ChoAlM:A K:AITheA
T MoK Fgh ut
ThuAlM:d ThaeAIN:B
TF A (MNy:AAB "
K:A|Tkaed i L:B|TkgA .
K] AAB|TFgA " snd[L] AAB|TFLA "
T, Al M:A . T, A|N:B X
TELA|(Minl:AVE " TFLAl(Wyir:AVB ¥
K:A|TkgeA L:B|Tkgeh
| }_dc l l_dc vL

[K,L]:AVB|TFaiA

TheAlM:A . K:A|TkzeA
not(My : =4 [T 4 A T4 A|[Knot: =4

TheAlM:A4 K:B|Thg A T,x:AFs Al M:B

R

M@K A>BITFoA L TE AlaxM:4A5B°-F
A T|Sbad ISkadaid
xS :A|TFiA ™~ TFioA|Sa:4

Figure 2.4: Typing rules of the dual calculus

A context of the dual calculus (denoted by T, %, ...) is a finite set of term variables
~ annotated with types (denoted by x; : 4y,...X, : An), in which each variable occurs once
at the most. Similarly, a cocontext of the dual calculus (denoted by A, A, ...) is defined as
a finite set of covariables with types (denoted by a; : By,...a@m : Bn). A typing judgment
of the dual calculus takes either the form I' 4, A | M : A, the form K : 4 | T |4 A, or the
form T | S |4 A. We note that |-, is sometimes written as |-. The typing rules of the dual
calculus are shown in figure 2.4. These rules are the same as those in Wadler’s later paper
[49].

A value of the dual calculus, denoted by V, W ..., is a variable x, a pair of values (V,),
an injection of a value (¥)inl or (W)inr, a complement of a coterm [K]not, or a function
Ax.M.

Values of the dual calculus

V,W = x| {V, W) | {V)inl | (W)inr | [K]not | Ax.M

A covalue of the dual calculus is denoted by P, 0 A covalue is a covariable «, a case

over a pair of covalues [K, L], a projection of a covalue fst[P] or snd[Q], a complement of a

—33—

term not(AM), or a function application over a covalue M@Q.

Covalues of the dual calculus
P, Q=a| [P O] fst[P] | snd[Q] | no(M) | M@Q

These definitions of the values and covalues are same as those in Wadler (2003) but
different from those in Wadler (2005). Note that if we adopt the definitions in Wadler (2005),
then terms containing beta redexes at the top level may also be values. For example, a term
({x,) o fst[a]).a includes a beta redex at the top level even though it is a value according to
the definition in Wadler (2005).

A term context for the dual calculus (denoted by E) is a term that contains a hole that
accepts a term, and a coterm context (denoted by F) is a coterm that contains a hole that
accepts a coterm. The hole is written {—}, and the result of filling the hole in the term
context £ with a term M is written E{M}. Similarly, the result of filling the hole in the
coterm context F' with a coterm X is written F{K}.

Term contexts and coterm contexts
E == {-LN) |V, {-D | {{=Pinl | ({-})inr
F o= [K {-}]1[{-}, P]| fst[{=}] | snd[{-}] | M@{-}

Note that the context of the form of M@{-} is defined as a coterm context in this paper
though it was not defined in Wadler (2003). This means the reduction rule

N o (M@K) —" (N o (M@a)).c o K

is permitted as (name)-rule in our call-by-name calculus. This seems to have added a new
rule to Wadler’s original system. However, this rule is not an essentially new rule, because
this rule is justified when implication is defined in terms of conjunction, disjunction and
negation (see Proposition 2.7).

The call-by-name reduction relation —" and the call-by-value reduction relation —"”
of the dual calculus are defined to be the compatible closure of rules in figure 2.5. In the
sequel, we use —"*, —"*, and =" as the reflexive transitive closure, the transitive closure,
and the symmetric reflexive transitive closure of —" respectively. —”*, —"*, and =" are
defined similarly.

Some of our reduction rules are slightly different from those in Wadler (2003), but the
differences are not essential. (8-)-rules given here are justified in Proposition 2.6. (name)-
rules correspond to (¢)-rules of the dual calculus in Wadler (2003), though these rules are

—34—

Call-by-name reduction Call-by-value reduction
Br) (M,N) o fst[P] —" Me P (V,W) o fSt[K] —" Vo K
(M,N)ye snd[Q] —" NeQ (V,Wyesnd[L] —" WelL
Bv) (M)inl e [P,Q] —" M e P (Vinle [K,L]—" Ve K
(Nyinre [P,Q] —"Ne QO (Wyinr e [K,L] —> W e L
B-) [K]not e not{ M) —" Me K [K]not e not(M) —¥ M e K
B-) Ax.Me (N@P) —" M[V/]eP x.Me (N@K)—" N ex.(MeK)
Br) Me xS —"S[M/,] Vex.S —S[V/]
(Br) S.axeP—"S[P/,] S.aeK—"S[X/a]
(mr) M—"(Mse a).a M—Y(Mea).a
(nL) K —"x(xeK) K—Vx(xeK)

(name) Me F{K}—" (MeFla}).aeK E{M)eK —" Mez(E{z}e K)

Figure 2.5: Reduction rules of the call-by-value and call-by-name dual calculus

not included in his system. Indeed, we can easily show (name)-rules from (5)-rules using
(BL) and (Bg)-rules in both the call-by-name and call-by-value systems. Conversely, we can
_ obtain (¢)-rules from (name)-rules using (17.) and (rg)-rules.
When a term M of the dual calculus reduces a term N by the one-step call-by-name
* reduction, we write DC + M —" N. We also write DC + K —" L, DC + § —" T,
DC v+ M—™N, DC + K—"™L,DC + S—™T,DC + M =" N,DC + K =" L, and
DC + S =" T. For call-by-value calculus, we also define these notations similarly.

As in Wadler’s original dual calculus, implication can be defined in terms of the other

connectives, i.e., the following propositions hold.

Proposition 2.6

Under call-by-value, an implication can be defined by

ADB = —(4AA-B)
Ax.M = [z.(z e fst[x.(z e snd[not(M)])])Inot
N@K = not{(N,[K]not)).

The translation of a function abstraction is a value, and the typing and reduction rules for

implication can be derived from the typing rules for the other connectives.

Proof. The call-by-value (3-)-rule is validated as follows.

—35—

(a) If N is a value V, then

(Ax.M) o (V@K) = [z.(z ® f5t[x.(z e snd[not{M)])])]not e not((¥, [K]not))
—) (¥ [K]not) e z.(z e fst[x.(z e snd[not(M)])])
— gy (¥ [K]not) e fst[x.((V, [K]not) e snd[not(M)])]
— @, V@ x.([K]not e not(M))
— sy Ve x.(MeK).

(b) If N is not a value, we need (name)-rule:

(Ax.M) e (N@K) = [z.(z o f5t[x.(z ® snd[not{M)])])]not e not{ (N, [K]not))
— .y (N, [K]not) e z.(z e f5t[x.(z e snd[not(M)])])
>ty NV 0 y.((, [KInot) » z.(z o fst{x.(z « snd[not(A1)])]))
— ;) N @ y.(, [K]Inot) e fst[x.((y, [K]not) e snd[not(M)])])
—) IV @ y.(y x.([K]not e not(M)))
— gy NV @ x.([K]not e not{M)) —(,) N @ x.(M e K).

Proposition 2.7
Under call-by-name, an implication can be defined by

ADB = -AVB
Ax.M = (([x.(M)inr e y)]not)inl e).y
N@K = [not{N),L].

The translation of a function application with covalue is a covalue, and the typing and re-

duction rules for implication can be derived from the typing rules for the other connectives.

Proof. The call-by-name (B-) and (name)-rules are validated as follows.

(Ax.M) o (N@P) = ({[x.((M)inr o y)Inot)inl e 7).y e [not(N}, P]
"“’?ﬁk) ({[x.({(M)inr e [not(N), P])]not)inl e [not(N), P]
— v [x.(M ¢ P)Inot e not(N)
— 5y Nex.(Me P)
) MY/ Je P

~36—

N o (M@K) = N o [not(M), K]
_—)E’name) (N e [I’lOt(M)s a])d o K
=(Ne(M@a)).ae K

We now mention some basic properties of the dual calculus.

Lemma 2.8 (Substitution lemma for the dual calculus)
Let M and N be terms, K and L be coterms, and S and T be statements of the dual calculus.

(1) SupposeI'- A | M : A, then
ifC,x: AFA|N:B,thenT }A| N[¥/,]:B,
ifL:B|T,x:AF A, thenL[M/,] : B|T }- A; and
ifT,x:4|S kA, thenT | S[M/,] }- A.

(2) Suppose K : 4| T' |- A, then
ifTHA,@:A|N:B,thenT A| N[X/,]: B;
ifL:B|TFA,a:A,thenL[X/,] : B|T |- A; and
T IS A a: 4, thenT | S[X/a] A.

Proof. (1) and (2) are shown by a straightforward induction on M, X, and S O

Proposition 2.9 (Subject reduction for the dual calculus)
Let M and N be terms, K and L be coterms, and S and T be statements of the dual calculus.

(1) iTFA|M:Aand DC+ M —" N,thenT A | N : 4,
IfK:A|TFAand DC+K —" L,thenL: A|T A,
IfT|SFAandDC+S —" T ,thenl' | T |- A.

2 fTFA|M:Aand DC+ M —V N,thenTFA|N: 4,
IfK:A|TFAand DC+K —" L,then L: A|T A,
IfT|SFAand DC+S —” T, thenT | T |- A

Proof. Using the substitution lemma, (1) and (2) are shown by an induction on —, and

—, respectively. O

—37—

As Wadler mentioned in his paper, the reductions of his dual calculus are confluent.
Moreover, if (112), (), and (¢)-rules are omitted, then the remaining reductions are strongly
normalizing for typed terms. Our systems enjoy similar properties. However, since (7;) and
(nr)-rules are expansions, the full reductions are not strongly normalizing. Moreover, the
full reductions of our systems, like Wadler’s original systems, include looping terms even
for typed terms. For example, (x,y) is a typable statement, and this statement loops in

the call-by-value calculus.
(x’y> °x -équ) ((‘x .ﬁ)‘ﬂ’y> oo .—)E)name) (x .ﬁ)'ﬁ .Z'(<Z’y> b a)
_*‘()ﬂk) xez.((z,y) e @) —’(vpL) (x.y) e

We can give a similar example for the call-by-name calculus.

We now consider the two versions of the dual calculus; one given in Wadler (2003) and
the other given in Wadler (2005). For the latter version, we write DC)~ as the call-by-name
system and DCy~ as the call-by-value system. The differences between the two versions of

the dual calculus are summarized in the following three points:

e The first version is based on reduction relations while the second one is based on

equations,

e the first version does not have (77)-rules related to implications, negations, pairs, and

sums while the second one does contain them, and

e the second version contains terms of the forms (¥ e fst[a]).« and (V e snd[3]).3 as
values and coterms of the forms x.({x)inl e P) and y.({y)inr e Q) as covalues.

2.4 Translations from the Au-calculus into the dual calcu-

lus

In this section, we give the translations from the Au-calculus into the dual calculus. We con-
sequently introduce two different translations for the call-by-name and call-by-value calculi,

and show that these translations preserve typing and reductions.

2.4.1 The naive translation

In this subsection, we give the naive translation from the Au-calculus into the dual calculus.

This translation preserves equalities, but does not preserves reductions.

—38—

[ilf,‘.;‘

Definition 2.1 (The naive translation from Au into DC)
The naive translation (=)° from the Au-calculus into the dual calculus is defined as follows.
This translation maps a term M and a statement S of our Au-calculus to a term M° and a

.. statement S° of the dual calculus respectively.

(x)°=x (M, N)) = (M°,N°)
(6(0,x.M,y.N))* = (0 o [x.(M® ® @), y.(N° e &)]).x
(6(0,x.8,y.7))° = 0° e [x.5°,y.T°]

(fst(0))° = (0° e fst[a]).a (inl(0))° = (O°)inl
(snd(0))° = (0° e snd[a]).¢ (inr(0))° = (O°)inr

(Ax.8)° = [x.S°]not (OM)® = O° e not(M°)
ua.S)yY =S°.«a ([e]M)’ = M o
(Ax.M)° = Ax.M° (OMy = (O° o (M @0)).a

This naive translation is defined by changing the part of sums of the original translation ()"
given in Wadler (2005). The naive translation is consistent with Wadler’s translation in the

sense of the following lemma.

Lemma 2.10
Let M be a term, and S be a statement of our Au-calculus, then

(1) DC™ + {M)* =" M and DC™ {S)" =" §°;
(2) DC™ + ((M))* =" M° and DC™ + {S)" =" S° hold.
Proof. (1) is proved by induction on M and S. We give the sums, i.e., inl(O), inr(0),
8(0, x.M,y.N), and 6(0, x.S,y.T).
Case of inl(O) :
Gnl(0)Y" = (u(e B)LaI(ON" = ({((LON" » @) B)inr o y).a)inr o y).y
& ((((0° «) pinr « Y)a)inr 07).y
= ({(0° ¢ @) B)inr ¢ y).a)inr o [x.((x)inl e 7),y.()inr o)R
=7 ({(O° # @) BYinr e)2 y.(dinr 0 7))y
=1, ({(0° » @) Binr o [x.((xyinl o), y.((inr o Y)]).cr o y.(@)inr e 7)):y
=12 ((O° ¢ @) o x.((x)inl @ 7). 0 y.((ydimr o 7))y
=la (O o y.(()inr ¢).y

=(g,) ((O°)inr ¢ 7).y

-39

=?771.) (O%)inr

Note that these equations are the DC™ equation, that is, Wadler’s system (2005).

Case of inr(O) : this case is proved in a way similar to the above case.
Case of 6(O, x.M,y.N) :

(8(0, x.M,y.N)Y" = (. (r.YIN D) (B.(Ax. Ly I MY e [, BICOY))
= ([»-(&V)" o)]mot « not{([x.((MY" « 7)Inot # not(({OY" o [a,81).a)).8)).¥

~

H.

d ([y.(N° o 7)]not o not(([x.(M° ¢ y)|not e not((0° e [a, ,B]).a)).,B)).y
=5 ([y(N° . 'y)]not ° not(((O" o [a,f).aex.(M e y)).ﬁ)).y

=2 (((0° o [a,B]).c o x.(M 7)) Bey.(N° e)y

=toame) ((O° @ [x.(M° 0),8]) B 0 y. (" 0 7))y

=toamey (O° & [x.(M° 0 9),.(N° 0 7)]).y

= (6(0,x.M,y.N))°

Case of 6(O, x.S,y.T) : this case is proved similar to the above case.

(2) is also proved by induction on M and S. The key cases are terms and statements for

sums, and these cases are shown similar to (1). O

The naive translation preserves typing rules and equalities.
Proposition 2.11
() BTy, Al M: A, thenT A | M : A.
T[S Fa A, thenT | S° | A.

) fAur M=, N, then DC + M° =" N°.
IfAur S =, T,then DC + S° =" T°.

(3) If Au+ M =, N, then DC + M° = N°.
IfAur S =, T,then DC+ S° =¥ T°.

Proof. (1) We can prove this claim by a straight forward induction on | A

(2) This claim can be shown directly by an induction on =,. Even if we do not adopt this
approach, we can show this claim as a corollary of Theorem 2.16 using Lemma 2.12.

(3) As with (2), we can show this claim directly, or as a corollary of Theorem 2.21 using

— 40—

Lemma 2.17. m]

In general, this naive translation, as well as Wadler’s translation, does not preserve re-

ductions. This is because of the so-called administrative redexes. A typical example is
(¢)-reduction : (ua.[B1Ax.[a]x)y — py.[B1x.[Y) ()

(ne[B1x[aln)y) = (([x.(x © @)Inot o B).c s (V@))-¥
—t ([x.(x « G@y))Inot o B).y
g ([x((x © 0@7)).¥' * V)]not e).y
= (y [B1Ax.[Y)(0))
To solve this problem, we modify the naive translation. The idea of modification is similar
to the modified CPS translation by de Groote [13; 14]. In the following two subsections, we

give different translations for the call-by-name and call-by-value calculi. This is because the
administrative redexes of these two calculi are slightly different.

2.4.2 The translation from CBN Au-calculus into CBN dual calculus

" The call-by-name translation consists of the following two translations.

o ()" maps any term M and statement S of the Au-calculus to a term M* and statement
S* of the dual calculus, respectively.

e ((-) :» K) is a translation given by coterm K and maps any term M of the Au-calculus
to a statement M :, K of the dual calculus.

Definition 2.2 ((-)* : CBN Au-calculus — CBN dual calculus)
Let M be a term of the Au-calculus, (M)* is defined as

(M) = (M, @).c (where « is a fresh covariable)

and let S be a statement of the Au-calculus, (S)* is defined as

(e]M) = M, @
(MNY = M -, not(N*) (where M is not a A-abstraction)
(Ax.S)N) = N¥ o x.S*
(60, x.8,y.T)) = O* o [x.5*, .74

—41 -

where the infix operator “:,” translates a pair of a term M of the Au-calculus and a coterm

K of the dual calculus into a statement A :, K of the dual calculus. This operator is defined

as follows: ,
x,K=xeK (M,N) :, K= (M Nty oK
fst(M) :, K = M 3, fst[K] inl(M) :, K = (M*)inl e K
snd(M) :, K = M :, snd[K] inr(M) :, K = (M'yinr ¢ K
(Ax.8) :n K = [x.S¥]not e K paS , K=Staek
(Ax.M) :;, K = (Ax. M) o K
(MN):, K = M :,, (N*@K) (where M is not a A-abstraction)

(Ax.M)N) :, K= (N e x.(M :,, @)).@ e K
8(0,x.My.N) :n K = (OF o [x.(M 3, @), y.(N -, ?)))@e K

where S.@ e K means S[X/,] if X is a covalue, otherwise it means S.a o K.

This translation is consistent with the naive translation, that is, the following lemma
holds.

Lemma 2.12
Let M and S be a term and a statement of the Au-calculus, then

(1) DC v+ M° ¢ P —™ M :, P for any covalue P,
(2) DC + M —™ Mt and
(3) DCr §° —m St

Proof. We prove (1), (2), and (3) by a simultaneous induction on M, S. If (1) is shown for
some term M, (2) of M is easily shown by

n (l)n*
M —) (M ea)a—" (M:, a).a= M,

Therefore we prove (1) and (3).

Case of x : this case is immediate.

Case of Ax.M, (M, N}, inl(O), and inr(O) : these cases are easily shown by the induction
hypothesis of (2).

Case of MN (MN is a term, M is not a A-abstraction) : this case is also easily shown by the
induction hypotheses of (1) and (2).

Case of Ax.S : this case is easily shown by the induction hypothesis of 3).

—40 -

Case of MN (MN is a statement, M is not a A-abstraction) : this case is also easily shown
by the induction hypotheses of (1) and (2).

Case of (0, x.S,y.T) : this case is also easily shown by the induction hypotheses of (2) and
3).

Case of [@] M : this case is also easily shown by the induction hypothesis of (1).

- Case of (Ax.M)N :

((Ax.M)N)" @ P = (Ax.M°) o (N°@0)).c ® P —(5,, (Ax.M°) o (N°@P)

LH(

1)

—5y N° @ x.(M° o P) —" N* e x.(M° o P)

LH(2)

—" N e x.(M :, P) = (Ax.M)N) :, P
Case of fst(0) :

LH(1)
£5t(0)° o P = (0° » fst[a]).a o P —ls) O° @ f5t[P] —" O 3, T5t{P] = £51(0) 15 P

Case of snd(O) : this case is shown in a way similar to the above case.
Case of 6(0, x.M,y.N) :

5(0,x.M,y.N)’ e P = (O° o [x.(M° e @),y.(N° @ @)]).a @ P

LH(1)
— gy O° @ [x.(M° ¢ P),y.(N° » P)] —™ O° o [x.(M :, P),y.(N :, P)]

LH.(2)
—" O o [x.(M :p P),y.(N :» P)] = 6(0,x.M,y.N) :, P

Case of ua.S :

LH(3)
(ua.S)Y e P=S°ae P —" Stae P — SUP/.] = pasS :, P

Case of (Ax.S)N :
(Ax.S)N)’ = [x.S°Inot @ not(N°) —{5 y N° e x.5°

LH(@2),3)
51 N e x5 = (Ax.S)NY

This translation preserves the typing derivation, that is, the following proposition holds.

Proposition 2.13
(1) BT}, Al M: A thenT 4 A| M : A,

— 43—

(2) IfT| S |-y, A, then T | S¥ |, A.

Proof. This proposition can be shown by the subject reduction property for the dual calculus

using Proposition 2.11 and Lemma 2.12.]

Lemma 2.14
(1) Let M and N be terms, and S be a statement of the Au-calculus, then

DC v (M :y PY™/,] —™ M[¥/.] tn P[™/,], and
DC + SHM /.1 —™ (S[¥/,]) hold for any covalue P.

(2) Let P and Q be covalues and M be a term of the dual calculus, then
DCr Me[x(xeP)y(ye Q)] —" Me[P,(]

(3) If K isnota covalue, then DC + O :, K —™ O!e K for any term O of the Au-calculus.

(4) DC + (M :, N\@P) —"™ (MN :, P) and DC + (M :, not(N*y) —™ (MN :, P) for
any terms M and N of the Au-calculus, and covalue P.

Proof. (1) we can prove this claim by a straightforward induction on M and S. The key case

1S :
@ P = e PV 1= N e PP = WV @) o PPV] — N s, PPV /4]
(2) Me[x(xoP),y.(ye Q)] —lame) (Mo [x.(x o P),B]).Sey.(ye Q)

gy (Me[x.(xeP).p) e Q—, Me[x(xeP),Q]
name) (M @ [@, O 0 x.(x 0 P) —{) (M o [, Q).a ¢ P—>) Mo [P, 0]

(3) this claim can be shown by induction on term O.

Cases of x, Ax.M, Ax.S, ua.S, {M, Ny, inl(M), and inr(M) : these are easily shown by the
definition.

Case of MN (MN is a term, M is not a A-abstraction) :

M 5y K = My M@K — M o (V@K) ey (M + (V@00 K
—" (M, N'@a).2 o K = (MN :, a).a o K = (MN) o K

Case of (Ax.M)N :

(Ax.MN :y K = (N o x.(M :, @)).c 0 K = (Ax.M)N 3 @).x o K = (Ax.M)N)} o K

—44 —

Case of fst(0) :

LH.
£5t1(0) 1y K = O 2, fst[K] —™ O o fst[K] —name) (O o fst[a]).a o K
—" (M :, fst[a]). o K = (f5t(0) :p @).x o K = fst(0)' 0 K

Case of snd(0O) : this case is shown in a way similar to the above case.
..Case of 6(O, x.M,y.N) :

5(0, x.M,p.N) :n K = (O}, [x.(M 3, @),y.(N :, @)])-¢ © K
= (0(0,x. M,y.N) 1y @).x o K = 6(0,x.M,y.N)* o K

(4) If M is not a A-abstraction, then the claim is immediately shown. We consider the

remaining cases.

(Ax.M) : (N*@P) = (1x.M') o (N'@P) — Nt o x.(M" o P)
— N ex.(M:, P)= (Ax.M)N :, P
(2x.8) : not(N*) = [x.S¥]not @ not(N!y —7 N e x.5* = ((Ax.5)N)

Let E, and D, be a call-by-name evaluation term context and statement context of the
Au-calculus, and P be a covalue of the dual calculus, then we define covalues @(E,, P) and
®(D,) as follows:

o({-},P)=P O(E,N, P) = ®(E,, N'\@P)
O(fst(E,), P) = O(E,, fst[P]) ®(snd(E,,), P) = O(E,, snd[P])
O(8(En, x.E,{x}, y.E, {y}), P) = Q(E, [Q(E}, P), ©(E}, P)))

O([a]E,) = D(E,, @) D(E,N) = D(E,,, not(N*))
O(8(Ep, x.Du{x}, .0y 0)), P) = O(Ey, [O(Dn), D(D;)])

Then the following properties hold.

Lemma 2.15
(1) If M is not a A-abstraction, then DC + (E,{M} :, P) —™ (M :, O©(E,,P)) and
DC + (DM} —™ (M :, ©(D,)) hold.

(2) For any term M of the Au-calculus, DC + (M :, ®(E,, P)) —"™ (E,{M} :» P) and
DC + (M 3, ®(D,)) —™ (Dn{M}) hold.

— 45—

(3) Let Mbe a term and S be a statement of the Au-calculus, then
DCF (M n P)[(D(D")/a] —t* M[D"(—}/[a][_}] n P[¢(D")/a], and
DC + SH®®D /1,1 —m (S [P /103D hold for any covalue P.

Proof. (1) is proved by induction on E, and D,. For E,N, we can prove the claim by the
induction hypothesis, since E,{M} is not a 1-abstraction by the assumption of M.

We now consider 6(E,,, x.E,{x},y.E, {y}) and 6(E,,, x.D,{x},y.D,(»}).

Case of 6(E,,, x.E,{x},y.E!'{)}) :

O(En{ M}, x.E,{x},9.E/B)) 1n P = En{M}* @ [x.(E}{x} 10 P),y.(E} () n P)]

5 By (MY o [0 (] P), iy o O(EL, P)]

Lem 2.14(2) § , "
—™ En{M} b [(D(EmP)’ (D(”,P)]

= (E,{M} 3y @).a o [O(E,, P), D(E}, P)]
—" (E.{M} 1, [O(E,, P), D(E”, P)]

I.H.
—™ M 5y O(E,, [V(E,, P), DEL, P)])

=M:, O(E,, x.E {x},y.E!'{y}), P)

Case of 6(E,, x.Dyu{x},y.D,,{y}) : this case is proved in a way similar to the above case.
The other cases are easily shown using the induction hypothesis.
(2) is proved by induction on E, and D,. If E,, is E,N, then

M:, ®(E,N,P)= M, ®(E,, N'@P) B E,(M}:, (N*@P)

Lem 2.14(4)
—" n{MN ‘n P

If D, is E,N, this case is also proved by the induction hypothesis and Lemma 2.14(4). If E,,
is 6(E,, x.E{x},y.E"{y)), then

M :nQ(8(Ey, x.E;{x),y.E, (), P) = M :, D(E,, [D(E,, P), D(E”, P)])

LH.
—)"* E,,{M} :n [(I)(Er’v P)? (D(E),T,’ P)]

0 EnlM} 2y [x.(x 0 O(E,, P)),y.(y « O(E},, P))]

LH.
—" E{M} 3, [x.(E;{x} i P),y.(E (Y} 1 P)]
Lem 2.14(3)

—" (En{M)} @ [x.(E}{x} :n P),y.(E" {3} 1 P)]
= §(E.{M}, x.E,{x},y.E'(}}) :, P

— 46—

If D, is 6(E,, x.Dy{x},y.D.{y}), this case can be shown in a way similar to the above case.
The remaining cases are proved easily using the the induction hypothesis.
(3) is proved by induction on M and S. The key case is [a@] M.

1M o] = (M 2)P o] —3" (M] 20 (D)

_Lz))n* (Dn{M[D"{—}/[a]{—]]})u = (([a’].ZM)[D"[—}/[G][—]])ﬁ

The other cases are proved easily using the the induction hypothesis. m]

Then, we prove that the call-by-name modified translation (—)* preserves reductions.

Theorem 2.16 (Soundness of (—)*)

() IfAu + M —, N, then DC + (M :, P) —™ (N :, P) for any covalue P, especially
DC + Mt —sm NE.

) IfAur S —, T,then DC + S¥ —m TH,

Moreover, if —, is (B-), (B4), (Bv) or (B-), then —"™ can be replaced by —"*.

Proof. The claims are proved by simultaneous induction on —,,.
- Base cases are shown as follows.
" Case of (8) :
Lem 2.14(1)
(. M)N 3 P) = N* @ x.(M 3y P) —>(gy (M3 P 1] =" (MTY/5] 20 P)
Case of (B,) :

(fst(M, N) 3, P) = (M, Ny -, fst[P] = (M", N¥y o fst[P]
—ay M o P—(g, (M, P)

The other rule of (8,) can be proved similarly.
Case of (Bv) :

Lem 2.15(1)
(6(nl(0), x.En(x},y.ELp)) n P) —"™ (inl(0) :p ®(6((~}, X.Enlx}, y-E4i¥)), P))
= (inl(O) :n D=}, [D(En, P), O(E,, P)])) = (inl(0) : [O(Ey, P), D(EL, P)])

= ((O"inl o [D(Ey, P), O(E,, P)]) —5,y O ¢ O(Ey, P) —) O in O(Ep, P)

n

Lem 2.15(2)
—" (E,,{O} n P)

47—

The other rules of (8,) can be proved similarly.

Case of (B-) :
Lem 2.14(1)
(SN = N o x5 —sr, S 1,17 SV
Case of ({) :
Lem 2.15(1) HrO(EsP) § 1 O(E,) P
(B fpa.S} iy P) —™ (ua.§ 1, O(E,, P)) = SHCEP] = SHEER [P /5]

Lem 2.15(3)
= SIOEE P 1] —" (SEE D' E 6]

= (BS [P 1] 20 P)
The other rule of ({) can be proved similarly.
Case of (n,) :
(na[e]M -, P) = ([@lM)'["/e] = (M 3 &) /a] = M, P

Case of (7) :

Lem 2.15(1)
(E{6(0, x.M,y.N)} :;, P) —™ (8(0, x.M,y.N) :, ®(E,, P))

= (0ﬂ o [x(M n q)(Em P))’y'(N n (I)(EmP))])

Lem 2.15(2)

__)n* (O’t ® [x-(En{M} :n P),J’(En{N} :n P)])
= (6(0, x.E,{M},y.E,{N}) :, P)

The other rules of (1) can be proved similarly.
Case of (v) : Let T not be a simple form. Then

(60, x.8,y.T)" = OF ¢ [x.8%,y.TH —7,,,..) (OF o [x.8%,8]) 8 ¢ y.T*

—t (O e [x.S%,y.(v 0 B)]).B e y.T! = 6(0,x.5,y [By)} B o y.T*

= (- T)B.8(0,%.5,5 I8 .
The other rule of (v) can be proved similarly.
- Induction cases of (1) and (2).
We can easily show these cases by the induction hypothesis. We consider the less than
obvious case: ON —, (Ax.M)N is obtained from O —>, 1x.M and O is not a A-abstraction.

LH.
(ON 3, P) = (03, V*@P)) —™ (x.M -, W*@P)) = 1x. M o (V'@P)
—0a) N ex. (M o P) —7 N o x.(M:, P) = (Ax.M)N -, P)

—48 —

2.4.3 The translation from CBV Au-calculus into CBV dual calculus

In this subsection, we introduce the call-by-value translation from the Au-calculus into the
dual calculus by modifying the naive translation (-)°. The call-by-name translation also
consists of the two translations: (=)' and (-) :, X.

Definition 2.3 ((-)" : CBV Au-calculus — CBYV dual calculus)
Let M be a term of the Au-calculus, (M)' is defined as

M= (M) (where a is a fresh covariable)

and let S be a statement of the Au-calculus, (S) is defined as

(M)} =M:, e
(MN)' = M 1, not(N") (where M is not a A-abstraction)
((xSNF =N, xSt
60, x.8,y.T)' = M, [x.57,y.T"]

where the infix operator *:,” translates a pair of terms M of the Au-calculus and a coterm K
of the dual calculus into a statement M :, K of the dual calculus. This operator is defined as
follows:
x,K=xeK (M,Ny:, K=(M,NYye K
fst(M) :, K = M :, fst[K] inl(M) :, K = (M")inl ¢ K
snd(M) :, K= M :, snd[K] inr(M) :, K = (M)inr ¢ K
(Ax.8) iy K = [x.ST]not ¢ K ua.S K =8T%/,]
(Ax.M):, K=(Ax.M) e K
(MN): K= M:, (N'@K) (where M is not a A-abstraction)
(Ax.M)N):, K=N:, x(M:, K)
5(0,x.M,y.N):, K= 0, [x.(M:, K),y.(N :, K)]

When we compare the CBV translation given here with the CBN translation, the defini-
tions of (ua.S :, K), (Ax.M)N :, K), (6(O, x.M,y.N) :, K), (Ax.S)N)', and 6(0, x.8,y.T)
are different. This is because the administrative redexes differ according to the difference of
(£)-rules of the call-by-name and call-by-value systems.

Like the call-by-name translation, the call-by-value translation is also consistent with

the naive translation in the sense of the following lemma.

Lemma 2.17
Let M and S be a term and a statement of the Au-calculus, then

— 49—

(1) DC+ M° ¢ K — M:, K for any coterm K,
(2) DC+ M® —"* M, and
(3) DC+ §° —¥ ST,

Proof. We prove (1), (2), and (3) by a simultaneous induction on M and S. Most parts of
this proof are similar to the one in Lemma 2.12. For example,
Case of (Ax.M)N :

((Ax.M)N)® o K = (Ax.M°) o (N°@q)).c o K — () (X A°) o (N°@K)

LH(1)
—py N ox.(M e K) —" N, x.(M:, K) = (Ax.M)N) :, K

This call-by-value translation also preserves the typing derivation.
Proposition 2.18
(1) T, Al M: A, thenT |4, A| M : 4.
(2) T[S, A, thenT | ST, A

Proof. This proposition can be shown by the subject reduction property for the dual calculus
using Proposition 2.11 and Lemma 2.17. m]

Definition 2.4
For each value V in the Au-calculus, we define a value (V)" in the dual calculus as follows.

(x)" =x, rw)y =, wr)
(nl(M)Y =(M)inl (Ax.M)" = Ax.M'
(inr(W))’ = (Wyinr (Ax.S)"” = [x.S TInot
Using this notation, we can show the following lemma.
Lemma 2.19
(1) DC+ V7’ e K —™ (V' :, K) for any coterm K, especially V¥ —** V7,

(2) DC+ (V =y K) —"* 7~ o X for any coterm K. That is, the statement (¥ :, K) loops in

the call-by-value dual calculus.

~50—

(3) Let Mbe aterm, S be a statement, and ¥ be a value of the Au-calculus, then

DC+ (M, K)[7 /] —* (M["/,] + K[”" /+]), and
DC v ST[” /] —** (S[¥/]) for any coterm K.

Proof. (1) is proved by a straightforward induction on V. For example, we consider the case
of (V, Wy: ((V, W)’ e K) = (P, Py 0 K — VhwhyeK=(V,W) e K

(2) is also proved by an induction on V. We consider the key cases.

Case of (V, W):

wy K=, whyek — V1 ex.((x,) e K)

(name)
IL.H.
ey Vv x((x, Wty e K) —" V¥ e x.((x, W) o K) —y (Vs Yy e K

1.H.
—-)E’name) W ey.((V,y) e K) —)"(ﬂk) Wwy.(V,y) e K) —" W ey.((V",y) e K)
—y (VW) e K=(V, W) oK

Cases of (¥V)inl and (W)inr: this case can be proved in a way similar to the above case using
the induction hypothesis and (name)-rule.

(3) is proved by a straightforward induction on M and S. The key case is:

(1)
G O 1] = o KO0 L] = 77 o K[V 1] —o™ (7 5 KT 1,))

Definition 2.5
Let E, be a call-by-value evaluation singular term context, and K be a coterm of the dual

calculus. Then we define coterm ¥(E,, K) as follows.

W((-JN, K) = N'@K W((r.M){-}, K) = x(M 3, K)
Y(fst(-), K) = fst[K] ¥(inl(-), K) = x.({(x)inl ¢ K)
¥(snd{-}, K) = snd[K] ¥(inx(-), K) = y.({y)inr o K)

V() ML K = (MY oK) D, K =3 (P) 0 K) i
Y(6({—}), x.M,y.N),K) = [x(M 5 K),y.(N 3 K)]

and for every singular statement context D,, we define coterm W(D,) as follows.

¥(al{-D) = Y(6({-), x.8,3.T)) = [x.51,y.TT]
¥({~}N) = not(NT) P(AxS){-)=x.ST

About this notation, the following properties hold.

—-51 -

Lemma 2.20
(1) Let M not be a A-abstraction, then DC + (E,{M} :, K) —™* (M :, ¥(E,,K)) and
DC + (D,(M})T —™ (M :, ¥(D,)) hold.

(2) Let E be an elimination context or (Ax.M){-}, and D, be an evaluation singular state-
ment context. Then DC + (M :, W(E,K)) —" (E{M} :, K)and DC + (M :,
¥(D,)) —" (Dy{M})" hold for any term M of the Au-calculus.

(3) Let E; be an introduction context of the Au-calculus. Then DC (M :, ¥(E;, K)) —™
((Ax.Ed{x})M :, K) for any term M.

(4) Let E be an elimination context or (Ax.M){~} of the call-by-value Au-calculus. Then
DC v (M2 K)FED o] —» MIPES)] -, K[¥ED/,], and
DC v ST*EB 1,1 —v* (ST])T hold for any coterm K.

(5) Let D, be an evaluation singular statement context of the call-by-value Au-calculus.
Then DC + (M &y K)[*P /o] —** M /1341 1 K[¥®9/,], and
DC + ST*®) /] — (S[P47) /1y D' hold for any coterm X.

Proof. (1) Since M is not a A-abstraction, we can immediately show DM} :, K) =
(M :, ¥(D,)) by the definition. If E, is an elimination context or (Ax.M){-}, then we have
(Ev{M} :, K) = (M :, ¥(E,,K)). For the introduction contexts, the claim is proved by a
case analysis of E,,.

Case of ({-}, N):

(M,N) 1, K= (M',N") o K — ... M" o x.((x,N') o K)
—n (M3 x.((x, N 0 K)) = (M 2, Y(({=), N), K))
Case of (¥, {-}):
M) sy K= (VM) 0 K500 V' o x.((x, M) 0 K) —5t) ¥ 2y x.((x, M) 0 K)

Lem 2.19(2)
—’ Ve x.({x, My e K) —e (7 Mhyek —name) M ey.((V,3) 0 K)

—ln (M iy y. (V.3 e K)) = (M 2, ¥V, (1), K))

Case of inl(-):

inl(M) :, K = (M'yinl e K —? . M" e x.((x)inl e K)

(name)

—gn M v x.((x)inl @ K) = M :, ¥(inl(-), K)

—-52—

Case of inr(—): this case is proved in a way similar to the above case.

(2) can be shown by a case analysis of £ and D,. We give the key case of D, as follows:

Ax.S : P({~IN) = 2x.S 3, not N) = [x.ST]not e not(N')
—@.) NtexsST —ey N xSt = (Ax.85)N)

For E, the key case is: M is Ax.M and E is {—}N. This case is shown in a way similar to the
key case of D,,.
(3) can be shown by a case analysis of E;.

Case of {({-}, N):
(M P~} N, K) = M2y x.((, N e K) —V M, x.((x",N") ¢ K)

(mR)

=M:, x‘(<x’N) W K) = (Ax.(x, N)M :, K
Case of (V,{-}):

Lem 2.19(1)
My YV A-0.K) = (M y.(p)eK) — (Myy.((V'y) e K))

— o M y. (VT3 e K)) = (M 2y p.((Fy) 3 K)) = (K y)M 5 K
Case of inl(-):

M, ¥(inl(-),K) = M :, x.({(x)inl @ K) = M :, x.(inl(x) :y K) = (Ax.inl(x)) M :, K

Case of inr(—): this case is proved in a way similar to the above case.

(4) can be shown by induction on M and S'. The key case is:

H.
([a]M[\P(Eﬁ)/a] = (M v a)[W(Eﬂ)/a] 'i")v* M[W]E(_}/[a](—)] v \P(E’:B)

)]
—” E{M[PF 030} = B = (BIE(MIPET /1)
= ([e]M[PF gy D)

(5) can be shown by induction on M and S. The key case is:

([IM)[¥P /] = (M 2y)[FP /4] L5 M gi] » ¥(D,)

)
S (DAMP? gD = (1M 1))

Then we prove that the call-by-value modified translation (=)' preserves reductions.

— 53—

Theorem 2.21 (Soundness of (-)")

(W) Ifap+ M —, N, then DC + (M :, K) —" (N :, K) for any coterm K, especially
DC + Mt —» NT.

)IfAurS —, T,then DC + ST —» TT,

Moreover, if —, is (85), (B4), (Bv) or (-), then —** can be replaced by —s"*.

Proof. (1) and (2) are proved by simultaneous induction on —»,. Base cases are shown as

follows.
Case of (8-):
Lem 2.19(2)
(M K=V ix(M:yK) —" Vex(M: K)
) o, Lem2190)
— ey ML] —" M/ K
Case of (8,):
Lem 2.19(2)
SV, W), K=(V,W) :, fst[K] —™ (VW) e fst[K]

Lem 2.19(1)

=V, W) efstK] — VPe K —™ Vi K

The other rule of (3,) is proved similarly.
Case of (8y):

6(inl(¥),x.M,y.N) :, K = inl(V) :, [x.(M :, K),y.(N 3, K)]
Lem 2.19(2)

—" (Pinl @ [x.(M 3, K),y.(N 3, K)]

_)v(ﬁv) Viex(M:, K) ——)V(,BL) (M:, K)[Vv/x]
Lem 2.1903)

—"]M[V/ x] v K
The other rules of (8,) are proved similarly.
Case of (B-):

; Lem 2.19(2) Lem 2.19(3)
(xS =V x 8T —" Pe,xst—y ST — UL
Case of (£): Let E,; be an elimination context of (Ax.M){-}, then

Lem 2.20(1)
EofpaS} o K —" pas @\, ¥(Ea, K) = STHED)] = sH¥EP) 11K/

Lem 2.20(4)
— (S D)5 p] = pBS [P [100] v K

— 54—

The other rule of (¢) is proved similarly.

Case of (comp):
Lem 2.20(1)
Ea{(Ax.M)N}:, K —" (Ax.M)N :, ¥(E.,,K)=N :, x.(M :, ¥(E.,,K))
Lem 2.20(2)

—" N v x-(Ee/l{m Y K) = (/leezl{M})N Y K

' The other rule of () is proved similarly.
Case of (7):

Lem 2.20(1)
E {60, x.My.N)} :, K —" 6(0,x.M,y.N) :, ¥(E.., K)

=0, [x.(M:y ¥(Eo, K)),y.(N 3y P(Eo, K))]
Lem 2.20(2)

—" 0 Y [x-(EeA{M} W K):y-(Ee/I{N} v K)]
= 6(0, x-Ee/l{M7y°Ee/l{N}) W K

The other rule of (¢) is proved similarly.
Case of (17,,):

pafelM K = (M) X/l = (M) [5/e]l= M K

Case of (name): Let O not be a value. Then

Lem 2.20(1) Lem 2.20(3)
E{0}):, K —"™ 0 ¥Y(E,K) —" (Ux.E{x}O:, K, and

Lem 2.20(1)
E{0}, K —" 0, ¥Y(E,K)—y, O x.(x o ¥(E,,K))

Lem 2.20(2)
—" 0y x(Eefx} 1y K) = (Ax.E{x})O :, K.

Induction cases (1) and (2) : These cases are in a way similar to the proof for induction cases

of call-by-name. O

2.5 Translation from the dual calculus into the Au-calculus

In this section, we introduce the translations from the dual calculus into the Au-calculus. As
in the previous section, we give two different translations for the call-by-name and call-by-

value calculi.

—55—

—

2.5.1 The naive translation

In this subsection, we give the naive translation from the dual calculus into the Au-calculus

This translation preserves equalities but does not preserve reductions.

Definition 2.6 (The naive translation from DC into Au)

The naive translation from the dual calculus into the Au-calculus is defined as follows. This
translation (—), maps a term M and a statement S of the dual calculus to a term M, and
a statement S, of the Au-calculus respectively, and maps a coterm K with a term O of the

Au-calculus to a statement K,{O} of the Au-calculus.

(x)o=x a,{0} = [«]O
(M, N))o = (Ms,No) [K,L]o{O} = 6(0, x.Ks{x},y.Lo{y})
(M)inl), = 1inl(M,) (fst[K])o{0} = Ko {fst(O)}
(Myinr), = inr(N,) (snd[L]).{O0} = L.{snd(0)}
([K]not), = Ax.K{x} not{M).{0} = OM,
(Ax. M), = Ax. M, (M@K).{0O} = K.{OM,}
(S.@) = pa.S, (x.8).{0} = (Ax.S,)O
(M e K), = K (M}

This naive translation is given by changing the part of sums of the original translation
(=)« given by Wadler (2005). The naive translation is consistent with Wadler’s translation

in the sense of the following lemma.

Lemma 2.22
Let M be a term, K be a coterm, S be a statement of the dual calculus, and O be a term of

the Au**?-calculus. Then
(1) A+ [M] =" My, A v [K(O)] =" KA[O]), and A ¥ [S.] =" S.;
@) A+ [M] =" Mo, 2+ [KO)] = KA[O]), and A + [S.] = S. .

Proof. (1) is proved by induction on M, K, and S§. We give the cases of sums, i.e., (M)inl,
(N)inl, and [K, L].
Case of (M)inl :

[(MyinL] = [(e, B).[e]M.] = wy.(AIM D™ /iy PO /iz70]
= py [Plinl([M.]) 25 pey.[ylinl(M) =, inl(M.) = ((M)in).

—56—

Case of (NV)inr : this case is proved in a way similar to the above case.
Case of [K, L] :

[(K, L1.{O}] = [L.{uB.K.lpe.[a, BION]
2, Lo{[uB.K.(ua[a, B10M} = Lo{uB.[K.{ue.[a, FIO}}
=5 Lo{uB Kol [uele 1O = Lo{uB.Ko{ue.6([O], x.[a)x, y.[BD)}}
O SO, x.Ko(x),y.Lely)) = [K, L1[O)

(*) comes from the claim: K, {pa.S} =, S[%0)/[43]. This claim is proved by a straightfor-
ward induction on K.
(2) is proved by induction on M and S. The key cases are terms and statements for sums,

and these cases are shown in a way similar to (1). |

The naive translation preserves typing rules and equalities.

Proposition 2.23
(1) TFA|M: A, thenT |, Al M, : 4;
ifK:AII"}—AandI“}—,mAIO:A,thenl"lKo{O}I—,lyA;and
ifC|S A, thenT' | S, |y, A.

(@) IfDC + M =" N, then Ay + M, =, N;
if DC + K =" L, then Au + K.{O} =, L,{O}; and
ifDCr S ="T,then Aut+ S, =, T,.

3) If DC+ M =" N, then Au + M, =, N.;
if DC + K =¥ L, then Au + K,{O} =, L.{O}; and
ifDC+S =" T,then Aut+ S, =, To.

Proof. (1) We can prove this claim by a straightforward induction on |-.

(2) This claim can be shown directly by an induction on =". Even if we do not adopt this
approach, we can show this claim as a corollary of Theorem 2.28 using Lemma 2.24.

(3) As in (2), we can show this claim directly, or as a corollary of Theorem 2.34 using
Lemma 2.30.]

In general, this naive translation does not preserve reductions as well as Wadler’s trans-

lation. (77;)-rule is a counter-example for the call-by-name system:

{0} = [@]0 «—, (Ax.[a]x)0 = (x.(x » @)).{O}

—57—

On the other hand, (8-)-rule is a counter-example for the call-by-value system:
([@]not e not((x e B).¥)). = (not{(x ® 5).y))o{[]not.} = (Ax.[a]x)uy.[B]x
“—(rame) [@]1y.[B]x = @o{((x @ B).7)o} = ((x # B)-y ® @),

We also need to modify this naive translation. In the following two subsections, we give

different translations for the call-by-name and call-by-value calculi.

2.5.2 The translation from CBN dual calculus into CBN Au-calculus

To solve the problem for the call-by-name calculus displayed at the end of the previous
subsection, we need to modify the translation of the coterm x.S.

Definition 2.7 ((-); : CBN dual calculus — CBN Au-calculus)
We introduce the new translation (—)y by modifying the definition of (=), as follows.

(x}y=x {0} = [@]O
(M, NY) = (M, Ny [K, LI{O} = 6(0, x.Ky(x}, y.Lyly})
((Myinl); = inl(A) (BSHKD(0) = Ky{fst(O))
((Nyinr)y = inr(Vy) (snd[Z]){0) = Ly{snd(O))
([KInot)y = Ax.Ky{x} not(M)y{O} = OM
(Ax. M)y = Ax. M, (M@K),{0} = K;{0My)
(S.@) = pa.Sy (x.8)4{0} = §4[°/,]

(Mo Ky = Ky{ My}
The following lemma means that the call-by-name translation (=)y is consistent with the
naive translation.

Lemma 2.24
Let M be a term, K be a coterm, and S be a statement of the dual calculus. Then

(1) A+ M, —; My;
(2) Au+ K, {0} —,, K4{O} for any term O of the Au-calculus; and

3) AwrS, — Sy.

Proposition 2.25

(DT g, Al M:A,thenT' |-, A| My : A.

@) IfK : 4 lF}—chandI“I«,mA |O: 4, thenT |-, A | Ky{O).
GYIET | S bz A, then 'y, A | Sy.

— 58—

Proof. These claims can be shown by the subject reduction property for the Au-calculus
using Proposition 2.23 (1) and Lemma 2.24. O

Lemma 2.26
(1) If A+ O —, O, then Au + Ky{O} —; Ky{O'} for any coterm K.

2) MM /:] = (MIN]:D)y KON /<] = (KTV/<D),{O1M/x]} and S3{"/5] = (STV/sD)y-

(3) If Pis a covalue, then Py{—} is a call-by-name evaluation context of the Au-calculus.

(4) My g30] = (M /D)y (KON (y0] = (KTH /oDy {01 / (a1}, and
Sy] = (S [L/,;,])’i for any coterm L.

Proof. (1) The claim is proved by induction on X.

(2) The claim is proved by induction on M, K, and S.

(3) The claim is proved by induction on P.

(4) The claim is proved by induction on M, K, and S. We give the key case:

(2 {ONH* Jag4] = (@10 a1 = L0 [o391}

Let F be a coterm context of the dual calculus, and O be a term of the Au-calculus. Then

we define term Fy{O} of the Au-calculus as follows:

{(-mioy=0 (M@{-Dy{0} = OMy
(Bst-Dy{0} = £54(0) ([, PI{O} = pe.6(0, x.[a]x, y.Pyly))
(snd[-])4{O0} = snd(0) ([K, ~]y{O} = uB.6(0, x.Ky{x}, y.[Bly)

This notation satisfies the following property.

Lemma 2.27
Let coterm L not be a covalue, and P be a covalue. Then

(1) Au+ F{L}{0} —? L{F{0}}, and
) A+ Py{Fy(0)} — F{PK{0)

for any term O of the Au-calculus.

— 59—

&\‘,

Proof. (1) is proved by a case analysis of F. We give the key cases.
Case of [, P]:

[L, P1;{0} = 6(0, x.Ly{x}, p.Py{y}) —) (Ax.Ly{xDua.6(0, x.[a]x, y.Py{y})
—p) Ly{ pa.8(0, x.[e]x.y.Pyy) } = Ly{[-, PI{O}}

Case of [K, —]:

[K, L]y{O} = 6(0, x.Ky{x}, y. Ly{y}) —) (.Ly{yDuB-6(O, x.Ky{x}, y.[Bly)
— @) Lyl uB.6(0, x.Ky{x}, y.[Bly) } = Ly{ [K, - 14{O} }

(2) is also proved by a case analysis of F. We give the key cases.
Case of [-, O]:

Py{[- QI O}} = Py{ pe.6(0, x.[a]x, .04y }
— @ 6(0, x.Py{x}, y.O40}) = [P, Q14{ O}

Case of [K, ~]:

Py{[K,-1{O}} = Py{ uB.6(0, x.Ky{x},».[81y) }
—) 6(0, x.Ky{x}, y.Py{y}) = [K, P]{ O}

We now prove that the call-by-name translation (—)y preserves reductions.

Theorem 2.28 (Soundness of (—);)

() IfDC+ M —" N, then Au + My —} Nj.

(@ IfDC+ K —" L, then Au + Ky{O} —;, Ly{O}.

B)IfDC+S —" T, then Au+ Sy — Ty.

Moreover, in (1), (2) and (3), if —" is (85), (BA), (Bv) or (B-), then —, can be replaced by

__.)+

n*

Proof. The claims are proved by simultaneous induction on the reduction relation —".
Base cases are shown as follows.
Case of (8-):

(Ax.M) o (N@P)); = (N@P)y{2x. My} = Py{(Ax.My)Ny}

— 60—

—gs) PAMM /1) = (MM /] = (M o Py /]
= (x.(M P)),{Ng} = (N o x.(M o P)),
Case of (B,):
(M, Ny o $St[P]), = St[P,{(My, Ny)) = Pylfst(My, Np)
—) Py{My} = (M o P),

The other (B,) case can be shown similarly.
Case of (By):

((M)inl e [P, Q) = [P, Qly{inl(My)}a = 6(inl(M), x.Py{x}, y.Os(¥})
—@,) P{My} = (M o P),

The other (B,) case can be shown similarly.

Case of (B.):
(IKTnot » not(M)), = (not(M))y{Ax.Ky(x}) = (Ax.Ky{x)) M;
—) Ky{My} = (M o K)y
Case of (B):
(S e P)y = Pyl peSy) —oio S] T E (STLaD)y
Case of (8.):
(Mo x.8), = (e S)IM) = 3"/ "0 (S,
Case of (nz):
My~ pe[a]My = (Mo @).),
Case of (n1):

= (Ky(eD[°/x] = (x @ Kpl°/:] = (x.(x » K))y{O)

Case of (name): Note that K is not a covalue.

Lem 2.27(1)
(Mo F(K)), = FIKY(M} —) KdFy{M)) —¢, Kilpo-[21Fy (M)

Lem 2.27(2)
= Kjlpoay FiM))) — KiluenFlal(My)

= ((M o Fla}).c o K),

Induction cases can be shown easily.

— 61—

2.5.3 The translation from CBV dual calculus into CBV Au-calculus

Now we introduce the modified translation (=); for the call-by-value calculus. The prob-
lematic cases of the naive translation were (77;) and (8-)-rules. To solve these problems, we
introduce a notation: (1,x.S)0. This means S [°/,] if O is a value, otherwise (1x.S)O. Our
idea for solving the latter case is to modify the definition of (M e K), to (1,x.K.{x})M..

Definition 2.8 ((-); : CBV dual calculus — CBV Au-calculus)
We define the translation (—); as follows.

(®): = x {0} = [2]0
(M, N)); = (M;, Ny) [K, L]+{0} = 6(O, x.K+{x}, y.L+{y})
((M)inl); = inl(M}) (Bst[K])+{O0}) = Ky [£5t(0)]
((N)inr); = inr(Ny) (snd[L])+{O} = Ly[snd(0)]
([KInot); = Ax.Ki{x} no(M)+{O} = OM;
(Ax. M)y = Ax.M; (M@K)+{0} = K;[OM;]

(S.a): = pa.S+ (x.5)+{0} = (A,x.5+)0

(M e K); = Ki[M;] K4[O] = (4,x.K:{x})O

For the call-by-value translation, we use the two notations K;{O} and K;[O]. The relation

between these two notations is as follows.

Lemma 2.29
Let O be a term of the Au-calculus, and K be a coterm, then

(1) K{V} = K{[V] for any value V; and
@) Ak KO} —; Ki[O).

Proof. (1) is immediately shown. We show (2) when O is not a value by a case analysis of
K.

Case of a: a4{0} = [@]O0 — (name) (A2.[2)2)O = 4[0]

Case of [K, L]:

[K, L]+{O} = 6(0, x.K+{x}, p.Lt{(¥}) — (rame) (12.8(z, x.K+{x},y.L{y}))O = [K, L];[O]
Case of fst[K]:

ft{K]+{O) = K [£5t(0)] = (Az.KH{z))5H(0) —(amey (Az.K{z})(Ax.£5t(x))O)
—>(comp) (/lx. (/IZK-;- {z})fst(x))O = (/lx (KT [fst(x)])O

-62—

= (Ax.(fst[K]+{x})0 = fst[K]:[O]

Case of snd[K]: This case can be shown in a way similar to the above case.
Case of not(M):

n0t<M>T{O} = OMT —>(name) (AZZMT)O = (/].Z.IlOt(M)T{Z})O = nOt<M>1'[O]
Case of M@K:

(M@K)T{O} = KT[OMT] = (ﬂZKT{Z})OMT > (name) (/?-ZKT{Z})((MXMT)O)
—(comp) (Ax.(A2.K{2})(xM))O = (Ax.(K;[xM;])O
= (Ax(M@K)s)0 = (M@K [0]
Case of x.S':

(x.8)+{0} = (Ax.8+)0 = (42.81[*/:])O = (Az.(x.8)+{z})O = (x.5)4[O]

The call-by-value translation, (—);, is consistent with the naive translation as well as the

call-by-name translation.

Lemma 2.30
Let Mbe a term, K be a coterm, and S be a statement of the dual calculus, then

(1) Au+r M, — M,
(2) Au+ K,{O} —? K+{O} for any term O of the Au-calculus , and
3) wurS, — St.

Proof. The claims are shown by a simultaneous induction on M, K, and S. We consider the

key cases.
Case of fst[K]:

LH. Lem 2.29
fst[K].{0} = K. {fst(0)} —% Ki{fst(0)} —, Ki[fst(0)] = fst[K];[O]

Case of snd[K]: This case is proved similarly.
Case of M@K:

ILH. Lem 2.29
(M@K){0} = K{OM:} — Ky{OM;) —; K:i[OM:] = (M@K):{O)

—63—

LH. -
Case of x.§: (x.8),{0} = (Ax.5,)0 —} (Ax.51)0 —% (4,x.5+)0 = (x.5)+{0}
LH. Lem 2.29
Case of M e K: (Mo K)o = KoM} —; Ki(M;) —>; Ki[M] = (MK 0

The translation (—); is compatible with the type system.

Proposition 2.31

(DT Al M: A, thenT |y, A| M, : A.

QUK:4|TksAandT |, A]O: 4, thenT |, A| K4{O).

B)YUT|S kg A, thenT |5, A S5

Proof. These claims can be shown by the subject reduction property for the Au-calculus

using Proposition 2.23 (1) and Lemma 2.30. i

Lemma 2.32
Let O and O’ be terms of the Au-calculus, M and N be terms, ¥ be a value, X and L be

coterms, and S be a statement of the dual calculus.
(1) If Au + O —, O, then Au + K+{O} —* K:+{O’} and Au + Ki[0] —: Ki[O'].

@) M7 /5] = (MY /D)y (BHON[2] = (KTV7:0)400"1/:),
(KON /] = (KT"[<1);[O /2], and S+["1 /4] = (S[/:))s-

Proof. (1) The claim is proved by induction on X.
(2) We claim that if we have (K+{ON["/,] = (K["/+]):{O["/+]}, then we can derive (K:[O])["/,] =
(KT"/:D;[O /:]]. We show this claim. Assume O is a value, then O["/,] is also a value.

Hence we have
(&K[OD[" /] = (KHON["* /2] = (KT 1xDelO1 /) = KTV 1D O1 /411
If O is not a value, then O[”/,] is also not a value, so we have

(KLOD" /] = (A2 K4 (2DON" /] = (Az.(KelzD)[™* /:1)(O1" /D))
= (z(K[":DiNO1" /D) = KT /D[O /4] 1.

Therefore we show the other claims by induction on M, K, and S. We give the key case:
XT[VT/x] = x[VT/x] = VT» O

— 64—

Lemma 2.33
Let O be a term of the Au-calculus, M be a term, K and L be coterms, and S be a statement
of the dual calculus. Then

A b M[PHDO [0] — (M oDy

At v (Ki{OD[@ O 1oy 4T —7% (KT /o)), O[@ 50D 4],
A+ (K [OD@ O [y 3] — (KTE /o))y O[@ 4004 [1gy4] |, and
Mtk Sy 01 —3 (ST a]);

Proof. We can prove this lemma by a simultaneous induction on M, K, and S. We give two

cases.
Case of a:
(@ {ONIP MO fggy] = (IO H 0P 1)
= (L)OO 10D
____,: avy. LT{y})(O[(ly-Lrb*l){—l /[a][_}]) =L T[O[(riy-Lﬂy})(—} /[rx}l—}]]
Case of fst[K]:

((ESTEDHONIPH D /4] = (B[St OYD[PHOP /gy
2 KT 1]
= (KTEfaI1[fst(O[PE i)

= (UK D) EHO[PHD [D))
Lem 2.29(2

)
57 (BT o) S O[PO 13 D)]

We now prove that the call-by-name translation (-); preserves reductions.

Theorem 2.34 (Soundness of (-);)

(DIfDC+ M —" N, then Au + My — N;.

(2)If DC + K —" L, then Au + K{O} — Li{O} and Au + K;[O] — L+[O].
B)IfDCrS —'T,then ut+ Sy —, Tt.

Moreover, in (1), (2), and (3), if —" is (5), (BA), (Bv) or (B-), then —} can be replaced by

s

v

— 65—

Proof. (1)—(3) are proved by simultaneous induction on the reduction relation —”. We
claim that if Ki{O} —; L{0}, then K;[O] —} L;[O]. We first show this claim. If
O is a value, the claim is immediately shown. Otherwise, K;[O] = (Ax.Ki{x})O —3
(Ax.L+{x})O = L;[O].

We often use the following shortcuts:
(@) (V e K)t = Ki[V3] = Ki{V3)
() (WK My —; (ox KM = Ki[M] = (M o Ky

(©) (xS)My —5 (Ax.S1)M; = (x.8)4 MT} (x S)i[Mi] = (Mo x.8);
Base cases are shown as follows.
Case of (8-):

((Ax.M) e N@K)), € (N@K)s{(2x. M)y} = Ki[(Ax. M) Ny]
= (/12 Ki{z})((x. MT)NT) _)(Comp) (Ax.(Az.K{z}) M;)Ny

s (M e KNy 5 (N o (M o K)),
Case of (B,):
(W) o £st{K]), € SUKLQY W)} = Kl £6Vr, W)] —>(s,) Ka[V4] = (V 0 K,

The other case of (8,) can be shown similarly.
Case of (8y):

(Pyinl o [, L]), € [&, L]4{ (V)mlf} SGnl(V;), x.K+{x}, y.Ls ()
—s KelV3} € (7 o K

The other case of (8,) can be shown similarly.
Case of (B-):

([KInot e nOt(M))T = (n0t<—M>)T{ [K]not; } = (Ax.Ki{x})MT (M * K)

Case of (Br):
(S.aeK), = Ki[(S.a);] = (Ax.Ki{xDua.Sy
— SHEF 12 (S KD,
Case of (B;):
(Vo x.5), 2 @S = 5,071 E® (s171.0),

—66—

Case of (mr):

Lem 2.22(2)
My —) palelM; = pea(My —, pa.ey[M]

= pa.(Me) = ((Me @).a);
Cése of (n): If O is a value V, then
KV = Kl € (x o K17/ = (i * K):{V}

If O is not a value, then

Lem 2.29(2)

KO} —% Ki[0] = (Ax.Ke{x})0 € (x.(x ¢ K))O = (x.(x » K)),{O}.
Case of (name): Note that M; is not a value because M is not a value.

(M, Ny 0 K), = K[(M, Ny] = (AzKelz))M;, M)
St (Az.Kr (2 (A, N»)Mo —(compy (Ax.(A2.K{2)) (5, NeY) M

2 Qe N) & KMy, (M o 5,05, N) » KD),
((V, My o K), = Ki[(V, M)y] = (Az.K4{z})(Vy, M)
_"")(name) (/12 KT)((’l'x <VT9 x»MT) ~—>(comp) (/bC (/12 KT{Z})< VT’ x>)MT
2 () o)My —; (Mo 2 (W) 0 K)),
({(Myinl e K); = Ki[(M)inl;] = (Az.K+{z})inl(M})
__)(name) (/IZ KT)((Ax lnl(x))MT) ~>(comp) (/bC (AZ K-{-{Z})IHI(X))MT

(ﬂx ((x)inl e K)T)MT (M o x.((x)inl ® K));

The last case, (M)inr ¢ K —" M e x.({x)inr e K), is also shown similarly.

Induction cases can be easily shown. o

2.5.4 Reloading property

Wadler (2005) showed that the compositions of his translations Ay — dual — Au and
dual — Au — dual reload into the Au-calculus and the dual calculus respectively. That
is, they become identity maps up to the call-by-name/call-by-value equalities. When we

consider the composition of our translations, we can obtain corresponding results as follows:

— 67—

- areloaded term by the call-by-name modified translations is reduced from the original

term by the call-by-name reductions (Proposition 2.35 (1), 2.36 (1)), and

- areloaded term by the call-by-value modified translations is reduced from the original
term by the call-by-value reductions (Proposition 2.35 (2), 2.36 2)).

Proposition 2.35 (Reloading property: Au — dual —)
Let O be a term and S be a statement of the Au-calculus. Then

(1) A+ S —: (Shy,
Ap+ Py{O} —; (O :, P)y for any covalue P, especially Au - O — (O),.

@) kS —5 (S,
Au + Ki[O] — (O :, K) for any coterm K, especially Ay + O —7 (0N

Proof. (1) If we have Py{O} —, (O :, P)y for any covalue P, then we can obtain O —m)
pe[a]O = pe.ay{0} —; pe.(0 2, @)y = (O -y @).a), = (Oﬁ)ﬂ. We prove the rest of (1) by
a simultaneous induction on O and S.

Case of x: Py{x} = (xe Py =(x: Py

Case of (M, N) : Py{(M M)} 53 By{((Mby, (Vi) = Py{(Ot, N,

= (M, N o P)y —7, (M,N) :, P),

Case of f5t(0) : Py{fst(0)} = fst[P];{O} ﬂ; fst[PTy{(O")y) = (OF o StP])y

— (0 2y £5t[P])y = (5t(0) :p P)y

The case of snd(O) is shown similarly.

Case of inl(0) :

L.H.
Py{inl(0)} —,, Py{inl((O")p)} = Py{(OMyinly} = ((Ohyin] » P); = (inl(0) : P),

The case of inr(O) is shown similarly.
Case of 6(0, x. M, y.N):

Pyl6(0, x.M,y.N)} —>zy 8(0, x.Py{ M), y.PyN})
LH.
— (0, 2.(M 3y P,y (N 3y P)) = 6(0, %' (x.(M 30 P}, (- (V - P)yt)

ILH.
= [x(M 25 P),y.(N 5 P)}{O) —}, [x.(M 3 P),y.(N 3 P)]ﬁ{(Oﬂ)ﬁ}
(O% o [x.(M 3, P)y.(N P)])ﬁ = (8(0,x.My.N) -, P),

i

— 68—

LH.
Case of Ax.M: Py{dx.M} —;, Py{x.(MY)} = (Ax.M") o P), = (Ax.M 3, P),
Case of MN (MN is a term, M is not a A-abstraction):

1.H. H.
Py{ MN'} —;, Py M(NYy } = (WP @P)y{ M) o, (N*@P)); = (MN :, P),

Case of (Ax.M)N :

I.H.
Py{ (. M)N'} —>g,y Py{ M[V/2]} = (x.(Py{MY)y{N} —;, (x.(M :5 P))y(N}

1LH.
5 (M 2 P (NP} = (VF 0 x(M 3y P))y = (x.MN 1, P),

Case of Ax.S :

1.H.
Py{Ax.S} — Py{Ax.(Shy) = Pu{/ly.(x.Sﬁ)ﬂ{y}} = ([x.5"Inot » P) , = (AxS 3 P,

Case of na.S :

1.H.
Py{ua.S} —; Pylua (St} —@ D /iag] =5 (S'T7/al)y = (neS = P)y

Case of [@]O: []O = a;{0} ﬂ;‘, (0:n @)y = (([2]O))

Case of 6(0, x.S,y.T):

LH.
8(0,x.8,y.T) =, 8(0, x.(SHp.(Thy) = 6(0, %' ((=:SHyx)), ¥ (- T0)

1LH.
= [x.5%,».T¥,{0} —} [x.5%,y.TH,{(O%) = (O o [x.5%,y.T)) , = (6(0,x5, y.I))y

Case of MN (MN is a statement, M is not a A-abstraction) :

1L.H. L.H.
MN —% M%)y = not(NF) (M) —; (M 3 not(NH), = (MN)'),

Case of (Ax.S)N :

LH.
(Ax.S)N % (A (SHON —say (SHIY /] = (.S, (0

= (x.SHy V) = (VF o x.5%), = (x5IVY),

— 69 —

(2) We can easily show O — (O"); from K;[O] —* (O :, K)+ in a way similar to the
proofin (1). In the following, we prove the rest of (2) by a simultaneous induction on O and
S.
Case of x: Ki[x] = (x® K); = (x 3 K)y
Case of (M, N):
Ki[(M,)] ﬂt Ki[{(M), (WD) = Ki[(MT, N T = (M0 e K),
—5, (M, N) 1, K),

Case of fst(0) :

1.H. Lem 2.29
K4 [£5t(0)] = St{KT4{0} —3 SHKTH(ON)1) —s $tIKI[(OM)5] = (O S1K]),
—5 (03 £t[K]); = (f54(0) = K);

The case of snd(O) is shown similarly.
Case of inl(O) :

1H.
Ky[inl(0)] —} Ky [inl((O"))] = &+[(O"inl;] = (Ohyinl K), = (inl(0) 1, K);

The case of inr(O) is shown similarly.
Case of (O, x.M,y.N):

K+[6(0, x.M,y.N)] = (A2.K+{2))6(0, .M, 3.N) —>(z) 6(0, x.(Az K{z)) M, y.(Az.K+{z))N)

I.H.
—; 8(0, x.K: [M],y K4 [N]) —% §(0,x.(M 1, K),p.(N 1, K))
= 5(0, X (x(M 5) {xX')y 0.(N 5 K))T{y’}) = [x.(M 3y K),y.(N 3 K)]1{0)

Lem 2.29 LH.
=[x K)y.(N o K)L[0] =5 (0 (M 2 K).p.(N 1 K)]),

= (800, x.My.N), K),

LH.
Case of Ax.M: Ki[Ax.M] —; Ki[Ax.(M");] = ((Ax.M") ¢ K), = (Ax.M :, K),
Case of MN (MN is a term, M is not a 1-abstraction):

1.H. Lem 2.29
Ki[MN] —5 K:[MV] = (NT@K)H{ M) —5 (NT@K)4[M]

—-70 -

LH,
_—): (M=, (NT@K))T = (MN v K)T
Case of (Ax.M)N :

Ki[(Ax.M)N | = (Az. K3 () (Ax. M)N) — comp) (Ax.(Az.K4{z}) M)N

LH.
5 (K [MDN =3 (Ax.(M 3, KIDN — (x.(M 5, K)) (V)

LH.
—) (N x(M 5 K)); = (. MN 3, K)y

Case of Ax.S :

1.H.
Ki[2x.8] — K[(S)] = Ki[4y.(x.8);07)] = ([x.5TInot « X) .= (xS 5y K),

Case of na.S :

LH.
Ki[pa.S] —; Kilua.(STH] = (zKi{2)pe (ST — g (STHIHMENT /0]

Lem 2.33
—) (ST[K/Q])T = (pasS & K)-;-

Case of [¢]O: []0 = +{0) Lelz{;zg +[0] i}f; (0 @); = ([alO))y
Case of (0, x.S,y.T):

1.H.
6(0,x.5,.T) — (0,28 7.(T"1) = (0, ¢ (xS Hix'), ¥ (0-TH 1)

¥ + Lem 2.*29 + t I.H.* ¥ + ¥
= [xSTy. 11 {0} —) [xS8Ty.TT[0] —5 (04 [xST,0.T])T = (8(0, x.8,y.T)");

Case of MN (MN is a statement, M is not a A-abstraction):

LH. LH.
MN —% M(N")t = not(N")+ (M) —} (M 3, not(N")), = (MN)1),

Case of (Ax.S)N :

LH. LH.
QSN — e SHIN =3 (xS THIN] — WV 1 287, = ((x5)N)),

71—

Proposition 2.36 (Reloading property: dual — Ay — dual)
Let M be a term, K be a coterm, and S be a statement of the dual calculus. Then

(1) DC + M —™ (My)t,
DC+ 0% ¢ K —™ (Ky O})ﬁ for any term O of the Au-calculus, and
DC+S —™ (Spk

@) DC+ M—» (M),
DC + O o K —s™ (K4{O})! for any term O of the Au-calculus, and
DC S —™ (S1)'.

Proof. (1) If we establish the following claims: (a) M e Q —™ (M; :, Q); (b) O ¢ K —>™*
Ky{O} if X is not a covalue; (¢) (O :, P) —™ (Pg{O})ﬁ; and (d) S —"™ (Sy), we can easily
obtain (1). Therefore, we show these claims by a simultaneous induction on M, X, P, and
S.

Caseof x: xeQ=x:, P

Case of (M)inl: (M)inle Q _I'_I'I_-)(,‘,’l ((Mﬁ)ﬁ)inl e O =inl(My) :, Q= (M)inly 3, O

The case of (M)inr is shown similarly.

Case of (M, N): (M.N) « 0~ (¥, (V) » 0= (M, M) 50 O) = (M, Ny ©)

Case of [K]not:

[KInote Q —7 [x.(x e K)Jnot e O — .+ [x.(x* & K)Inot e O

1.H.(b)
—" [x.(Ky{=})Inot e 0 = (Ax.(Ky{x)) 1 O) = ([KInoty : Q)

L.H.(a)
Case of Ax.M: (Ax.M) e P —" (x.(My*) o P = (Ax.My 1 P) = ((Ax.M)y 5 P)
Case of S.a:

LH(d)
SaeQ—" (SplaeQ - (SP'2/e] = ey 0) = (S-@) n O)

Case of @: (0 3, @) = ([2]O)! = (ay{O)*
Case of [P, O]:

LH(c)
(0 :lP, Q1) =y (O 2 [x.(x 0 P), y.(y » Q)]) —™ (O 1 [x.(Pylx))¥, y.(Q4¥1)])

()
—™ OF o [x.(Py(xh*, ».(Q4)] = 6(0, x.Pyix), 7.0) = (1P, QJy(ON)!

—72 -

LH.(c)
Case of f5t[P]: (O :, f5t[P]) = (£54(0) :» P) —"™ (Py{fst(O))} = (Fst[P{O!
The case of snd[P] can be shown similarly.
Case of not(M):

I.H(a)
(Ot nOKM)) —" (O 25 not((My)h)) —™ (OMy)f = (noK(My(O)F

Case of M@P:

LH(a) L.H(c)
(O :n (M@P)) —" (0 :n (M*@P)) —"™ (OMy :n P) —" (P{OMy})

= ((M@Py(0))

Case of [K, Q] (where [K, O] is not a covalue):

L.H(b)
(O o [K,L]) —) OF o [x.(x 0 K), y.(y o L)] —™ O% o [x.(Kyx)!, y.(Lyiy))]
= 6(0, x.Ky{x), y.Lyp)) = (K, L0

Case of fst[K] (where X is not a covalue):

(OF o £St{K]) —, ey (OF @ fitle]).c 0 K —™ (O fitfe]).x 0 K
= (£5t(0) :y @).a o K = (fst(0)) o K

L.H(b)
Tk (Kﬁ{fst(o)})” = (fSt[](]g{O})ﬁ

The case of snd[K] can be shown similarly.
Case of M@K (where K is not a covalue):

(O o (M@K)) —}ymey (OF @ (M@)o K —"™ (01, (M@2)).x s K
LH{a)
— (0 n ((Mu)”@a')).cx o K —"™ (OMy:pa)ae K

1.H.(b)
= (OMy) « K =" (KoM = (M@Ky(0))

Case of x.5:

LH(d) Lem 2.14(1)
(O 0 x.5) ™ (OF o x(Sph —lsy SO/ —™ (S0P = (S)0)

—-73 -

LH(a) LH.
Case of M e K: (M e K) —"" (M o K —™ (Ky(My})} = (M » K)p)
(2) We show these claims by a simultaneous induction on M, K, and S. If we establish
(0 :, K) —** (K+{0})", then we can easily obtain (Of @ K) —>"* (X+{0))". Therefore, we
show this claim instead of the second clause of (2).
Case of x: x ——->E’TIR) (xea)a=(x:ya)e=x" = ()

Case of (M)inl:

{ Myinl i ((Mp)Nyinl —2 ((Mr)'inl o @) = (inl(M5) 2y @)
= (inl(M))" = (Myiny)

{M)inr is shown similarly.

Case of (M, N):
1.H.
(M Ny =" {(Mn)F, V)T =7, ()T, (V)Y e).
= (M, Ni) iy @).a = (M;, Ny)' = (M, Nyy)'
Case of [K]not:

LH,
[K]not _*Zu) [x.(x ® K)]not —™ [x.(K+{x})]not —m) ([x.(KT{x})T]not o a).a

= (Ax.Ki{x) @).a = (K {x})' = (Knoty)'

Case of Ax. M:
LH.,
Ax. M —¥* . (M)t ——>(VUR) (Ax.(Mi) e)a= (Ax.M; 3y).
= (AxM;)" = ((x2)1)!
Case of S.a:

ILH.
S.a —" (S)a=(S)Plal B = weSt BB = (uasH) = ((S.a))!

Case ofa: (0:ya) = ([2]0)' = (a:{O))}
Case of [K, L]:
(O wlK, L) —22) (0 [x.(x o K), yy o L)]) —>" (0 -, [x. (Kt {x)T, p. L+)]

(nr)

—74 —

= 8(0, x.Ki{x), y.Li)) = (K, L}+{0)

Case of fst[K]:

(0 SK) = (BH0) 1 K) ™ (KON o (K [EH(O)]) = (EHKR(O)

snd[K] can be shown similarly.
Case of not{ M):

© vnot(M)) L (0 =, not{(M;))) —”™ (OM:)" = (not(My+{O})!

Case of M@K
(0 (M@K) —>™ (0, (M) @K)) —* (0M 3 K) —7 (K+{OM)T

T3 (oM = (M@K (1)

Case of x.S: (O :y ex.5) i (0 xS = ((Ax.54)0)T —* (x.8)+{ONT
Cascof Me K:

IH. LH. ;
(Mo K) —" (Mp)' o K —stp o (M 1 K) —™ (Ki(My})

Lem 2.29 + +
—" (Ki[M:]) = (M e K)1)

We can obtain the Church-Rosser property for the Au-calculus by using the Church-
Rosser property for the dual calculus and the results in Section 2.4 and 2.5.
Proposition 2.37 (Church-Rosser property for the Au-calculus)
(1) IfAu v O — Mand du + O —), M, then there exists a term O’ such that
Aur M—*0 and Aur M —3 0.
IfAu + S —;, Tand Au + S —, T’, then there exists a term S’ such that Au +
T—; S’ and Au 1" —; §'.

(2 If Au v O —2 Mand Au + O —} M, then there exists a term O’ such that
AprM—50 and Au+ M —; 0.
IfAu v+ S —% Tand du + S — T, then there exists a term S’ such that Au +
T —; S’ and Ap -1 — S,

—75—

Proof. (1) We show the first line of (1). Suppose Au + O —* Mand Au + O —: M,
then DC + (O)f —™ (M)* and DC + (0)% —™ (M’)! by Theorem 2.16. By the Church-
Rosser property of the dual calculus, there is a term N of the dual calculus such that DC
(M) —™ N and DC + (M')# —™ N. Hence we have Au (M) —% (N)y and
Au F ((M’)ﬂ)ﬂ —, (N)y by Theorem 2.28. Therefore we obtain Au + M —; (N)y and
Au + M —,; (N)y by Proposition 2.35. The second line of (1) is shown similarly. (2) is

also shown in a way similar to (1). m|

2.6 Dilality of call-by-name and call-by-value

Duality is the essential feature of the dual calculus. The dual calculus corresponds to
Gentzen’s sequent calculus and has explicit duality of classical logic at each level.
- Types: disjunction is dual to conjunction, and negation is self-dual,
- Expressions: terms are dual to coterms, and statements are self-dual,
- Typing rules: right rules are dual to left rules, and cut is self-dual, and
- Evaluation strategies: call-by-value is dual to call-by-name.
In this section, following Wadler’s approach, we discuss the systems that do not involve
implication, since duality is not defined for implication.
The duality translation from the dual calculus to itself is given as follows.

Duality for the dual calculus

(X =x (=) =40
(AAB)Y=B°vA® (AVB)Y=B AA°
x)>=x (@)=«

(M N)y =[N°, M°] (K, L])° =(L°,K°)
(M)inl)° = snd[M°] (fst[K])° = (K°)inr
((N)inr)° = fst[N°] (snd[L])° = (L°)inl
(S.2)° =xS8° xS)Y=8°x
(Me K) =K°eo M
Proposition 2.38 (Duality for the dual calculus)
(Involution) Duality is an involution, that is,
A=A, M =M K°=K, andS*° = S.

(Expressions and typing rules)

— 76—

(a) For any term M of the dual calculus, M® is a coterm.
If M has type 4, then M also has type 4, i.e.,

I'A|M:Aimplies M°: A|A°FT° .

where I° is X, : A4y,...,x; : A} forT = x; @ 4y,...,% : Am, and A° is @, :
B, ...,a1:BiforA=a;:B,...,a,: B,

(b) For any coterm K of the dual calculus, K° is a term.
If X has type 4, then K° also has type 4, i.e.,

K:A|TFAimpliesA°FT°|K°: 4 .

(c) For any statement S of the dual calculus, S° is also a statement, and

I'|S} Aimplies A°|S°RT° .

(Evaluation strategies)

(a) If DC + M —" N, then DC + M> —” N°.
IfDC+ K —" L,then DC + K° —" L°.
IfDC+S —"T,then DCF+ S° —¥ T°.

(b) If DC + M —Y N, then DC + M* —" N°.
IfDC+ K —" L,then DC + K° —" L°.
IfDC+S —V T,then DC+ S° —" T°.

Wadler (2005) gave a translation between the call-by-name and call-by-value Au-calculi
by composing the translation, (—)°, and his translations between the dual calculus and the
Au-calculus. He explained duality between the call-by-name Au-calculus and the call-by-
value Au-calculus by purely syntactic techniques. We follow his approach. Since we gave
the different translations for call-by-name and call-by-value in the previous sections, we
introduce two distinct translations between the call-by-name and call-by-value Au-calculi.
Definition 2.9 (The translation from the CBN Au into the CBV Ayu)

Let A be a type, M and O be terms, and S be a statement of the Au-calculus. Then we define

the translation (—), as follows.
(Ao = 4°
Mo{0} = (M))4{0)
So = ((SH)

-77 -

Definition 2.10 (The translation from the CBV Au into the CBN Au)
Let 4 be a type, M and O be terms, and S be a statement of the Au-calculus. Then we define

the translation (). as follows.
(A)e = A4°
M.{O} = (M")"),{0)
S.= (S
The following properties of these translations are easily shown.

Proposition 2.39
(1) For any term M of the Au-calculus, M,{O} and M.{O} are statements of the Au-
calculus. For any statement S of the Au-calculus, S, and S, are statements of the

Au-calculus.

(2) UThy Al M: dand Ay by, To | O: 4o, then T | M.(O} by, A.
T[S kA, thenT [So by A

(3) UT'kp Al M:Aand A, |, T. | O : 4., thenT | M,{O} FaA.
IfrlS I"‘,]#A,thenrlso i—,lpA.

Then, we obtain our final results.

Theorem 2.40
Let M, N, and O be terms, and S and T be statements. Then the following hold.

(1) The translation (-), preserves reductions.
Au - M —, N implies Ay + M,{O} —, N,{O}
Au+r S —, Timplies Au + S, —, T,

(2) The translation (). preserves reductions.
Ap v M —, N implies Au + M,{O} —,, N,{O}

Aur S —, T implies Ay + S, —, T

(3) The composition of translations obtained by applying (—). after (-), is identity up to

the call-by-name reductions.
A+ M —, pa.(M{a}),

—78 —

A+ O M) —, (MAO}).
kS —, (S,

(4) The composition of translations obtained by applying (). after (=), is identity up to
the call-by-value reductions.

A+ M —, pa.(M.{a}).
Ap + O{ M} —, (M.{O})s
AurS —,(S.),

Proof. (1) is shown by using Theorem 2.16, Theorem 2.34, and Proposition 2.38.
(2) is shown by using Theorem 2.21, Theorem 2.28, and Proposition 2.38.
(3) follows from Proposition 2.35, 2.36, and 2.38. We show the third line first.

Prop 2.35(1) y o Prop 2.3*6(2) "
S —n ="y — (*I) = S0,

n n

The second line is shown as follows.

Prop 2.35(1

O.M) = (0N} 252 (O™ p{(Y) = (M o O),
= (M« O'), = (0" o MY,

Prop 2.36(2

i ((MPR{OD™), = (M.(0)),

n

The first line follows from the second line.
® .
M —qy pe[elM = pa.a{M) —, pe(M.(a)).
(%) is shown by

a.{M) = ()M} = (@ » B).B) M)
= (B.(8 e)M} = ([2]B[M/5] = [e]M .

(4) can be shown in a way similar to (3).]
Although Wadler gave the same translation which goes back and forth between the call-
by-name and call-by-value Au-calculi, we needed two different translations. However, al-

though Wadler’s translation preserved only equations, our translations preserve reductions.

This is the greatest advantage of our results.

—-79 -

2.7 Appendix: Wadler’s systems and translations

Types A,B= X|AANB|AVB|-A|ADB

Terms O,M,N = x|(MN)|fst(M)|sndV) | u(a,p).S
| Ax. M| OM | ua.S | Ax.S

Statements S, T:= [e]M]][e,BIM|OM

Typing rules

FISkyuAce:4,6:B Iy AIM:AVB

TFnAlp@ps :AvE V! Tl pfMF, Aa: 458 "E

The other typing rules (4x), (2), (2 E), (A]), (AE1), (AE2), (=), (=E), (Act), and (Pass)
are same as our system.

Syntax and typing rules of the Au-calculus given in Wadler (2005)

X|AANB|AVB|-A|ADRB

x| {M,N) | (M)inl | {(N)inr | [K]not | Ax.M | S.a
a | [K,L] | fst[K] | snd[L] | not(M) | M@K | x.S
Me K

Types A, B =
Terms M N =
Coterms K, L :
Statements S, T :

i u

The typing rules of the dual calculus (Wadler (2005)) are same as our system.

Syntax and typing rules of the dual calculus given in Wadler (2005)

- 80—

Values V,W = x| {V,W)y|fst(V)|snd(W) | Ax.S | Ax.M
| u(a, B).[a]V | p(e. B)-1BIW

Evaluation context E = {-)|(E,N)|(V,E)|fst(E)|snd(E) | EM|VE

Statement context D:= [a]E|[e.BlEIEMI|VE
(ﬁ&l) fst(V, W) = V
(B&2) snd(V, W) = W
(BVv) (/.8 (. B)-S = Sla'[a,p/B]
B-) (Ax.S)V =, S[V/x]
B2) (Ax.MV =, M[V/x]
B) [Jua.S =, S[d'/a]
(n&) V:A&B =, (fstV,snd V)
(V) M:AVB =, wa,B)la,f1M (a, B: fresh)
() V:-A4 =, xVx (x: fresh)
(n D) V:A&B =, Ax.Vx (x: fresh)
() M =, pafolM (a: fresh)
(name) D{M} =, (Ax.D{xHM (x: fresh)
(comp) D{(Ax.N)M} =, (Ax.D{(NHM
(s) Diua.S} =, S[D{=}/[a]{-}]

Equality axioms of the Au%*-calculus

(B&1) fst(M, N) = M
(B&a2) snd(M, N) = N
BVv) [@,B8u(@B)-S =, Sle//a.B'IB]
B-) (Ax.S)N =, S[N/x]
B2) (Ax.M)N =n M[N/x]
(Bu) [o'lua.S =, S[a’/c]
(n&) M:A&B =, (fstM,snd M)
(nVv) M:AVB =, e, B).[a, BIM (a, B: fresh)
(7™ M: -4 =, Ax.Mx (x: fresh)
(n>) M:A&B =, Ax.Mx (x: fresh)
(nw) M =, pofo]M (a: fresh)
(s&1) fst(ua.S) =, uB.S[[BIfst{—[e](-}]
(s&2) snd(ue.S) =, pB-S[[Blsnd{-}/[a]{-}]
(sV) 8, ylpa.S = S[[B,y1{-}/[e]{-]]
() (na.S)M =, S[{-1M/[a]{-]]
(s2) (pa.S)M =n_HB-S[B{-}1M/[e](-)]

Equality axioms of the Aur@-calculus

—81-

Values VW = x|[{V,W)|(V efstla]).a | (W e snd[B]).B
[{Wyinl | (W)inr | Ax.M | [K]not

Evaluation context E == [-}|(E,N)|(V,E) |{E)inl | {E)inr
(B&1) (VW)yefstfK] =" Vek
(B&>) (V,Wyesnd[L] =' Wel
BV (Plinle [K,L] =" VeK
Bv2) (Wyinre [K,L] =" Wel
B~) [KInotenot(M) =" MeK
B>) Ax.Neo (M@K) =" Mex.(NeK)
(BR) S)aekK =" S[K/a]
(BL) Vex(S) =" S[V/x]
n&) V:A4&B =Y {(V o fst[a]).a, (V e snd[B]).5) (e, B: fresh)
(nv) K:AVB =Y [x.({x)inl & K),y.({y)inr e K)] (x, y: fresh)
() V:=A4 =Y [x.(V e not{x))]not (x: fresh)
=) V:4D>B = Ax((V e (x@B)).B8) (x: fresh)
@R M = (Mea).a (a: fresh)
(nL) K =" x.(xeK) (x: fresh)
(name) E{M}e K =" Mo x.(E{x} ¢ K) (x: fresh)

Equality axioms of Wadler’s call-by-value dual calculus (DCT")

a| [P, Q] | x.({x)inl e P) | y.((»)inr e O)

| fst[P] | snd[Q] | M@Q | not{M)
Coevaluation context Fi= (=}|[K F]|[F,P]|fst[F] | snd[F]

(B&:1) (M,N) e fst{P] =" MeP

(B&2) (M,N)esnd[Q] =" NeQ

Bv1) (M)inle[F,O] =" MeP

(BV2) (Q)inre [L,O] =" Ne(Q

B-) [K]not e not{M) =" MeK

B>) Ax.Neo (M@K) =" Mex.(NeK)

Covalues P,Qu

1

(BR) (§)-cce P =" S[P/a]

(BL) Me x(S) =" S[M/x]

(n&) M:A&B =" (M o fst[a]).a, (M o snd[5]).8) (a, B: fresh)
nv) P:4AVB =" [x.((x)inl e P),y.({(»)inr e P)] (x, y: fresh)
@) P:-4 =" not({([a]not e P).ar) (a: fresh)
(n D) M:4DB =" Ax.((M e (x@B)).5)) (x: fresh)
(mR) M =" (Mea)a (a: fresh)
(nL) K =" x(xeK) (x: fresh)
(name) Me F(K) =" (MeF{a)).ae K (a: fresh)

Equality axioms of Wadler’s call-by-name dual calculus (DCJ")

-82—

()" = x (M, N))" = (M",N")
(fst(0))* = (O*ofstla]).a (snd(0))* = (0" esnd[B]).B
(Ax.S)* = [x.(S)]not (OM)” = (O e not(M*)
(na.SY) = (). ([a]lM)* = M eoa

(@, B)-8) = (((S) Binr e y).e)inl e y).y

(la.B1M)* = M e[a,f]

(Ax. M)* = Ax.M* (OM)* = (0" e (M @B).B

Wadler’s translation from the Au-calculus into the dual calculus

(X)x = x (2).{0} = [e]O

(MN). = (M, N) (K, LD.{0} = L{pB.Kduc.[a,B]O}}
(Myinl), = p(@f).lelM. EUKD(0} = K.{fst(0))

(W), = p(B).[BIN. (nd[L].{O} = L.{snd(O)}

([KJnot). = Ax.K.(x} (ot(M)),(0} = OM.

Ax.M), = AxM, (M@K).{O} = K.(OM.)

(S.@). = pa.S. (x.5).{0} = (Ax.5,)0

}

(MeK). = K.(M,

Wadler’s translation from the dual calculus into the Au-calculus

_ 83—

Chapter 3

Polarized dual calculus and logical

predicates for polarized linear logic

3.1 Introduction

Much work has been done in order to extend Curry-Howard correspondence to classical
logic in the last ten years. The first step was taken by Griffin [25] who observed that
call/cc corresponded to Peirce’s Law. Since then, a number of term calculi for classical
logic have been introduced. Among those, Parigot [40] introduced a particularly nice one,
the Au-calculus. This calculus corresponds to classical natural deduction in just the same
way that the A-calculus corresponds intuitionistic natural deduction. In the meantime, it has
been known since Filinski [17] that there is a computational duality between call-by-value
and call-by-name in the presence of continuations. Selinger [45] investigated the duality by
giving categorical semantics to the call-by-value and the call-by-name Au-calculus. Wadler
[48] introduced the dual calculus to show this duality in a purely syntactical way. This cal-
culus is a term syntax for classical sequent calculus, and explains the computational duality
of call-by-name / call-by-value by the logical duality, namely the duality of the left-hand
side / the right-hand side in sequent calculus.

Another approach to understand the duality between call-by-value and call-by-name is
polarized linear logic (LLP) of Laurent [33]. It is a variant of linear logic with a good seman-
tics in terms of coherent spaces. The most fundamental feature of LLP is that it has a clear
distinction between negative formulas, for which structural rules can be freely used, and
positive formulas, for which structural rules are forbidden. LLP is useful in understanding
the constructive aspect of classical logic. In particular, LLP suggests a close relationship

— 84—

between the call-by-value / call-by-name duality and positive / negative duality. Laurent
defined two translations from the call-by-name and the call-by-value Au-calculi into LLP,
and showed their soundness, i.e. these translations preserve reductions. The call-by-name
translation (—)° translates a classical formula into a negative one, in particular a classical im-
plication 4 — B into a negative formula !4° — B° (so, we call this the negative-translation
in this paper). On the other hand, the call-by-value translation (-)* translates a classical for-
mula into a positive one, in particular a classical implication 4 — B into a positive formula
I(4® — ?B*) (so, we call this the positive-translation in this paper). Furthermore, Laurent
showed fullness of the negative-translation (i.e. every proof of 4° is (equivalent to) an im-
age of a proof of 4 in classical logic via the negative-translation) in [34]. However, it is
not proved (at least explicitly) that the positive-translation is also full. Another work to be
done is to give a term syntax for LLP. Although proof-nets provide a nice parallel syntax,
it is sometimes space-consuming, and complicated, especially in the presence of additives.
Hence it is natural to introduce a term syntax, that is compact and moreover well-related to
standard functional programming languages.

In this paper, we first give a term calculus for (a sufficiently large fragment of) LLP,
called polarized dual calculus (DCP~) which is based on the idea of Wadler’s dual calculus.
_ We then define two translations from the call-by-name / the call-by-value Au-calculi into
DCP-, and show their soundness. These translations are almost straightforward adaptions
of Laurent’s (but the positive translation is slightly different). Finally, we prove fullness of
these translations in the similar way to the logical predicate method used in Hasegawa [27].

The notion of logical predicate (unary logical relation) is a well-established tool for
studying the semantics of various typed lambda calculi. In particular, logical predicates for
intuitionistic linear logic were introduced in Hasegawa [26] for category-theoretic models
of linear logic, and applied to prove full completeness of Girard translation from the simply
typed lambda calculus to the linear lambda calculus in [27]. We adopt this method to show
fullness of Laurent’s translations. The use of logical predicates allows us to give a uniform
proof to the fullness of two translations. In particular, just one Basic Lemma is sufficient for
both the positive- and the negative-translations.

The rest of this paper is structured as follows. In Section 2, we introduce the system
LLP- as a fragment of LLP. In Section 3, we give a term calculus DCP~ for LLP~. In Section
4, we review the call-by-name and the call-by-value Ap-calculus, define the positive- and the
negative-translations from the Au-calculi into DCP-, and then show their soundness. From

Section 5 to 7, we prove fullness of these translations by the logical predicate method.

—85-—

m

FZ,P FA P

P, p A9 A CW
X, P I—A,Q@ FEN,M »
FI,AP®Q FENB® M
X, P & FE, Q0 ® FX, N I-E,M&
F,PoQ F,PeQ Fo,N& M
FEIP FLN
FX,0P FEIN
EY . X, NN]
SN (Weakening) TSN (Contraction)
Figure 3.1: Inference rules of LLP
3.2 LLPand LLP~
Definition 3.1 (Formulas of LLP)
The formulas of LLP are defined as follows:
PQO:=X|PQ|PaQ|!N (positive formulas)
NM:=X"|N®M|N&M|?P (negative formulas)

where X and X* are atomic formulas. The negation of formula 4 (denoted by A*) is defined
as in linear logic.

Definition 3.2 (Sequents and inference rules of LLP)

The sequents of LLP have the form + X where X is a finite multi-set of formulas among
which there is at most one positive formula. The inference rules of LLP are defined as in

figure 3.1.

To give a simple term syntax later, we impose a restriction on LLP.

Definition 3.3 (LLP")
The system LLP~ is obtained by restricting %-rule, &-rule and (Cut)-rule of LLP to those

sequents which have no positive formulas (other than P, in the case of (Cut)-rule).

Remark 1
The restriction forces some sequents derivable in LLP to be non-derivable in LLP~. For
example, + X* % Y+, X is derivable in LLP by the following derivation, but not in LLP~,

— 86—

because one cannot apply %-rule in the presence of the positive formula X.

FXHX
FXLYLX

FX*WY*,X@

However, we are mainly interested in proofs of negative sequents (i.e. those consisting of

only negative formulas), and our restriction is quite harmless for them. In fact, we have:

Theorem 3.1
Let T be a negative sequent. If = has a derivation in LLP, then it also has a derivation in
LLP".

In fact, the latter derivation can be obtained by simply permuting some inference rules in the
former derivation, and the permutations needed are invisible in terms of proof-nets. Hence

one could say that LLP and LLP~ have the same proof-nets for negative conclusions.

3.3 The system DCP~

In this section, we will define a term calculus DCP~ for LLP~. The types of DCP~ are
_ formulas of LLP~. The variables of DCP~ are denoted by x,y,z, ..

Definition 3.4 (Terms and Sequents of DCP”)
The terms of DCP~ consist of positive terms (denoted by t,u, . . .), negative terms (denoted
by k, 1,...), and neutral terms (denoted by 7, 0,...) which are defined as follows:

t,usz=x|tQu|inl(f) | inr(u) | k (positive terms)
k 1:=xt|[k]]xy)r| (negative terms)
T,ou=tek (neutral terms)

x.7 and (x, y)r are abstractions with x (and y) bound in 7. The set of free variables occurring
in t, k and T are denoted by FV(z), FV(k) and FV(7) respectively. We identify two terms
in the a-equivalence relation, and we will use = for the syntactic identity on terms. The
expression #[u/x] denotes a term obtained by substituting u for each free occurrence of a
variable x in # (the expressions k[u/x] and t[u/x] are used similarly). These are defined in
such a way that they do not cause free variable captures.

A context of DCP™ (ranged over I, A, E, ©,...) is a finite set of variables annotated with

negative types (denoted by x; : Ni,...%n : Np), in which each variable occurs at most once.

_87-—

FX;t:P FA kPt

ey G FI. A fek (Cut)
FX;t: P }-A;u:Q® FE,x:Ny: M;t
FELA; 1Qu:P®Q X,)T N® M
FX;t: P o FEZ;u:Q ® FX; kN l—E;l:M&
Fr;ml():PoQ ' Fx;m@w:PoQ Fx; K :N&M
FX; ¢t P 0 FX; kN
X 2:?2Ph FZ; kDN
FX; 0 . FE,x:N,y:N; II .
TV ERI (Weakening) FYz N /xzh] (Contraction)
FEZ,x:N; T FX; k:N
FZ,xt:N (Focus) F S x N xe k(Unfocus)

" Figure 3.2: Types and the typing rules for DCP~

A typing judgement of DCP~ takes either of the following forms:
FX;t:P vFE;E:N or FXE;T.

When it is not necessary to distinguish ¢ : P, k : N and 7, we write II to denote one of them.
In this case, II[u/x] means #[u/x] : P, k[u/x] : N or t[u/x].

Definition 3.5 (The typing Rules)

The typing rules of DCP~ are displayed in figure 3.2, where the (Cut)-rule and the ®-rule
are defined only when the contexts £ and A have no common element, and the variable x

occurring in (Weakening)-rule and (Unfocus)-rule is a fresh (i.e. new) variable.

Remark 2

(Unfocus)-rule and (Cut)-rule overlap. In fact, (Unfocus)-rule can be derived from (Cut)-
rule and (Ax)-rule. However, the correspondence with proofs of LLP~ and derivations of
DCP~ becomes more closely by the presence of (Unfocus)-rule. (This is also mentioned by
Wadler [48] in the paragraph starting with “Rules Cut, Id, RE, and LE overlap;” of Section 3)

Remark 3
The restriction we imposed on LLP~ simplifies the term syntax a lot. For instance, &-rule
and %®-rule would be much more complicated without the restriction, and moreover (Focus)-

rule and (Unfocus)-rule would be required for positive types too.

— 88—

Definition 3.6 (Reduction Rules)
The reduction relation —s of DCP~ is defined to be the compatible closure of the following
rules.
B) t®ue(x,)t —pz uey(texr)
inl(7) o [k,]] —p tek
inr(u) o [k,]] —p uel
ke —p tek
(® text —, T[t/x]
m x(xek) —, k where x & FV (k)
x))(x®yek) —, k where x,y ¢ FV(k)
Ix(t®7x) —, ¢ where x & FV(¥)
In the following, we use —*, —* and = as the reflexive transitive closure, the transitive
closure and the reflexive symmetric transitive closure of — respectively.
The (B)-rules and the (¢)-rule are intended to capture a natural cut-elimination procedure
for LLP~. More specifically, each of the (8)-rules corresponds to a logical reduction step for

®/%, ®;/& (i = 1,2) and !/2. The (¢)-rule roughly corresponds to the following structural
reduction step.

(Ax%) P . D ¥
FPL P FPHE FPLO o FE +FX,P FO,Pt Cut
P ST F5,P P2 e
FE,P F PL A N SO
N (Cuh FE A

In the left proof, ancestors of the negative formula P+ are indicated. It must be introduced

as an axiom + P+, P, by (Weakening)-rule l_—;f};: , or by a logical inference rule Pi p@

with P* being the main formula. The above reduction step replaces an axiom by the proof
FE ip FY,P FO©,Pt

s iTe-ad Pl T30

(Cut) . Since

® consists of only negative formulas by the restriction of LLP~, this (Cut)-rule is certainly

=
Nt

m, and a (Weakening)-rule - ;f

LLP~’s. The ()-rules correspond to the simplification procedure of LLP~ proofs.

We now mention some properties of DCP~. Firstly, this system has subject reduction
property: if - X;¢: P (resp. + Z;k: N, F Z;7) and ¢t — ¢ (tesp. k — k', 7 —> 7') then
kX7 P (tesp. - Z;&: N, + Z; 7). Secondly, it has substitution property: if + Z,x: P4;TI
and + A;z: P then v I, A;II[¢/x]. Finally, it is strongly normalizing. However, it does not
enjoy Church-Rosser property. For example, (x, x')((x ® x') z.(y ® ?z)) reduces to z.(y ® ?z)

— 89—

by (n7)-rule, (x, x")(y ® 2(x ® x’)) by (¢)-rule, and these are normal. This example reflects the

fact that LLP~ with simplification rules is not confluent as follows :

FPRPY +Q,0t FPRQP®Q* FPRP- FO,0%

FP®Q,PLHLO" FAP® Q)P O+ Cu FP®Q, P+, 0+
F2AP® Q), Pt 0+ reducesto F2P®Q),PL, 0+ and +P®Q,P-%WQ*
FAP®Q) PR Ot FAP®Q), PR Ot FAP®Q),PL®O*.

But this is not so problematic; in fact, if (77)-rules are omitted, then the remaining reductions

of DCP~ (i.e. (&)- and (B)-rules) enjoy Church-Rosser.

3.4 The Au-calculus and the translations into DCP~

3.4.1 The Au-calculus

We consider two variants of the Au-calculus, call-by-name and call-by-value, and interpret
them in DCP~. First of all, we review the syntax of the Au-calculus.

Definition 3.7 (1u-types)

Let X,Y,... range over the set of base types. The #ypes of the Au-calculus (denoted by
4, B,...)is generated by the following grammar.

AB:=X|A— B
Definition 3.8 (1u-terms)
Given two disjoint countable sets of variables, one is called A-variables (denoted by x, y,z,. ..
and the other is called u-names (denoted by @, 8,7, ...). The (unnamed) terms, ranged over

W, V, ..., and named-terms, ranged over 7, o, . . ., of the Ap-calculus are defined by:

w,vi=x| Axw | wv| uar (terms)

7,0 = [a]w (named-terms)

We consider terms modulo a-conversion on A-variables and p-names. The sets of free vari-
ables and free names of a Au-term w (resp. 1), denoted by FV(w) and FN(w) (resp. FV(7)
and FN(7)) respectively, are defined as usual.

Definition 3.9 (1u-typing rules)
A typing judgement of the Au-calculus takes the form T F A lu:AdorT+ A |1, where T

denotes a A-context, i.e. x; : A;,...,x, : A,, and A denotes a M-context,i.e. ay : By,...,a,:
B,,.. The typing rules for the Au-calculus are defined in the fi gure 3.3,

—90—

F,x:Al—Alx:Avar

Ix:ArA|w:B I'tAlw:4—- B El—A!v:Aa

TrAlbw: 4 B 1abs FSrAAlw: B PP
TrAa:4d|w _abs T'rAlw: A4 namin
TrA|uew: A Traa:4][aw g

Figure 3.3: Typing rules for the Au-calculus

Definition 3.10 (call-by-name reduction rules)

The one-step call-by-name reduction relation for the Au-calculus, written by —,, is defined
as the compatible closure of the following rules.

B) (Ax.w)y — wlv/x]

© (a.ryw — pBa[PX” [ig]

(up) Bl(pe.t) — 7[B/a]

(un) pafalw — w (where @ ¢ FN(w))

where w[v/x] is the standard substitution of the Au-terms, and 7[8/] is just renaming of
the free name . [/1,;)] is the result of recursively replacing any subterm of the form
[a]v by [Blvw in 7.

Definition 3.11 (call-by-value reduction rules)

A value is either a variable or a A-abstraction.
VW :u=x|Axw

Let ¥, W range over values. The one-step call-by-value reduction relation for the Au-
calculus, written by —,,, is defined as the compatible closure of the following rules.

®) (Axw)V — w[V/x]

(&) (uatyw — pBP o]

(Larg) V(par) — pBa[PO 0]

(k) uelalw — w (where @ ¢ FN(w))
(up) [Bl(pa.t) — 7(B/e]

where T[170) /141y] is the result of recursively replacing any subterm of the form [a]w by
[BlVwinT.

We write —? for the reflexive and transitive closure of —,. Similarly for —,.

~91 -

3.4.2 The negative-translation from the Au-calculus into DCP~

In this subsection, we give the negative-translation from the Au-calculus into DCP~, and
show that it preserves the call-by-name reductions. It is called negative because it maps the
Au-types to the negative DCP~-types. In particular, it maps A — Bto !14° —o B°.
According to this translation, both A-variables and u-names of the Au-calculus are inter-
preted by variables of DCP~, so in the sequel we also use @, 8,7, . .. as variables of DCP~.

Definition 3.12 (the negative-translation)

The negative-translation consists of three translations: (-)° , [-]) and [-]. The first one
translates a type of the Au-calculus to a negative type of DCP-, the second one translates a
(unnamed) term of the Au-calculus together with a positive term of DCP™ to a neutral term
of DCP~, and the third one translates a named term to a neutral term of DCP~. They are

defined as follows :

X)° =Xx* (Ad— B =24)" % B
[x];=xe?t [Ax.w]; =t ((x,®)[w],) (Wwhere a is fresh)
[wvl: = [wlipjer (a7l = [71[#/]

[[a]w] = [w]e
where ¢ is a positive term of DCP~ and [w] is an abbreviation of B-[wlg (B is fresh).

Let I be a A-context x; : Ay,...,x, : A, and A be a y-context a; : By,..., @, : B, of
the Au-calculus respectively. We define the contexts 2(I°)* and A° as x; : 2(43)*,...,x, :
24y)tand a; : B},...,ap : B,

Proposition 3.2

The negative-translation is sound for derivation, that is

(1) ifTry Alw:Adandry, Z; t:(4°)* then by, 2(°)4, A% ; [w], and
(2) ifT ky, A 7Tthen by, 2(T)%,A°; [7].

Proof. Simultaneous induction of (1) and (2) on k.
Case of (Ax): assume I,x : N+ A|x: Aand+ X ; ¢ : (4°)*, then we obtain the

following:
FX; (A%
Fx: 24t x:14° R X % AA°)*t
Fx:24%)t,2; xe?t
Fx: 2(A4°) 2T, A% E; x e 2t

Wk

—92—

Case of (1-abs) : we consider the case that T + A | Axw : 4 — B is derived from
I,x: A+ A|w:B,andsuppose+ X ; ¢ : (2(4°)* ¥ B°)*. Using the induction hypothesis
to this sequent and + z : B°; z: (B°)*, we obtain - 2(I"*)", A% Z; 1 e (x,2)[w].. So, we can
derive the conclusion of this case as follows.

F AT, A% x 0 2(4%),z: B [wl.
F 2O, A% (L 2)[wl, s 24°)E® B FES L (24 % B°)*
R AT A% E S te(x,2)[W:

Case of (app) : we consider the case that I',I + Ay, Ay | wv @ B is derived from
[iFA |w:4— BandT, + Ay | v: A, and suppose F X ¢ (B°)*. Using the induction
hypothesis to the latter sequentand -z : 4°; z : (4°)*, we obtain + 2(I5)*, A3,z : 4% 5 [V
So, we can derive F 7(I)*, A%, X ; VI®1: 14° ® (B°)* as follows.

FATS) Az A0 V] 1 4°
FATN A IV A°
FOTDL AL DI 140 R 25 (B
FOI)SL ALY VI et 14°® (B)*

Now, we apply the induction hypothesisto I’y + Ay |w:A4— Band+ 2(T)*H, A%LE; viet :
14° ® (B°)*, then we obtain the conclusion of this case + 2T, 20 AL ASLE S Twlipger

Case of (u-app) : we consider the case that T + A | pa.7 : 4 is derived fromI' + A, @ :
A | 7, and suppose £ ; ¢ : (4°)*. Apply the induction hypothesis to ' + A, @ : 4 | 7, then
we have + 2(°)*, A%, @ : 4° ; [7]. From the substitution lemma, we obtain the conclusion
of this case 2(I)*, A°, X ; [7][t/al.

Case of (naming) : we consider the case thatT'+ A, : 4 | [¢]w is derived from T + A |
w : A. Now, we apply the induction hypothesistoI' + A [w : 4 andF a: 4°; @ (49,

then we obtain the conclusion of this case + 2T"°)*, A" ; [Wl.- O

From (1), bpep. B : A% B 1 (4°)* and (Focus)-rule, it follows that if T' kz, A [w: A then
AT, A° 5 Tw] : 4°.

i_DCP-

Lemma 3.3
Let w and v be Au-terms, and ¢ and u be positive terms of DCP~. Then the following hold.

(1) Ift —, u then [w]; —" wl. .

—93—

(2) If @ ¢ FN(w) then [w],[u/a] = wliu/ag -
If @ € FN(7) then [7][u/e] = [1] .

(3) L™Y] —* I/l gy, and
[I00Y/.] —* [2[*/:11 -

(4) If B is fresh then
[[W]];[_!-_m&[;/a] = [[W[LB](_)V/[Q](‘)]]]t[!maﬁ/a—]’ and
LI /,] = [P [yo]T -

(5) H:W:"t[ﬁ/a] = [[W[,B/a']]]fw/a], and
[71[B/a] = [*[B/a]] .

Proof.
(1) By induction on w.
Case of x : weobtain [x], = xe % — x e %u = [xT. ‘
Case of wv : we obtain [wv], =]ife: —* Wligen = [wvl. by the induction
hypothesis.
Case of Ax.w : we obtain [Ax.w], =z e (x,)[Wle — u e (x,)Wl = [Ax.W],.
Case of ua.7 : we obtain [ua.7], = [71[z/] —* [r1[u/a] = [ua.T],.
(2) By inducion onw and .
Case of x : we obtain [x],[u/a] = (x 2)[u/a] = x e 2(t{u/a]) = [xliuse)-
Case of wv : we obtain

Di[w/a] = [Wl ggelu/e] E D¥lomtane = D9]isgoure; = D9V]ie) -
Case of Ax.w : we obtain

[axwli[u/a] = (t o (. BIWIpu/a] E fujal e (v, HIWIs = [xwle -
Case of uB.7 : we obtain

[uB-1{u/e] = [e1[2/B[u/e] = [71[u/a][f[x/<]/p]
" [1ltu/al/B] = [BT ey -

Case of [8]w : From the hypothesis, 8 # a, so we obtain

[IB1WIlx/e] = [wlslu/a] E" [wls = [BIW] -

—94 —

(3) By inducion on w and 7.

Case of x:
[x10T1/:] = (x 0 29[T1/,] = 1T @ 2 TV/])
— (T11,]) o .1V — DIATI1/8) € D,
Case of z(2 x) :
[21.[T7/.] = @ o 0[TV/.] = 2 0 2:0TV).)) = 2Dy,

Case of wyw; :

J— — 1.H.
I[W1W2]lt[!M/x] = [[Wl]]gm@t[!l[v]/x] —7 I[Wl [v/x]]](ll[Tv;—]]m)[!m/x]
I.H.and (1)
—* VX orrgiery.g = [wiw2)[v/x]] e,

Case of Lz.w :

_ — LH. J—
[zwl['T3/.] = (t o 2 AW /:] —" 1P1/.] @ (2 A)Iwlv/x]]p
= [Az.w]v/ x]]]t[!'lv—l/x] = [(Azw)lv/ x]]],[!l—vi/x]

Case of pa.7:

I

[ue. L[™/,] = [/, = [P0 0 e o ey ™ /)
= I[/la-T[V/x]]],[![T]/x] = l[(,ua-T)[V/x]]],[!ﬁ/x]

Case of [a]w :
[[eIwI[™/.] = [wl[TY/] 2 v/l = [a)wlv/xD] = [l /1]

(4) By inducion on w and 7.

Caseof x :
LT/, = (x 0 20)[T198/,] = x 0 2T ,]) = [x] 30,
Case of wiwy :

= wien o LH. _
Dwiwol [P /,] = I liggel 2% /el & I[P /o] lprgenemier.)

LH. =
= D7 oo e .

— 95—

= Wil /g] Wal P Vo 11 s,
= [P (101D e,

Case of Az.w:
[Azwl[T1/,] = (2 o (2,)WD,)[T/ ,]
T8, o 2, IV /o]

= 2w /a1 11 immes
= [[(AZ.W)[M](—)V/ [a](—)]]],[zmeﬁ/a]

Case of uy.7:

Ly 71 T¥8)] = [T/ Y19 o] = [T 7,10 019] /]
P Jag AT /01 /7] = Ly TP g T s,
= [y DP /ey 1l p3es

Case of [a]w:

[lelwI(™%/,] = Wl T /0] 'S I /o Iipges = IV /o 7D
= [BIWIP /1y 1T = TP /0110

Case of [y]w (where y # @) :

[EyIwIETe8/,] = [, (599 /] "2 [P /10,
= [V I /ia3oD1 = [y IIPE /1011

(5) By induction on w and 7.
Case of x :

[x1:[B/a] = (x W)[B/a] = x 2(t[B/a]) = [x]yp/e

Case of wiwy :

Dowall[8/a] = wilipgalB/a] 2 [wi 8/ gengsrer

LH. gd(l) IIWI [ﬁ/a]]]!m@[ﬂ/ﬂ’] = [[Wl [ﬂ/a] %] [ﬁ/a]]]t[ﬂ/a]

= [(wiw)[B/a]lp/e)

— 96—

Case of Az.w :

Lzwl[Ble] = (t o GY)IWD)B/a] 2 1iB/a] » & V)IwlB/e]l,
= [z w[B/e]lyp/q = [(Azw)[B/a]lip/a)

Case of uy.7:

[uy.71B/a] = [71[¢/71(B/a] = [71[B/a][#B/a]/]
" [2(8/e]118/] /y] = [y T8/ e]llpe
= [(uy-D)B/a]lpe

Case of [a]w :
[eIwliB/e] = [wlalB/a] £ [w[B/ells = [BIwIS/a] = [(elw)[B/e]]
Case of [y]w (wherey # @) :

[ywllB/e] = wl,[B/a] Z wB/ell, = [IwB/aDl = [([yIW)B/e]l

Theorem 3.4 (soundness of the negative-translation)
If w —,, v then [w]l; —* [v]; holds for any positive term .

Proof. By induction on —,,.

Base step :

[Axw)V], = [Ax W] = (v ®1) (x, C’-’)[[W]]a — toa(![V] o x.[wl.)
m 33 (1)
—1e a’-([[W:ﬂa[![[V}l/x]) —"* toa.([wv/x]l)

Lem 3 3 (2)

— [wv/x]]alt/a] Iwlv/x11,
(e, = [ua.t] 5 = M[W/a] <10 T1%/,1/B] (8: fresh)

Lem 23 O L[01 108/8) = T B fiago] T
Lem 3 3 (Z)II Il
t

[=[B/a]l

Tue.lalw], = [lalwlt/e] = [wl.t/a]
[[B8lpe.7] = [pa.7ls = [71[B/a] Lem 33 ©)

—97—

Inductive step :
Case of wy —, w'v (obtained from w —, w') :

LH.
IIWV]])‘ = [[w]hm@; —* ":wl]llmgx = [[W V]],

Case of wy —,, wv’ (obtained from v —, V') :

I1.H. andLem*3.3 (¢3) ,
IIWV]]I = ﬂ:w]]ﬂ[ﬁ]'@; — I[W]]!m®t = [[WV]]t

Case of Ax.w —, Ax.w’ (obtained from w —, w') :
LH.
[xwl, =te(x,a)[wle. —" te(x,&)[W]. = [AxW];

Case of ua.t —, ya.v’ (obtained from 7 —, 7') :

I

H.
[pa.tl, = [71[t/e] —* [T'1[#/e] = (a7’
Case of [a]w —, [a@]w' (obtained from w —, W) :

LH.
[awl = [wla —" [W'la = [[a]W]

The case of (B)-reduction is strict, i.e. one-step (8)-reduction of the Au-calculus is trans-
lated into at least one step of DCP~ reductions. On the other hand, (), (u,) and (uz)-
reductions are translated into identity.

Remark 4

Our translation does not preserve the call-by-name 7-rule of the Au-calculus (i.e. Ax.wx —,
w (where x ¢ FV(w))) as the reduction rule. However, it does preserve it as the equational
rule. Since ![x] = !z.[x], = !z.(x ® %2) — x by the 7-rule of DCP~, we can prove
[Ax.wx], = [w]; as follows.

[Axwxl, = 0 (x,)Dwxla = 10 (x,) [Wlizges —" £ # (%,)[Wloe

=te(x,a)(x®@a e [wl) — te W] — [W]

3.4.3 The positive-translation from the Au-calculus into DCP~

In this subsection, we give the positive-translation from the Au-calculus into DCP~, and
show that it preserves the call-by-value reductions. It is called positive because it maps the
Ap-types to the positive DCP~-types. In particular, it maps 4 — B to [(4* —o ?B").

— 98—

s

Definition 3.13 (the positive-translation)

The positive-translation consists of the four translations: (-)°, (-)*, [~ and [-]. The
first one translates a type of the Au-calculus to a positive type of DCP~, the second one
translates a value to a positive term of DCP~, and the third and the last one are similar to

those in the negative-translation. They are defined as follows:

X) =X (4 - B)' =1((4")" B 7B°)
x*=x, (Ax.w)* = I(x, @)[wl, (where a is fresh),
Vi, =te?V",
[V wl: = [Wlix.ro2x01))» Dwl: = VI ule eopeny (Where v isnot a value)
[[alw] = W], [pa-7], = [71[¢/a].

In the above definition, we give two kinds of definition for application. This is for the
following reason: to obtain a sound translation for the call-by-value reduction, we need to
have two views on application depending on the situations. For example, “V is applied
to pa.t from the left-hand side” in the case of ({ug)-rule, and “w is applied to pa.t from
the right-hand side” in the case of ({s,)-rule. To solve this dilemma, we think of vw as
(Ax.xw)v (actually, we use a slightly modified form) when v is not a value. Then, we can
always assume that an application is of the form Vw, because Ax.xw is a value. Here, if we
abbreviate lx.(V* o 2(x ® 1)) by (V,1)>, and !x.[Wliz(xercery by (W, D)%, then [Vw]; and [ww];

can be written as [w]y,y and [VIye respectively.

Proposition 3.5

The positive-translation is sound for derivation, ie. the followings hold.

(1) IfT ky AV : A then by, (D)4, 2A%; V* 1 47

(2 Ty Alw:dand by, Z; 2:1(4°)*", then by, (T)*, 24, %5 [wl,.
(3) IfT ky A| 7 then by, (T)*,?A%; [7]

Proof. Simultaneous induction of (1),(2) and (3) on k.
Case of (Ax) : assume I',x : N + A | x : 4. In this case, we can prove (1) as follows:

Fx:(AD)*t; x:4°
F ()Y, 2A% x : (A%)*; x: 4°

Wk

—~99 -

Now, we suppose X ; ¢ : (4°)*, then we can obtain (2) as follows:
Fx:(A)t; x: A4°
F)S28% x 0 (A% x: 4°
FEg oA F@)N A% x (AN x40
)Y 2A% x 0 (A%, 2 ;20 2x

Wk

Case of (1-abs) : we consider the case that ' + A | Ax.w : 4 — B is derived from
I,x:ArA|w:B. So,with+ a:?B*; a: !(B*)", we obtain + (I'*)*,?2A%, x : (4°)',a:
?B°* ; [w]. by the induction hypothesis (2). Therefore, we can prove (1) as follows:

F@) 2% x: (A a: 7B [wle
F)4 24°; (x,)[wl, : (4°)*: % ?2B*
F)2 1(x, @)[wle @ (A%t 2 ?B*)

Now, we suppose - X ; ¢ : 1?2(4* ® |(B*)*), then we obtain (2) as follows:
F@T)Y 2405 (x,) [wle : /(A% 2 2B°%)
FX; 0124 U(B)Y) R @)Y 24°; N(x,) [wle : 20((4%)*t 2 ?2B°)
F ()L 20%,2; £ 0 21(x, @)[W]la

Case of (appl) : we consider the case that I';,I, + A, A, | Vw : B is derived from
I'rA |V:4—> BandI; - Ay |w: A4, and suppose + X ; £ : !(B*)*. By the induction
hypothesis (1), we obtain F (I'})*, 2(A}) ; ¥* : 1((4*)* % 2B*). Hence, we have the following

derivation.

Fx:(A); x:4° vX; ¢t 1(BY)
FZx:(A); x®t: A* @ (B°)*
FADS2AY; V(A R2B°) FEx: (A 2x®1): 2(4° ® I(B*)Y)
FADS2ANZx: (A% Ve 2(x®1)
FTDL2A).Z; x(7 0 2Ax®9) : (A°)*
F@DS2AD,Z 5 (Ve 2(x®1)) : 1(A%)*

Here, we apply the induction hypothesis (2) to I', A; | w : 4 and above sequent, we obtain
the conclusion of this case: + (I'1)*, [T5)*, 2(A}), 2(A3), 2 5 [Wli.greren)-

Case of (app2) : in this case, we consider that I';,I’, F A, Ay | vw : B (where v is not a
value) is derived from I’y F Ay |[v:4 —» Band) F Ay | w: 4, and suppose T ; ¢ : |(B*)*.
Then,

Fz: (A ;z:4° ra:?2B%; a: (B
Fa:?2B%z:(A)t; z@a: A*® |(B*)*
Fx:2A°®1(B)Y); x: 1((A°)* % 78*) ra:?B%z: A*; 2z®a): 2(4° ®!(B)Y)
Fx:24°®(B)),a:?2B%z: (4 ; xe 2(z®)
Fx:24°®(B)Y),a:7B"; z.(x e 2(z®)) : (4°)*
Fx:2(A°@I(B*)Y),a: 7B ; lz(x e 2z ® @)) : 1(4°)*

—-100 -

and the induction hypothesis (2), we have

- (rﬁ)l,"(AE), X ?(A. ® !(B.)-L),a' : ?B° 5 |[v]l!z.(x0?(z®af)) (E [[xv]]a)
- Therefore, we obtain F (I})*, 7(A3), x : 2(4°®@!(B*)"), @ : 7B*; (Ax.xv)" : [(7(4°® (BYYH®
?B*) from the following derivation.

F I 2(85),x: 24 @ (B*)), @ 1 7B [xv]e
F TS 243 5 (o o)lovls : (4”@ 1(B°)1) ¥ 7B°)
F TN A3 ;5 1k) [xv], 124 ® (B*)) B 25°)

So, we can derive F (I3)*, 2(A3), 2 ; !z.((Ax.xv)" @ 2z ® 1)) : 12(4° ® 1(B*)*) as follows:

Pz A @Bz ((AY B 2B%) +3,; 10 1(B)
Fz: A4 @ 1(BY)Y); z@¢1: (4%t % 2B") ® I(B")*
FIS 2A3) 5 (Axxv)” 1204 ® 1(B)Y) B1B") +I,z: 24" 8 U(B)Y); 2@ : A" B 1B @ I(B')Y)
5, 28, 5,z 1 A" @ I(B')H); (Axav)’ o 2z ®1)
F 5 2(83), 25 z((Ax)" » Az 1) : A" © [(B*)*)
F O, A8, X 2 (Axa)” e Az @ 1) : 12(4° @ 1(B*)*)

Finally, we obtain the conclusion

F DY @) (A, 08, Z 5 [Wlizroyrereey (& Dl

from the induction hypothesis.

Case of (u-app) : we consider the case that I' - A | pa.7: 4 is derived fromI' - A, Al
7, and suppose F £ ; ¢: !(4°)*. Apply the induction hypothesistoI' + A,a: 4 | 7, then we
have (T*)*,2A°%, @: 24" ; [7]. From the substitution lemma, we obtain the conclusion of
this case + (['*)*, 2A%, 2 ; [71[¢/a].

Case of (naming) : we consider the case that I - A, @: 4 | [a]w is derived from T" - Al
w: A. Now, we apply the induction hypothesistoI' F A | w: 4 and + a: ?4° ; a: 149,
then we obtain the conclusion of this case F (I'*)*, ?A* ; [Wla.

O
From (1), bpep. B: 74°; Bt [(4*)* and (Focus)-rule, it follows that if T i-;;,, A | w: A then
Fpee. T+, 2A°; m: 24°.

Lemma 3.6

Let w and v be Au-terms, and ¢ and u be DCP~-positive terms. Then the following hold.
(1) If t —, u then [w]; —" [wl..

—101-

@ wr/x] = (W),
[wh[V*/x] = [w[V/x]Dr- 1, and
[z2(7*/x] = [=[V/x]].

(3) If @ is not in FN(V), FN(v) and FN(7), then
V[t/al =V,
[v1.[t/a] = [V]if/a, and
[71[#/a] = [*].

@ V*[(w.p)[a] —* (V[EI™ /i),
VIL(w, B) /e —* IV[PI /0151 iowpy/a1, and
[71[(w. B Ja] —* [P /1111

(5) W (V.8 [a] = (W[FO) /5D,
VLY. B [2] = D[P /a1 11y re)s and
[71[(V: B /2] = [[B7C) /o 11

(6) V*[B/a] = (V[B/ea]),
[wl:[B/a] = [[W[ﬂ/a’]]];[ﬁ/a,], and
[71[8/a] = [*[B/a]l.

Proof. (1) By induction on w.
Case of x : we obtain [x], =t e 2x — u e ?x = [x],.

Case of Vw : we obtain the following by the induction hypothesis:
[Vwl; = Wlixpremey —" [Wlk.greopen) = [VW],

Case of vw (where v is not a value) : we obtain (w,#)? —* (w,u)* by the induction

hypothesis. Again, we apply the induction hypothesis, then we have
[l = V1w —" [VIanaps = Wl -
Case of Ax.w : we obtain
[Ax.w], =t o AAxw)" — u o A Ax.w)* = [Ax.w], .
Case of ua.7 : we obtain
[na.], = [71[t/e] —" [71[u/a] = [pa.7], .

-102-

(2) By inducion on W, w and 7.

Case of x : we obtain
X[V x]=x[V[x]= V*
[xD [V /x] = (2 0 W)V [x] = [V [x] « Ax"[V"/x])
=V /x] eV = Vlqrn -
Case of z(# x) : we obtain
VX =z[Vx]=z=2
21V /x] = (¢ 2V [x] = €[V [x] ¢ A" [V"[x])
=1V /x] e 22" = [z]qp~/x -

Case of Az.w : we obtain

Azw)* [V*/x] = 1(z, @)[wl[V/x] £ (z, @)[w[V/x]]«
= (zwlVx]) = (Azw)[VIx])

[z Wl [V*/x] = (t @ AAzw))[V" /x] = [V [x] ® 2Azw)'[V*/x]
= A7 [x] 0 Wzl V/x])" = [z WV/xllgy -

Case of Ww (where W is a value): By induction hypothesis, we have (W, H>[V*/x] =
(W[V/x), t[V*/x])". Then we obtain

[PV /x] = Il IV /2] 2 WP/
= [wWlV/x1 D, ey = DVTVIXIWVI X Dagr 21
= [(Ww)V/xWqr=ix -

Case of vw (where v is not a value): By induction hypothesis, we have (w, 1)*[V*/x] =

(w[V/x], t[V*/x])*. Then we obtain

Dwl [V /%] = Do gel7 /5] 2 IVt
= WV x iy a1 = DIVIXIWIV X1y /21
= [(VW)[V/x]]'t[V“/x] .

Case of uB.t : we obtain
[B.7N[V* /x] = [PV /%) = L1V /)AL V [x1/F]

—-103 -

L VUV /2)18) = IV
= [WB.DV/x1iysxy -

Case of [B]w : we obtain

LBV /%] = Iwlsl V™ [x] & [wlV/x]0p = [IB)wV/xD]
= [(BW[V/x]] -

(3) By induction on ¥, v and 7.

Case of x : we obtain

xX'[t/a] = x[t/a]l=x=x"
[xDu(2/a] = (u e 7x7)[t/e] = ult/a] e Ax"[t/a])

= ut/a] ® ?x" = [xTupr/ag -

Case of Az.w : we obtain

(zw)'t/a] = @z W, [t/e] Z 1z)Wl = (Lzw)’

[Azw], [t/a] = (u 2(Az.w)")[t/a] = ult/a] ® 2(Az.w)*[t/a]
= uft/a] @ Adzw)* = [Az.Wlyye) -

Case of Ww (where W is a value): By induction hypothesis, we have
(W, uf[t/a] = (W, ult/a])
Therefore we obtain

[Wwl.[t/a] = [Wlw,uplt/a] e Wl wp 11701

= Wlwuprayr = IPWaje) -
Case of wyw, (where w) is not a value): By induction hypothesis, we have
(w2, w)[t/a] = (wa, uft/a])” .

Therefore we obtain

[wiwalllt/@] = w1 Do, w<[t/0] 2 W1 Dpum. et

= [W1llow, uirranye = Iwiwalugee) -

~ 104 -

Case of uy.t : we obtain

Ly tllt/e] = [ew/y el = [[t/allult/al /7]
E [[t/ el = Teylaya -

Case of [y]w (note that y # a by the hypothesis): we obtain
[lywllt/e] = Ivl,lt/e] E [wly = [lyw] .

(4) By inducion on ¥, v and 7.

Case of x : we obtain

x"[(w, B)*/e] = x[(w, f)*/a] = x =X’
[x1L(w, B)*/a] = (¢ ® 2x")[(w, B)"/a] = 1[(w, B)*/a] » 2(x"[(w, B)*/a])
= f[(w, B)°/a] @ 7x" = [xlqom.p/a) -

Case of Az.v : we obtain
LH.

(Az)'[(w, B/l = 1z VDLW, B)*fe] =" 1@ NI /1Ty
= (2P [0]D)" = (2P [y)’
[Azv][(w, B)*/a] = (t » A 2zv))(w, B)°/a]
= f{(w, B)/a] & 2(Az.v)"[(w, B)*/a]
—* 1[(w, B)*/a] ® 2z [P 1"
= [z [P g Iupreren -
Case of Ww (where W is a value): By induction hypothesis, we have
W, £ [w, B)*/a] —* WP [y, Hw, BY*/el)”
Therefore we obtain
[wwli(w, B)°/a] = [Wlm - [(w, B)*/a] B D g T tom e

LH.and (1) —_
—" W g o o) o By e

= [P /gy WP [0 im0
= [P /g o prerer -

Case of wiw, (where wy is not a value): By induction hypothesis, we have
(w25 t)<[(w, ﬁ)q/a] —" (w2[[ﬁ](—)w/[af](—)]’ t[(W, B)q/a])< .

-105-

Therefore we obtain

L.H. _
Dwiw, 1w, B/ @] = [Wilgwn, e[(W, BY* /2] —" Twi [P /1010y, o100, 1201

LH. ana; 1) Bl
=" i e o aem oo, dow. gy /e

= [wi [P /a1 I[P oy Tiiom, g2/

= [w)[P [y ionpyerar -
Case of py.T : we obtain

[ey-71w, B)° /@] = [71[2/¥1((w, B)*/e] = [71I(w, B)°/][tL(w, B)*/e]/7]

LH.
—* [P f g I (w, B)°] /]
= [y 7% [1a1on presa = Ly D g 1iom perag -

Case of [@]v (where v is not a value): we obtain

I.

H.
[lelv 1w, B)°/a] = VI[w, B /2] —* V[P /1415y TTw,pys
= P /o Iwls = LBV /i3I Is = [(I[P /11011 -

Case of [@]V (where V is a value): we obtain

L[]V 10w, B)°/a] = [V1l(w,)°/] —" IVIH iy 5Tl
= TP [t sty = - DV iz rerzagy © 20718 [o]
— (VTP [igoD)* @ 2. [Wli rercemy 2, wi Lz (VTN [y] 02 08))
= LBV [y w1 = L([INPO" /159511

Case of [y]v (where y # a): we obtain

1.H.

LlyIv(w, B)*/a] = IV, [(w, B)*/a] —" IV /10111,
= [P /oD 1 = LY /0] T

(5) By inducion on W, v and 1.

Case of x : we obtain

x'[(V. B) /el = x[(V, B)°/a] = x = x*
[x1:[(V; B)”/a] = (t « M)V, B[] = #[(V; B)” /] » 2(x*[(V; B) /)
=1V, B) /a] ® ?x" = [x]ywpp /a] -

—-106 -

Case of Az.v : we obtain

@ DIVLIT, AP /el 2 1@ PO ol
Az /D" = (2P O o))
[Azv LV, B) [a] = (¢ o 2Azv))((V; B]

= {[(V, B [a] « 2Azv) (V. B <]

= {{(V; BY [e] 22z O 1))

= [z O i Mawsp ey -

(Azv)'[(V, B) /]

Case of Ww (where W is a value): By induction hypothesis, we have

(W, 1V, B [e] = (WP O[], dV, BY /1) .
Therefore we obtain
[7wl(V, B /el = Wlw. [(V; B) /]

LH. V(-
= WP ol rwpr

_ V(-

= [W[P Ot Mmoo it 1a1
= [T /o PO 1o iy a1
— V(-

= [P O /o lawpp /e -

Case of wyw, (where w; is not a value): By induction hypothesis, we have

(w2, O)°[(V; B[] = Wa[PVO /1y, 1V, B [a])* .
Therefore we obtain
[wiw,1[(¥, B [a] = [w1Tow.0<l(V; B) /]

I._I_f. V(-
= il /1a1o own, o187 1)

—_ V(-
= [w1 "0 /10 1Dl ey, A0 1D
= w1770 /1o B O o awap 1)

= [ww)[PO oy i -
Case of uy.7 : we obtain
[y LI(V; B) /] = D711t/ vV, B) /a]

~107 -

= [71[(V, B [a][{(V; B)” [2]/¥]
O i TN B fal/)
= [y " /o 1w er 1

= [y P o lampr e -

Case of [a]w : we obtain
LlewIL(¥; BF /] = IwlL(V: B /] & WO /e sy

= [PW[O/ 1011s = LIBIVWP O /01011
= [P /01T -

Case of [y]w (where y # a): we obtain
LlywILY; B /a] = WLV B /el & w7y]T,
= [/i) 1 = T O/ o] T

(6) By induction on ¥, w and .
Case of x :

x*[B/a] = x[B/a] = x = x
[x1[8/a] = (1 « 7x")[B/a] = f[B/a] » 2(x*[B/a]) = #[B/a] ® 2x* = [xTp/a)
Case of z.w :

1H.

(zw)'[B/c] = !(z,)Wl [B/a] = '(z,v)WwB/]],
= (Azw[B/a])" = (Az.w)[B/a])

[Az.w]:[B/a] = (t ® A Azw)")[B/a]
= 1[B/a] e AAzw)'[B/e] = t[B/a] ¢ AAz.w[B/a])*
= [Az.w[B/e]lpja) = [(AzW)[B/a]lyp/e

Case of Ww (where W is a value): By induction hypothesis, we have
(W, 0 [B/e] = (W[B/e], iB]a])” .
Therefore we obtain
[Wwl.[B/a] = Wl [B/a] " i/) w.ep i) = WIB/]l wis/a), 18/a)y

— 108 —

= [W[B/e]wlB/allipe) = [(WW)[B/all4p/e; -

Case of w,w, (where w; is not a value): By induction hypothesis, we have

(wa, D7[B/a] = (wa[B/a], t[B/a])” .
Therefore we obtain

[wiwol[B/e] = Wi Tom.el8/0] Z Twi[B/ N, o<(p701
= [wiB/ @]l w8/ 18/a)*
= [wi[B/a]wa[B/e]lligra) = Twiw2)[B/a]l4p/a -

Case of uy.r:

Luy.1d8/e] = [<1[t/¥1[B/] = [1[B/ (1Bl a) /]
"Z [rB/a]llAB/ 2] /]
= [uy.7(B/allipe) = [y 1) B/ ellyp/e

Case of [@]w :
[lelwl(B/a] = [Wl.[8/e] E TwiB/alls = [BIwIB/aD] = [(eIw)[B/al]
Case of [y]w (where y # @) :

[yIwliB/a] = [wl,[8/e] " [wiB/all, = [lY)wiB/a]] = [yIWB/all

Theorem 3.7 (soundness of the positive-translation)
If w —,, v then [w]; —* [v]; holds for any positive term ¢.

E Proof. By induction on —,,.

Base step :

[W) VT = [V Dz ewyorcen = 2.((AxW)" 0 Ax ® 1)) @ 777
— ez (Axw)" 0 2z ® 1))
— (Axw)* o AV @ 1) = I(x, ¥)[w], o 2(V* ®1)
— (V" ®1) e (x,0)[wla

-109 -

Lem 3.6 (1),(3)

—" Wle[V'/x,t/a] "= [w[V/x]l,
[n)wl: = [ua.tlwye = [T1[(w,)°/a] = [71[(w, B)*/2][t/B] (B is fresh)
Lem 3.6 (4)

—" L] 12/B) = T BB fg] 1
[Vue-n)l = lketlwy = [TV 0 /e] = [T1(F 07 /(1/8]

O O o ST 10781 = [Bl J] T
[ue.[ew], = [[alwllz/e] = [wlalt/a] “"Z* @ [w,
[Bluc.7] = [uatls = [<18/e] “"Z* © [<[8/a]]

Inductive step :
Case of Ax.w —, Ax.w’ (obtained from w —>, w):

LH.
[Axw], =t e ?(x,a)[Wlo —* £ 2!(x,2)[W'], = [Axw'],
Case of vw —, v'w (obtained from v —, v/, and v is not a value) :

L,
[vwl: = VI, pe —" [VIw,9« = VW],

Case of vw —, vw’ (obtained from w —, w’, and v is not a value) : by the induction
hypothesis, we can obtain (w, #)* —* (W, 7)°. Using Lemma 3.6 (1), we obtain the con-

clusion of this case in the following way.
vl = VIw, e —" VI 4 = W1,

Case of Y'w —s,, 7w (obtained from ¥ —>, V*, and Vis a value) : by the induction hypoth-
esis, we can obtain (¥, 1> —* (V7, 1)°. Using Lemma 3.6 (1), we obtain the conclusion of

this case in the following way.
[Vwl: = Wl —" Wl e = [V'WI,
Case of V'w —, V'w’ (obtained from w —», W/, and V is a value) :
LH.,
[Vwl; = IwWlgr —" IWlge = VW],
Case of pa.t —, pa.7’ (obtained from 7 —, 77) :

[uer.7]; = [71[2/ a] [[T I[#/e] = [pe.t'];

-110-

Case of [@]w —, [e]w’ (obtained from w —, ') :

IL.H.

[[elw] = [Wle —" [W]. = [[e]w]

Remark 5

Similarly to the call-by-name case, our translation does not preserve the call-by-value 7-
rule of the Au-calculus (i.e. Ax.Vx —, V (where x ¢ FV(¥))) as the reduction rule, but
it does preserve it as the equational rule. When x and a are fresh for 7, we can prove
I(x, @)(t® 7(x®@)) = t using the n-rules of DCP~ as the following way: !(x, a)(z e 2(x®q)) =
I(x, @)(1z.(t @ 72) @ 2(x ® @)) — !(x, @)(x ® @ @ z.(t @ 72)) —> |z.(t ® 22) —> ¢. So, we obtain
(Ax.Vx)* = V* by

(Ax.Vx)" = 1(x,)[Vx]e = (%, @)[x] iz rreria)) = (X, @)(1z.(V* 0 Az ® @)) ® 7X)
— l(x,0)(xez.(V" 0 2(z® @))) — !(x,a)(V* 0 2(x® @)) = V.

3.5 Logical Predicates and Basic Lemma

In the following, we only consider the ®, %, !, ?-fragment of DCP~ for simplicity, and still
call this fragment DCP~. In this section, we develop the logical predicate method for
LLP, and then prove the Basic Lemma that works for both the negative- and the positive-
translations uniformly. We denote A- (resp. u-) contexts of the Au-calculus by T (resp. A),
and contexts of DCP~ by X and A.

We define [T'; A]° by 7(I"°)*, A°, and [I'; A]® by (I*)*, 2(A*). In the following, T stands
for either o or e. Note that [I"; A]" is always a context of DCP~.
Definition 3.14
For any positive type P and negative type N, and a special symbol L define

DI(T; A) = {¢: DCP~-pos.term |+ [[;A]"; 7: P),
DL(I‘ ;A) = {k: DCP -neg.term | + [[;A]"; k: N}, and
D! (T; A) = {7 : DCP-neut.term | [[;A]T; 7).

Definition 3.15
For any context I', A and type 4 of the Au-calculus, define

AT A) ={(w: Au-term [T+ A|w: 4)},and

~111-

AT A):=={7: Ag-namedterm | T+ A | T }.

Definition 3.16 (DT-predicate)

Let £ be a positive type (resp. negative type, L), 7 and 7’ be positive (resp. negative, neutral)
terms. A family S of sets indexed by A- and u-contexts of the Au-calculus is called a D'-
predicate on ¢ when S(T; A) C 1);(1" ;A) and

(monotonicity) if I' cI” and A c A’ then S(T'; A) € SI; A"), and
(equality) if 7 € S(T; A), 7' € DYT; A) and 7 = 7 then & € S(T; A).

Let S, 7 be D-predicates on & The relation S ¢ 7 is defined by YI,A(S(T;A) C
T7T;4)) '

In the sequel, we fix a D'-predicate B on L. In terms of this B, negation is defined as
follows.
Definition 3.17 (negation)
Let S be a family of sets indexed by the A- and u-contexts of the Au-calculus and S(T; A) C
fD}:(I’; A). We define as follows.

SYT;4) = {ke DL (T;A) | VI' DTYA 5 AVt € SIT'; A') (£ o k € B A'))).

We define S* for S such that S(T; A) ¢ D}(T; A) similarly.

Lemma 3.8

Let S be an indexed family as above and S(T; A) ¢ CD;(I“ ;A). Then S* is a Df-predicate on
&

Proof. We show that S* satisfies the (monotonicity) and (equality) conditions. Here, we
consider the case that £ is a negative type (for the positive type case, it is similarly proved
as this case).

(monotonicity): Assume I D I, A’ 5 A and ¢ € S*(T; A), then for any I > I, A” D A’
and k € S(I'"; A”), we have tek € B(I'’; A”) by the definition of negation. Hence, we obtain
te SHI; A).

(equality): Assume # € S*(I'; A) and ¢ = 7, then forany I” 5 T, A’ > A and k € S(I”; A),
wehave /' e k=t e k € B(I";A"). Since B satisfies (equality), we obtain ' k € BI; A”).
Therefore, we conclude ¢ € S*(T; A). O

-112—-

Lemma 3.9
Let S and 7~ be D'-predicates on £. Then we have

(1) S c 8+,
2) IfSc T thenT7* c 8, and
(3) St =S+,

Proof. We consider the case that ¢ is a negative type (for the positive type case, it is similarly
proved as this case).

(1) Suppose k € SI;A). ForanyI" DT, A’ D Aandt € S*(I";A’), we have te k €
B(I"; A") since k € S(I'’; A"). Therefore, we obtain k € S*+(T; A).

(2) Suppose Sc 7 andt € 7+(I';A). Forany I" DI', A’ D A and k € S(I'’; A"), we have
tek e B(I";A) since k € T(I";A’). Therefore, we obtain ¢ € S*(T; A).

(3) Itis immediate from (1) and (2).

' Definition 3.18
Suppose P, Q are Df-predicates on P, O, and N, M are D-predicates on N, M respectively.
We then define as follows.

P,QT;A) = (t@u|t e PT;A), ucQT;A))
PUT:A) = (% | 1 € PT; A))
PRQ=(P,Q*, NZ®M= (N MH*
2P = (P, IN = (VD)

Lemma 3.10
Let P, Q, N and M be Df-predicates on P, O, N and M respectively. Then P ® Q, ?P,
N 2 Mand !N are D-predicate on P® Q, 7P, N%® M and !N respectively.

Proof. 1t immediately follows from Lemma 3.8.]

Definition 3.19 (logical D'-predicate)
Let ¢ range over the types of DCP~ and L. A family {S;} of D-predicates is called a logical

Df-predicate when the following conditions hold:

-113 -

o each S is a DI -predicate on £.
® SX.L = SX'L, SX = Sxx']' andS¢ =B.

® SP®Q = Sp@SQ, SN’S’M = SN@SM, S!N = !SN, and S?p = OSP .

Lemma 3.11
If {S;} is a logical D'-predicate, then (Sg)* = Sq..

Proof. By induction on &£.
If £ is a atomic type X or X*, it is immediate.
If£is P® Q, we have

(Speg)* = (Sp® Sp)* = (Sp, Sy "2 P (Sp, St
e (SpisSgu)” = Spe B Spu = Spamge = Sipogy -

If £ is N%® M, we have

(Swea)* = (Sn B Si)* = (Sii S 'E (Sws, Sy
= SNJ. ® SM.L = SN.L®M.L = S(N?gM)J. .

If £ is 7P, we have
(Sp)* = (0Sp)* = g O s
€4 Spit =18p = Sipr = Sppy -
If £ is IN, we have

(Sw)* = (Sy)*" = S £ St = 25y = Sy

Lemma 3.12 (Basic Lemma)
Let {S;} be a logical Df-predicate, X = x; : My, ..., X, : N, be a context of DCP~, and T, A
be contexts of the Au-calculus. For any s; € Sy+(I; A) (1 < i < n), the following hold.

(1) If v Z; k : N, then k[s1/x1, ..., Su/%s] € Sy(T; A).
(2) If Z; w : P, then u[s/x, ..., 5,/x,] € Sp(T; A).
(3) If+ Z; 7, then t[sy/x1,. .., 5,/x,] € B(T; D).

~114-

Proof. By induction on the derivation of DCP~. We consider the last rule of the derivation.
Case of (Ax)-rule: it is immediate from the hypothesis.
Case of (Cut)-rule: Suppose that+ X, A ; tekisderived from+ X; ¢: Pand+ A k: P+ by
(Cut)-rule. By induction hypothesis, we have 7[5/¥] € Sp(I'; A) and k[5/%] € Sp.([;A) =
S#(T; A). Hence we obtain

(z o K)[5/%] = #[5/x] o k[5/%] € BT; 4) .

Case of ®-rule: Suppose that- Z, A ; tQu: P®Qis derived from+ X; ¢t: Pand-A; u: Q
by ®-rule. By induction hypothesis, we have #[5/¥] € Sp(I'; A) and u[5/X] € Sp(; A).
Hence we obtain
(t ® w)[5/%] = 1[5/ %] ® u[5/%] € (Sp, Sp)(T; A) € (Sp, Spy (I3 4)
= (Sp®Sp)[T; A) = Spep(; A)
Case of %-rule: Suppose that - £ ; (»,z)r : N2 M is derived from + Z,y: N,z : M ; 7
by ®-rule Let s; € Sy2(I54) (1 < i< m),andT CT", A CA and t € Sy:(I";A’) and
u € S (I"; A"). By induction hypothesis,
(t®u) e ((y,2)0)[5/%] = (t ® u) ® (v, 2)(7[5/X]) = 7[§/%, t/y,u/z] € BA'; A') .
Therefore we obtain
(> 2)T)[F/%] € (Sws, S Y (T3 8) = (S, Sy (5 4) = (Sv B Sy)([T3 8) = SymuT54)

Case of !-rule: Suppose that - X ; 1k : IN is derived from + £ ; k: N by l-rule LetI' c I,
A c A and € (Sy)'(I";), e, t € (Sy)I"; A). Since k[5/%] € Sy(I'; A) by induction
hypothesis,
(R[5 o 2t = \(K[5/%]) o 2t = t @ (K[5/X]) € B(; A) .
So, we obtain
(RS/7] € (SH) T3 4) = 1Sx(T; 4) = Siv(T;4) -
Case of the ?-rule: Suppose that + £ ; ?7 : 2P is derived from + X ; ¢ : P by ?-rule Since
1[§/%] € Sp(T; A) by induction hypothesis, we obtain
(20[5/%] € SHT;) C (Sp)(T;4) = 2Sp(T3A) = Sop(T54) .

Case of (Focus)-rule: Suppose that - £ ; z.7 : N is derived from + X,z : N ; 7 by (Focus)-
rule. Forany I’ D T, A’ > A and f € Sy(I"; &),

t e (z1)[§)%] =t o z.(1[§/%]) = 7[5/ %, t/z] € BI"; &)

-115-

by induction hypothesis. So, we obtain
(@7)[5/%] € Sy ([T;4) = Sy(T; A) .

Case of (Unfocus)-rule: Suppose that + X,z : N ; z e k is derived from + £ ; £ : N by
(Unfocus)-rule. For any ¢ € Sy(I'; A), by induction hypothesis we have

(z o K)[5)%, /2] = t 8 k[§]%] € B(T;A) .

Case of (Weakening)-rule: We now consider the case of positive terms. Suppose that +
X,z: N; t: Pis derived from + X ; #: P by (Weakening)-rule. Since z is a fresh variable,

we have the conclusion of this case by induction hypothesis as follows:
1[§/%,s/z] = t[3/%] € Sp(T; A) .

It is similarly shown the case of negative and neutral terms as this case.
Case of (Contraction)-rule: We now consider the case of positive terms. Suppose that
2,z: N; t[z/x,z/y]: Pis derived from + X,x: N,y: N ; t: P by (Contraction)-rule. Then,

we have the conclusion of this case by induction hypothesis as follows:
(t[z/x,2/yDI5/%, s/z] = 1[5]%, s/x, s/y] € Sp([;4) .

It is similarly shown the case of negative and neutral terms as this case. m]

3.6 Fullness of the negative-translation

In this section, we discuss only the negative-transiation, therefore we consider [w] and [7]

as the images of w and 7 by the negative-translation.

Definition 3.20

For a type 4 and contexts I', A of the Au-calculus, we define
B°T;A) :=={r e DI([T;A) | do € AXT; A) (r = [0])}, and
P(T; A) = {k € DT A) | Iw € A4(T; A) (k= wl)).

Lemma 3.13
B° is a D°-predicate on L, and P4 is a D°-predicate on A°.

-116-

4

Proof. For each case, we will check the (monotonicity) and (equality) condition of D°-
predicate.
(monotonicity): Assume I’ ¢ I", A c A'. If T € B°(T'; A), then there is a o € A*(I;A) C

_ A¥(I"; A’) such that 7 = [o]l. So, we have 7 € B°(I"; A’). Suppose we pick a k € P4 A),

then thereisaw € AL(I; A) © AT A") such that k= [w]. Hence we have k € P,4(I"; A").
(equality): Suppose 7 € B°(I;A) and 7 = 7, then there is a o € AX(I;A) such that
7 = 1 = [c]. Therefore, we have v € B°(T; A). And suppose k € P4(I;A) and k = K.
Then there is a w € A (I'; A) such that &' =k = [wI. Hence we have k&’ € P4(T; A). O

Lemma 3.14
() Ifa:A4eA thene e Py(I';A) forany I,
(i) If x : 4 €T, then x € 2(P;)*(T; A) for any A.

Proof. (i) Suppose @ : 4 € AandI” D T and A’ D A, k € PyI";4"). There exists
w e AL (I"; A) such that k = Wi, and then a e k = a o [w] = [, = [[e]w] € B°(I"; A").
Therefore a € P4(T'; A).

(ii) Suppose x : 4 € I. Notice that (?P4)* = (PN = (@HH*. So, we will prove
x € (PYN*T;A). ForanyI” D Tand A" D A k € (P4)’T;A). Then there exists
t € P;(I”; A) such that k = ?z. Therefore x o k=xe?2%=[x],=te[x] € B°(I";A") and so
x € (BT A). =

Lemma 3.15

Pj'l' = PA

Proof. It suffices to show P4+ c P,. Take any I, A and k € Py~ (I;A). We have a €
PL(T; A, @ : A) from the previous lemma, therefore @ o k € B°([; A, : A). So, there exists
a Ay named-term, say o, such that @ e k = [o]. Then we obtain k = a.(a e k) = a.[0] =
a.([o1[a/e]) = e.[ue.clle = [ue.cl € PyT; A). o

Lemma 3.16
Let T, A be contexts of the Au-calculus and # € (?P;)*(T’; A). Then thereisa w € AT A)
such that ¢ = |[w].

Proof. Suppose t € (7P5)*(T; A), then ¢ is a positive term of type !4°. So, ¢ is a variable or
there is a k € D5.([; A) such that ¢ = !k. If ¢ is a variable, say x, thenx:AeTlandx = ![[_)c—ﬂ.

~117-

Otherwise let I" O T, A’ D A and u € P4(I"; A'). Then ?u is in (PL)’([";A)andsou e k =
ke 2u € B°(I"; A') because of (7P})* = ((P4)*)*. Then we obtain k € P, (I 4) = P4(T; A).
So, there is a Au-term w € Aﬁ(l" ;A)suchthatt=lk = w].

O

Lemma 3.17
?PA'L ?9 PB = PA-—yB

Proof. (C): We take any I' and A, and let k € (?P; % P5)([T; A). Since 7Py ® Py =
((PH*,Poyt and x € (P x : 434,00 B)and @ € P3(T,x : 4;A,a : B), we have
(x®a) ek e B°(I,x: 4;A, a : B). Therefore there exists a Au named-term o such that o €
A*T,x : A; A, : B)and x®a ek = [o]. Then we obtaink = (x, a)(x®@aek) = (x,a)[c] =
(x, @)[pa.cl, = z.(z o (x, @) [ua.clle) = z.[Axpa.o]; = T[—/lxy—a_ﬁ € Pyp([; A)
Conversely, if we assume k € P,p(I;A) for any I and A. Then there exists a Au-
term v € A‘;_*B(l“; A) such that £ = [vl. On the other hand, assume I' c I, A C A,
t € (PPYHI; A) and u € P5(I7; A'), there is a du-term w € AL I3 A") such that ¢ = 'l
by the previous lemma. Then (t®u) ek = (Twleu)e VI = [V] iieu = Wy = u ovw] €
B°(I"; A’). Therefore we obtain k € ((7P5)*, P5)* ([A) = (7P ® Pp)T; A).
m]

Proposition 3.18

There is a logical D°-predicate {3?}} such that P4- = P, holds for any Au-type 4.

Proof. When we define §X¢ = Py, TIEX = Py and P, := B°, then the logical D°-predicate
{7155} is defined recursively. Now, we check @Ao = P, holds for any Au-type A. This is shown
by induction on 4. When A is the basic type X, it is trivial. For the case of arrow type

A — B, we have

= = —~ =~ IH
Puopyp = Poueysppe = 2Pge ® P = 7Py B Pp =Pyp

Then we obtain the following theorem immediately by applying the Basic Lemma and

—

Lemma 3.14 to {P,}.

-118-

Theorem 3.19 (fullness of the negative-translation)
Let T and A be contexts of the Au-calculus, and suppose 2(I°)*, A° ; k : A°. Then there
exists w € A%(T'; A) such that k& = .

Proof. Forallx:4eTanda:B€Ax€ 2PN T;4) = 2PN A) = TPT(Q(A (I3 A),
and & € P5.(T;4) =]P’L @A) = IP’(B (T A) hold. So, we now apply the Basic Lemma for
the logical D°-predicate {Pg}, then we obtain k = k[¥/%,&/d] € P A) = Py(T; A). This

means there is a Au-term w € A% (I'; A) such that k = .
O

3.7 Fullness of the positive-translation

In this section, we discuss only the positive-translation, therefore we consider [w] and [7]

as the images of w and 7 by the positive-translation.

Definition 3.21

For a type 4 and contexts I', A of the Ap-calculus, we define
BT A) = {re DT A) | Jo e AT A) (7= [oD)}, and
R [;A) ={reD,.[;A) [TV € ALTA) =TV}

Lemma 3.20
B° is a D*-predicate on L, and R4 isa D*-predicate on 4°.

Proof. For each case, we will check the (monotonicity) and (equality) condition of D°-
predicate.

(monotonicity): Assume ' ¢ I” and A C A If T € B*(T;A), then there isa o € A*([I;4) C
AX(I; A’) such that 7 = [o]. So, we have 7 € B°(I";). Now, suppose we pick a 7 €
R,4(T; A), then there is a value ¥ € A%(I;A) C AX(T”; A") such that ¢ = V*. Hence we have
te Ry(I"; A").

(equality): Suppose T € B*(I;A) and T = 7', then there is a ¢ € A*(I; A) such that
7 = 1 = [o]. Therefore, we have 7" € B*(T}; A). And suppose ¢ € Ry(I’;A) and £ = t’. Then
there is a value ¥ € A% (T’; A) such that#’ = ¢ = 7*. Hence we have ¢’ € Ry(I'; A). a

Lemma 3.21
Let ¢ be a positive term. Then 7 = !(x, @)(t e 7(x ® @)) for any x, & FV(®).

-119-

Proof. This can be shown as follows:

I(x,a)(t e 2(x®a)) = (x,e)(lz.(t 0 722) » A(x ® @))
— I(x,2)(x®a) o z(t ® 7z))

— lz.(te?2) — 1 .

Lemma 3.22
Rj'l' = RA.

Proof. Firstly, we consider the case when the type 4 is an atomic type X. Since D3(I; A) =
{x | x : X e T} (because variables are the only terms of the atomic type X), Rx(T;A) C
Ry ([GA) C x| x: XeT). Ifx: Xisin I then x € Rx(I'; A) since x = x* and x € AT A).
So, we obtain Ry(["; A) = Rg* (T A).

Secondly, we consider the case when the type A4 is an arrow type 4 — B. We claim
that 2(x ® @) € Ri_ 5[, x : 4;A, : B) since forany I" > (I, x : 4), A’ D (A,a : B) and
teRy, é(I“ 7; A"), there exists a value ¥ such that V'* = ¢ and we obtain

te?2(x®@a)=V"e2(x®a) =1z(V" e 2(z®a)) ® 7x = [x].(rer8e)
= [Vx]e = [[e]Vx] € B'(T"; A).
Now, assume u € R ,(T; A). Since u @ 2(x ® @) € B°(T,x : 4;A, : B), then there exists

a named-term 7 in A*(T, x : 4; A, @ : B) such that [7] = u e 2(x ®). By Lemma 3.21, we
have u = !(x, @)(u ® 2(x ® @)) = !(x, Q)[7] = !(x, @)[pe.7]. = (Axpa.7) € Ryp(54). O

Lemma 3.23
() Ifx: A €T, thenx e R I A) for any A.
(i) Ifa: 4 € A, then @ € R}(I'; A) for any I

Proof. (i) Suppose x: 4 € T, then x € AY(T; A) for any A. Hence we have x € Ry(I;4)
since x = x*.

(i) Suppose @: 4 € A, T c I", A ¢ A’ and k € R}(I";A). Then there is at € R,(I";A’)
such that k = 72, so there isa ¥ € A (I"; A’) such that # = V*. Hence we have

aek=aqelt=ae WV =[V],=[[a]V] B T;A) .

Therefore we obtain & € R}-(T; A). O

-120-

Lemma 3.24
MRyT;A) ={ke D], ([[;A) [Iwe Aﬁ(I‘; A) (m =k)}

Proof. (C): Assumek € IR I;4A) = R%-(T; A), there exists a named-term 7 € AT A e
A) such that @ e k = [7] since a € R%(T; A, a : A) from the previous lemma. Hence, we
have k = a.(a o k) = e.[7] = [pa.7] € RHS.

(D): Assume that there exists w € AL (T; A) such that k = I, and suppose I D T,
A’ 5 Aand ¢t € R*(I";A). Since x € Ry(I",x : 4;A") from the previous lemma, we have
7x € Ry(I",x : 4;A’). Hence there exists a named-term 7 € A*(I”,x : A;A’) such that
te?x = [1] = [ua.7]l,. So, we have I(x, @)(t e 7x) = !(x,) [pa.7]. = (Axuc.7)*. Therefore
we obtain z = 1x.(z ® 7x) = !x.(!(x, @)(t ¢ 7x) e A(x ® @)) = 1x.((Axua.1)* 2(x ® a)). Hence,

tek= !x-((/lxﬂa-"')* d ?(x ® CZ)) o E—w—]] = [[W]]!x.((,lxpa.'r)‘-?(ma))
= [(Axpa.t)wl, = [[e](Axpe.)w] € BT).

So, we obtain k € R}(; A) = R4 (T 4). O

Lemma 3.25
Rynp = (R; ¥ 7Rp)

Proof. (C): GivenT and A, suppose # € Ry-5(I; A). There exists a value V' € A (@5 A)
_ such that¢ = V*. By Lemma 3.21, we have £ = V* = !(x, 2)(V" o 2(x® a)) for fresh variables
xanda. LetI? D, A" D A, u € Ry(I";A)and v € (?Rp)*(I";A’). Then there exists a
value W € A%(I”; A") such that u = 7*. So we have

weu)e(x,@)(V* e A(x®a) = (W ® w)e(x,@)(V" ¢ A(x®)
=V e W @u) =2V e Az®u)) e IV
= [W]egrereewy = VW e
=y o [VW] e B (T;A)

since [VW] € ?Rz("; A’) from the previous lemma. Hence we obtain (x, @)(V* e 2(x®a)) €
Ry, (MRp)*)4 (T; A), and then we have

£ = (x,@)(V" » 2x ® @) € Ry, MRp)“(T: A) = IRy T RT3 4) -

(0): Assume ¢ € (R} % MRp)([T; A) = (Ry, (MRp):)M(T; A). Since x € Ry(T, x : 4; A) and
a € (PRp)*(T; A, @ : B) from Lemma 3.23, there exists a named-term 7 € A*([,x : 4;A,a :

-121-

B) such that 7 e 2(x ® @) = [7]. Therefore we obtain ¢ = I(x,a)(t ® A(x ® @)) = !(x,)] =
1(x,) [ue.tle = (Axpa.7)* € Rysp (I A). O

Now, we can prove the following proposition similar to as Proposition 3.18.

Proposition 3.26
Then there is a logical D*-predicate {ﬁg} such that R,. = R, holds for any type 4 of the

Au-calculus.

Proof: When we define fRﬁ} =Ry, Tli,p = Ry* and R . := B, then the logical D°*-predicate
{@f} is defined recursively. Now, we check R, = R, holds for any Au-type 4. This is shown
by induction on 4. When A is the basic type X, it is trivial. For the case of arrow type

= = = A I.H. Lem 3.25
A — B, wehave Ry = Ryupmosy = |RL % MRp) = (RE®Rp) "= Rynp O

Therefore we have the following theorem by applying the Basic Lemma and Lemma 3.23
to (Re).
Theorem 3.27 (fullness of the positive-translation)
Let I" and A be contexts of the Au-calculus, then the following hold.
(@) if F (T*)*, ?A° ; ¢ : 4° then there exists V' € A4 (I'; A) such that £ = V.
(i) if r (T*)*, ?2A° ; k : 24° then there exists w € AL(T; A) such that k = .

Proof. By Lemma 3.23 and Proposition 3.26, we have

x € Ry(T;A) = Ry (T A) = REH(T; A) = Rygeyse (T3 A), and
a € R} ([A) = RE(T; A) = RF(T;A)
= ("Rp-)*([; 4) = Ropr (T A)

forallx : 4 e Tand @ : B € A. So, we now apply the Basic Lemma for the logical
D*-predicate {Kz}, then we obtain:

() t = 1[#/%,&@/@] € Ry([; A) = Ry(T; A). This means there is a value ¥ € A4(T; A) such
that ¢t = V*, and

(i) k = k[#/2,&/@] € Rop([;A) = MR4(T; A). By Lemma 3.24, This means there is a u-
term w € A%(T; A) such that k = [w]. a

-122 -

Chapter 4

Conclusion and Future Work

Conclusion

The main aim of the thesis was to observe the relationship between the computational duality
and the logical duality. The computational duality is the duality between the call-by-name
and call-by-value strategies. The logical duality is the duality of classical logic so-called de
Morgan’s duality. This logical duality of classical logic appears as right and left symmetry
of Gentzen’s sequent calculus LK, and positive and negative duality of Laurent’s polarized
linearlo gic. Wadler’s dual calculus was a suitable system for researching this logical duality.

Chapter 2 discussed the relationship between the computational duality of call-by-value /
call-by-name and the logical duality of LK. Especially, to study the relationship between the
computational procedure and the cut-elimination procedure of LK, we replaced the equali-
ties in Wadler’s paper with reductions. We first analized Wadler’s results, and specified the
problematic rules of the Au-calculus that cannot be simulated by the reductions of the dual
calculus. These problematic rules are not essential rules of the Au-calculus because they are
not the normalization procedures of proofs, and there is no influence even if we remove these
rules from call-by-value system. We refined the call-by-value and the call-by-name systems
of the Au-calculus and the dual calculus by deleting these problematic rules. These systems
are defined as reduction systems. Then we gave the call-by-name translations between the
call-by-name Au-calculus and the call-by-name dual calculus, and showed that these trans-
lations preserve call-by-name reductions and satisfy reloading property. We also gave the
call-by-value translations between the call-by-value Au-calculus and the call-by-value dual
calculus, and showed that these translations satisfy the properties similar to the call-by-name

translations. Then we introduced the translation from the call-by-name Au-calculus into the

-123-

call-by-value one and its inverse translation by composing the above translations via the
dual translations on the dual calculus. Finally, we proved that these translations preserves
reductions and reloading property from the above results. The results of this chapter showed
duality between the call-by-name and call-by-value Au-calculi as reduction systems. This
means that we succeded to give the best possible answer to Wadler’s open question.
Chapter 3 discussed the relationship between the computational duality of call-by-value/
call-by-name and the logical duality of positive /negative. We introduced a term calculus for
a sufficiently large fragment of Laurent’s polarized linear logic, called polarized dual calcu-
lus DCP-, which is based on the idea of the dual calculus. Then we defined two translations
from the call-by-name / the call-by-value Au-calculi into DCP~, and showed their soundness
of derivations and reductions. Finally, we proved the fullness of these translations in a way

similar to the logical predicate method used by Hasegawa.

Future Work

In Chapter 2, we gave the best possible answer to Wadler’s open question, but the Au-calculi
and the dual calculi that we had introduced did not enjoy storongly normalization. This
fact does not necessarily mean these systems are meaningless. Actually, Tzevelekos [47]
showed that the dual calculus satisfies strongly normalization and Church-Rosser property
by assuming appropriate side-conditions. There is a possibility that our Au-calculi can be
refined to satisfy strongly normalizing and Church-Rosser property if we assume some side-
conditions.

Another work in the future is to extend the results in this thesis. If we want to apply
our results to more practical and powerful programming languages, we should discuss and
extend our results about two important concepts: a fixed-point operator and data types. From
this motivation, Kakutani [32] extended the Au-calculi by adding a fixed-point operator and
an iteration operator to the call-by-name system and the call-by-value one respectively. He
followed Selinger’s category-theoretic approach, and showed duality between call-by-name
recursion and call-by-value iteration. Therefore we might be able to extend the results in
this thesis via this line, and explain the duality between recursion and iteration by Wadler’s

syntactical approach.

~124—

Bibliography

[1] Y. Akama. On mints’ reduction for cee-calculus. In TLCA '93: Proceedings of the
International Conference on Typed Lambda Calculi and Applications, pages 1-12,
London, UK, 1993. Springer-Verlag.

[2] R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Number 46 in Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

[3] F. Barbanera and S. Berardi. A strong normalization result for classical logic. Annals
of Pure and Applied Logic, 76(2):99-116, 1995.

[4] F. Barbanera and S. Berardi. A symmetric lambda calculus for classical program ex-
traction. Information and Computation, 125(2):103-117, 1996.

[5] H. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Sci-
ence, Volumes 1 (Background: Mathematical Structures) and 2 (Background: Compu-
tational Structures), Abramsky & Gabbay & Maibaum (Eds.), Clarendon, volume 2,
pages 117-309. Oxford University Press, Inc., 1992.

[6] P. N. Benton, G. Bierman, and V. Paiva. Computational types from a logical perspec-
tive. Journal of Functional Programming, 8(2):177-193, 1998.

[7] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2):56-68, 1940.

[8] T.Coquand and G. Huet. The calculus of constructions. Information and Computation,
76(2-3):95-120, 1988.

[9] P.-L. Curien and H. Herbelin. The duality of computation. In ICFP "00: Proceedings of
the fifth ACM SIGPLAN international conference on Functional programming, pages
233-243. ACM Press, 2000.

—125-

[10] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland Publishing
Company, Amsterdam, 1958.

[11] V. Danos, J.-B. Joinet, and H. Schellinx. LKQ and LKT: Sequent calculi for second
order logic based upon linear decomposition of classical implication. In Jean-Yves
Girard, Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic, volume
222 of London Mathematical Society Lecture Note Series, pages 211-224. Cambridge
University Press, 1995.

[12] V. Danos, J.-B. Joinet, and H. Schellinx. A new deconstructive logic: Linear logic.
Journal of Symbolic Logic, 62(1):755-807, 1997.

[13] P. de Groote. A CPS-translation of the Au-calculus. In Proceedings 19th Intl. Coll.
on Trees in Algebra and Programming, CAAP 94, Edinburgh, UK, 11-13 Apr 1994,
volume 787, pages 85-99, Berlin, 1994. Springer-Verlag.

[14] P. de Groote. Strong normalization of classical natural deduction with disjunction. In
Fifth International Conference on Typed Lambda Calculi and Applications, TLCA'01,
volume 2044 of Lecture Notes in Computer Science, pages 182—196. Springer-Verlag,
2001.

[15] Ken etsu Fujita. A sound and complete cps-translation for lambda-mu-calculus.
In Byped Lambda Calculi and Applications, 6th International Conference, Valencia,
Spain, June 10-12, Proceedings, pages 120—134, 2003.

[16] M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba. A syntactic theory of
sequential control. Theoretical Computer Science, 52(3):205-237, 1987.

[17] A. Filinski. Declarative continuations and categorical duality. Master’s thesis, Univ.
of Copenhagen, 1989.

[18] H. Geuvers. Logics and Type Systems. PhD thesis, University of Nijmegen, 1993.

[19] N. Ghani. Beta-eta equality for coproducts. In Proceedings of TLCA’95, number 902
in Lecture Notes in Computer Science, pages 171-185. Springer-Verlag, 1995.

[20] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans
arithmétique d’ordre supérieur. PhD thesis, Univ. Paris VII, 1972.

-126 -

[21] J.-Y. Girard. The system F of variable types, fifteen years later. Theoretical Computer
Science, 45(2):159-192, 1986.

[22] J.-Y. Girard. Linear logic. Theoretical Compter Science, 50:1-102, 1987.

[23] J.-Y. Girard. A new constructive logic: classical logic. Mathematical Structures in
Computer Science, 1(3):225-296, 1991.

[24] J.-Y. Girard, P. Taylor, and Yves Lafont. Proofs and types. Cambridge University
Press, New York, NY, USA, 1989.

[25] T. G. Griffin. A formulae-as-type notion of control. In POPL *90: Proceedings of the
17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 47-58, New York, NY, USA, 1990. ACM Press.

[26] M. Hasegawa. Logical Predicates for Intuitionistic Linear Type Theories. In Typed
Lambda Calculi and Applications (TLCA’99), volume 1581 of Lecture Notes in Com-
puter Science, pages 198-212. Springer-Verlag, 1999.

[27] M. Hasegawa. Girard translation and logical predicates. Journal of Funct. Prog., pages
77-89, 2000.

[28] H. Herbelin. A lambda-calculus structure isomorphic to gentzen-style sequent calcu-
lus structure. In CSL '94: Selected Papers from the 8th International Workshop on
Computer Science Logic, pages 61-75. Springer-Verlag, 1994.

[29] J. Roger Hindley. Basic simple type theory. Cambridge University Press, New York,
NY, USA, 1997.

[30] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 479-490. Academic Press, Inc., New York, N.Y., 1980.

[31] C.B.Jay and N. Ghani. The virtues of eta-expansion. Journal of Functional Program-
ming, 5(2):135-154, 1995.

[32] Y. Kakutani. Duality between call-by-name recursion and call-by-value iteration. In
CSL ’02: Proceedings of the 16th International Workshop and 11th Annual Confer-
ence of the EACSL on Computer Science Logic, pages 506-521, London, UK, 2002.
Springer-Verlag.

-127-

[33] O. Laurent. Etude de la polarisation en logique. PhD thesis, Univ. Aix-Marseille 2,
2002.

[34] O. Laurent. Polarized proof-nets and Au-calculus. Theoretical Computer Science,
290(1):161-188, 2003.

[35] O. Laurent, M. Quatrini, and Lorenzo T. de Falco. Polarized and focalized linear and
classical proofs. Annals of Pure and Applied Logic, 134(2-3):217-264, 2005.

[36] O. Laurent and L. Regnier. About translations of classical logic into polarized linear
logic. In Proceedings of the eighteenth annual IEEE symposium on Logic In Computer
Science, pages 11-20. IEEE Computer Society Press, 2003.

[37] E. Moggi. Computational lambda-calculus and monads. In Proceedings 4th Annual
IEEE Symp. on Logic in Computer Science, LICS’89, Pacific Grove, CA, US4, 5-8
June 1989, pages 14-23. IEEE Computer Society Press, Washington, DC, 1989.

[38] E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55-92, 1991.

[39] C-H.L.Ongand C. A. Stewart. A curry-howard foundation for functional computation
with control. In Proc. of the Symposium on Principles of Programming Languages,
pages 215-227, 1997.

[40] M. Parigot. Au-calculus: an algorithmic interpretation of classical natural deduction. In
Proc. of International Conference on Logic Programming and Automated Deduction,
volume 624 of Lecture Notes in Computer Science, pages 190-201. Springer-Verlag,
1992.

[41] Michel Parigot. Free deduction: An analysis of ”computations” in classical logic. In
RCLP, pages 361-380, 1991.

[42] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical Com-
puter Science, 1(2):125-159, 1975.

[43] J. C. Reynolds. Towards a theory of type structure. In Programming Symposium,
Proceedings Colloque sur la Programmation, pages 408—423, London, UK, 1974.
Springer-Verlag.

- 128 -

7

[44] A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style.
In Lisp and Symbolic Computation, 6(3/4):289-360, 1993.

[45] P.Selinger. Control categories and duality: on the categorical semantics of the lambda-
mu calculus. Mathematical Structures in Computer Science, pages 207-260, 2001.

[46] A. S. Troelstra and H. Schwichtenberg. Basic proof theory. Cambridge University
Press, New York, NY, USA, 1996.

[47] N. Tzevelekos. Investigations on the dual calculus. T’ heoretical Computer Science,
360(1):289-326, 2006.

[48] P. Wadler. Call-by-Value is Dual to Call-by-Name. In International Conference on
Functional Programming, Uppsala, Sweden, pages 25-29, 2003.

[49] P. Wadler. Call-by-Value is Dual to Call-by-Name — Reloaded. In Rewriting Tech-
niques and Applications, Nara, Japan, pages 185-203. Springer, 2005.

[50] Y. Yamagata. Strong normalization of the second order symmetric lambda-mu calcu-
lus. Information and Computation, 193(1):1-20, 2004.

-129-

