K %4 Thepparit Banditwattanawong

FhA (BRSE) #HE (F®RP)

+i
k
i

2 LR BB KRHIKEE 1053 &
ZABEORM ERR194E3H23H

FUBREOENE HEBEFRAR FRFERK
FAMRAE 6 RE 1HEY

FEAWMXEER A study on Fine-grained Replications of Distributed

Java Applications

wWXEEZR = £ #EE Al BB
iR RE R
i g —BR
BhE RE Futh

Bh#i% FE ¥ (RRLEXRF)

—175—

In distributed object systems, object-oriented (OO) applications are replicated from
remote servers to client sites to improve performance, scalability, and availability.
This study focuses on fine-grained replications of distributed OO applications. Unlike
the traditional replication scheme by which a self-contained application is replicated
entirely at once, the fine-grained replication scheme enables partial and on-demand

incremental replications of self-contained applications.

Fine-grained replications can be classified into two categories based on their
deployment patterns: 1) replicating running applications for local accesses and 2)
downloading application programs from persistent repositories for local executions.
Based on the classification, the study has proposed a pair of fine-grained replication
middlewares: one aims for the fine-grained replications of remote runtime
applications, and the other aims for the partial and on-demand incremental

downloadings of application programs.

’lIn addition, to exploit the fine-grained replications effectively requires a proper
means to figure out application portions as the units of replication. The study has
prdposed object class clustering algorithms to suppbrt the use of the latter middleware,
while showing that object clustering, which is used to support the former middleware,

can be performed based on programmer's application knowledge.

The details of the middlewares and the class clustering algorithms are summarized

individually as follows.
Fine-grained replication of runtime applicatien:

Replicating remote application objects to user locality is a common techniqué to
reduce the effects of network probiem. The traditional replication scheme is not
suitable for cooperative applications because only part of a shared application rather
than a whole application should be replicated. Furthermore, the scheme is not
appropriate for mobile computing devices due to their common constraints of memory
spaces. Both problems can be addressed by using a fine-grained replication scheme by

which the portions of a self-contained application can be replicated.

Since most object replication systems exploit the traditional replication scheme, to
fulfil fine-grained replication is an unexperienced task for several application
- programmers. There exist few middlewares that support runtime fine-grained

replications of OO applications. All of them aim for peer-to-peer applications in

—176—

which objects that constitute a self-contained application are decomposed and
distributed among peers. Therefore, peers that hold master copies of the application
objects must always be reachable by other peers to replicate the master copies. This is
not suitable for pervasive collaboration because the servant peers (e.g., mobile users)
can get disconnected arbitrérily or be unreachable due to network partitioning.
Instead, using dedicated servers to maintain the master copies of applications is more
appropriate. Unfortunately, no fine-grained replication middleware is designed for a

client-server model.

This dissertation presents SOOM, a Java-based middleware for pervasive
client-server cooperative applications. SOOM provides fine-grained replication
- capability for clients in wide-area networks or on the Internet and allows clients in
local area network to exploit a conventional remote method invocation mechanism in
coordination with the fine-grained replication. SOOM also supports fine-grained
concurrent access control and update synchronization. To realize the middleware,

several challenge research problems have been identified and resolved.

An application for cooperati\?e software modeling has been developed to assure the
practical applicability of SOOM and demonstrate the practicality of fine-grained
replication scheme, fine-grained c'onsistency maintenance, and the coexistence of
fine-grained replica-tions and remote method invocations in client-server environment.
The quantitative properties of SOOM were measured through the following em;ﬁirical
evaluations. First, experiments in single-user and multi-user environments based on
different consistency prdtocols indicated the practical throughputs of SOOM-based
application. Second, throughout accessing all member objects of a benchmark cluster
showed that SOOM-based replication began to outperform Java RMI when éach object
was accessed locally more than twice. Third, an experiment using the varied numbers
of client processors assured the scalability of SOOM. Finally, an experiment on the
memory space requirement showed that SOOM could reduce the significant amount of

client memory space consumption as well as network bandwidth.
Fine-grained replication of application program:

OO applications have been distributed more and more over the Internet. Deploying an
application by retrieving the entire program from a remote repository such as HTTP
server often encounters extended delay due to network congestion or large program
size. Many times system resources, such as network bandwidth and client memory
space, are also wasted because users do not utilize every component of the
downloaded applications. Moreover, downloading a whole program at once is usually

impractical for mobile computing devices due to their memory space constrains.

—177—

These problems can be addressed by decomposing a program into groups of classes

and data resources to be downloaded on demand.

This dissertation presents C?, a Java-based middleware by which a Java application
can be partially and on-demand incrementally deployed via HTTP. The middleware

also supports application caching and transparently automatic updating.

The launching delay of an experimented application was found to be reduced by 83%
from that of the traditional whole-at-once application deployment scheme. Total
program deployment and execution overhead was 22% less than that of Java Web

Start.
4 Object class clustering approach:

It is typical that only part of whole program code is necessary for successful
execution. Decomposing an OO program into clusters of closely relevant classes and
data resources for on-demand incremental loading optimizes the program start-up
latency and system resource consumption. The lack of systematic yet simple class

clustering approach prohibits this kind of optimization.

This dissertation presents a Java class clustering approach that is capable of
improving both spatial locality and temporal affinity of the optimized programs. The
"approach provides two clustering algorithms: initial delay-centric and intermittent

delay-centric ones, to achieve different requirements of optimizations.

Experimental results indicated that the algorithms were practically useful to both
interactive programs and non-interactive programs. Among the tested Java programs,
using the initial delay-centric algorithm and the intermittent delay-centric algorithm
improved initial program 1oading latencies on average by 2.9 and 2.2 times
respeciively faster than the traditioﬁal whole-at-once program loading scheme. The
intermittent delay-centric algorithm reduced the number of intermittent delays to half
-of the initial delay-centric algorithm. Both algorithms also led to the chances to

economize on system resources, such as memory spaces and network bandwidths.

—178—

MXDBERROESR

WX, IAVASEA TPz 7 bOZEPScalabilityl LD OBHHERE O
EITCHITIWATHD. FlZiL. BERHIZWS A% HCSCW (Computer Supported
Cooperative Work) BET—D0OYV 7 Iz THEZ L TWS3EFEZELZ LS. PHO
B—NTHRHEEFTOIATLALENHELTVS, £7075DISA4 7RI K
B, BAREEL L TWAES 0TS ALSBEOE S 70 Y 5 LDERINMES NEHE
T5OT, HAFERTHRLS 7O/ SL0EROEDRTNE., RN KBEINS, Fi,
BAWCUMEREESRNOT, ARUYDPHECHEEICHBEORWEFERE2E > 2 1HF
W’F%L%ﬁ;ﬂ&f;@?% -

% 1EE AFEOEBELERICOVTRRTWS, Client/Server MAML TV x
JRNIAFLOUREREORBEEY—RIL, 75147 bV > LIty —N—Lo 70O
JI5LDEBERSTO—ANEFTEIE,;, BRI TOTTLLETEEIITIAIE
(W, 79RFERTOTSADFT TS TT, —BIREFSNSTEENGVEE

ZEI)NEYRIE; ERRTVNS, TOEIMELL T, VSRAIYBMNTOER - &=
TE2E), VJIRAFBATO O SAREEIE). RV SAIYAT T NI X LE
LE)ORENOREERNT NS,

FB2EWR, JIAYBMNOBER - EFTOFHEEFTDELE SOOM (Scalable 00 Middleware)
KOWTHRTWND, BRI NI LD INWASLBA TSz v Tuysaicxdl, &
FAT IR DECTOTSAETEATRESDBERIBE U T SAYHBICERZ K-
TETSHBFHREZTOEE SN THB. 25147 > MITY SAIYNBEE NS F—
N—RIEEEL THBMICEMEIES Proxy-hook i, 75 ZAFEDY > r 2 EET S
IIATF—T, REEDEMPWEAHHBICLDEVWSET., HEAENED SN S,

BIEWR. VIRAYEMOTOTSLABRBEE. TOEE CC(Class cluster replicati0n>
middleware)lZ DWW TRRT WS, FEEHE KL CBEERENLIBETIR. k7 0y
SLEF—N—D5FI>O0—-K b EFREESMDE., AFETH, EFCLER
DIAIRETERITHRIZO—RTBOT, BELE NW%%T'@M:‘ZELﬁDﬁF?&E%T
ELAEUSOUY —AWRLMALSNDIEE, YAF L CCEREL., FETRLT
w3,

%4@ﬁ\17919F%@jmﬁiA@ﬁ5X5ﬁ%7ijXAKDmTﬁNTD
3, BANRRERL. 7O/5A070—FS5T7EMMTLT., BENICEE > TERF
NBETHASBABITT TAIRTZI LS B, ERACHT BTN — TEFEAKDOT
B ElHHBEEDLEDINENH I, —DOMEHRADORRESZ S,

ES5ER. ARNOEREBEERRTVS, FFERLBABTHREEZRETIHO
TRV, BERZBIVSAIBOBRENMBENVI S RIERABTERESTH 5.

UEDESIZ, 2RXOA/BA TP/ FOBEEIL. RARTIREVA. EEHH TR
FRRMEBFEORRBELVAS MIERET. FRAHLELVUNCEBRELBTRERELTHY.,
FRAELEZTOYSLAEY AT —RLEEDH T, |
WEB http://research.nii.ac.jp/H20/soom TABML TV,

BEXD, £BXEEE HERY) OFMRXELTHEEND IO ERADSNS,

—179—

