A Mobile Agent-based Privacy Protection
Mechanism in Solving Multi-party

Computation Problems

Md. Nurul Huda

DOCTOR OF
PHILOSOPHY

Department of Informatics,
School of Multidisciplinary Sciences,
The Graduate University for Advanced Studies (SOKENDAI)

2007 (School Year)

March 2007

A dissertation submitted to
Department of Informatics,
School of Multidisciplinary Science,
The Graduate University for Advanced Studies (SOKENDAI)
in partial fulfillment of the requirement for

the degree of Doctor of Philosophy

Advisory Committee:
Prof. Shigeki Yamada National Institute of Informatics, SOKENDAI
Assoc. Prof. Yusheng Ji National Institute of Informatics, SOKENDAI
Prof. Masatoshi Kawarasaki Tsukuba University
Assoc. Prof. Hitoshi Okada National Institute of Informatics, SOKENDAI
Prof. Noboru Sonehara National Institute of Informatics, SOKENDAI

(Alphabetical order of list name except chair)

Abstract

A multi-party computation (MPC) allows n parties to compute an agreed-upon func-
tion of their inputs and every party learns the correct function output. To solve a
multi-party computation problem (MPCP), the participants may need to share their
private data (inputs) between one another, resulting in data privacy loss. The key
research issue that has been addressed in this thesis is - how to solve multi-party

computation problems without disclosing anyone’s private data to others.

Firstly, by studying and analyzing the traditional computational models, we have
devised a privacy loss model for multi-party computation problems and proposed a
novel metric, called the Min privacy metric, for quantitatively measuring the amount
of data privacy loss in solving the MPCPs. Then, we have presented a mobile agent-
based scheduling algorithm that applies pseudonymization technique to reduce data
privacy loss. Finally, we have proposed the security system design, including security
policies and security architecture, of an agent server platform for enhancing data

privacy protection while solving the MPCPs.

The privacy loss model has identified three factors affecting the amount of privacy
loss in solving the MPCPs: (1) the fraction of private data which is shared with others,
(2) the probability of associating the shared private data with the data subject, and
(3) the probability of disclosing the shared private data to unauthorized parties.
Privacy loss can be reduced by any mechanisms which reduces the values of any
of the three factors. The proposed Min privacy metric accounts for the number of
participants that lose their private data and the amount of private data disclosed to

unauthorized parties, regardless of how many parties they are revealed to.

Existing scheduling algorithms aim for a global objective function. As a result,
they incur performance penalties in computational complexity and data privacy. This
thesis describes a mobile agent-based scheduling scheme called Efficient and Privacy-

aware Meeting Scheduling (EPMS), which results in a tradeoff among complexity,

privacy, and global utility for scheduling multiple events concurrently. We have intro-
duced multiple criteria for evaluating privacy in the meeting scheduling problem. A
common computational space has been utilized in EPMS for reducing the complexity
and pseudonymization technique has been applied to reduce the privacy loss in the
scheduling problem. The analytical results show that EPMS has a polynomial time
computational complexity. In addition, simulation results show that the obtained
global utility for scheduling multiple meetings with EPMS is close to the optimal
level and the resulting privacy loss is less than for those in existing algorithms.
Cryptography-based algorithms for MPCPs are either too complex to be used
practically or applicable only to the specific applications for which they have been
developed. In addition, traditional (non-cryptography-based) algorithms do not pro-
vide good privacy protection for MPCPs. We have proposed a novel privacy pro-
tection mechanism in which MPCPs are solved by mobile agents using traditional
algorithms at an agent server platform, called isolated Closed-door One-way Plat-
form (iCOP). The participating mobile agents are trapped into iCOP where they
are allowed to share their private information to solve the problem using traditional
algorithms. However, they are protected from disclosing the shared private infor-
mation to the outside world. The enforcement of the security policies protects the
participating agents from sending anything other than the computational result to
the users. The security and privacy analysis illustrates that the proposed mechanism
provides very good privacy protection if the participants solve the problem with dis-
tributed algorithms and can provide complete privacy protection if the participants
exchange inputs within the iCOP and each of them solve the problem with centralized
algorithms. Finally, experimental evaluation shows that the proposed agent platform
security system significantly enhances privacy protection while solving many MPCPs

with traditional algorithms.

Keywords: Multi-party Computation, Privacy, Mobile Agent, EPMS, iCOP, Covert
Channel, Steganography, Distributed Computing.

Student Number: 20041707

i

Acknowledgements

I wish to express deepest gratitude to my supervisor Prof. Shigeki Yamada and As-
sistant Prof. Eiji Kamioka for their patient guidance with candid comments, creative
suggestions, and numerous discussions on several of my research paper manuscripts
and on the thesis as a whole, without which this research would not have been fea-
sible. My sincere thanks also goes to my thesis advisory committee members, Prof.
Masatoshi Kawarasaki, Prof. Noboru Sonehara, Associate Prof. Yusheng Ji and As-
sociate Prof. Hitoshi Okada for their valuable suggestions and comments to improve

the quality of my research, as well as this thesis.

I would like to thank my colleagues, Hasanuzzaman, Thepparit Banditwattanawong,
and Ved Prasad Kafle for their friendly assistance and the authors of some important

research papers for their help through e-mails in understanding their papers.

I would like to thank the staff in the Graduate Students Section, National Institute
of Informatics (NII) for their assistance and suggestions that made my NII life com-
fortable. I am grateful to NII and Japan Student Services Organization (JASSO) for

their generous scholarship support.

Last but not least, I am grateful to my beloved wife, Bonhomie, and son, Adrian, for
enduring loneliness while I could not stay with them for my research work. I thank
my parents, brothers and sisters for their encouragement which motivated me to work

and complete my education up to this Ph.D. degree.

March 25, 2007
Md. Nurul Huda

1ii

Table of Contents

Contents

List of Figures

List of Tables

Acronyms

Thesis Overview

The Research Issue e
Goal of this Research o e
The Overall Approach

Contributions of the Research

Organization of the Thesis

Chapter 1 Introduction

1.1

Multi-party Computation Problems

1.2 Privacy Issue in Multi-party Computation Problems

Chapter 2 Background and Related Works

2.1
2.2

Cryptographic Approaches
Non-cryptographic Approaches

Chapter 3 Privacy Loss Model

3.1
3.2
3.3

Agent-based Computing
Devised Privacy Loss Model
Evaluation Metric
3.3.1 Privacy Loss Measurement Metric

3.3.2 Runtime Measurement Metric

v

iv

vii

xi

Chapter 4 Reducing Privacy Loss using Common Computational
Space 19
4.1 The Meeting Scheduling Problem 19
4.2 Formalization of MS Problem, 20
4.3 Proposed Efficient and Privacy-aware Meeting Scheduling (EPMS) Scheme 22
4.3.1 Basic Algorithm L 23
4.3.2 Encoding Constraints 24
4.3.3 Utility Factor L 25
4.3.4 Search Procedure 25
4.3.5 Multiple Meetings 26
4.4 EPMS Characteristics 30
441 Complexity 30
442 Privacy Analysis 31
443 Global Utility 34
4.5 Experiments and Analysis 35
4.5.1 Experimental Setup Lo 35
4.5.2 Experimental Results 36
4.6 Discussion 48
4.7 Conclusion L. 49
Chapter 5 Reducing Privacy Loss using Agent Server 50
5.1 Proposed Server-Assisted Privacy Protection Mechanism 51
5.1.1 Problem Solving Mechanism 52
5.1.2 Problem Analysis 53
5.1.3 Security Policies L. 56
5.1.4 Security Architecture 59
5.1.5 Service Protocol 61
5.1.6 Reliability and Scalability Issues 62
5.2 Security and Privacy Analysis of the Proposed Mechanism 64
5.2.1 Covert Channel Identification 64

5.2.2 Potential Data Leakage Mechanisms 65

5.2.3 Covert Channel Handling 68

5.2.4 Other Methods of Leaking Data 70

5.2.5 Complete Privacy Protection. 72

5.2.6 Implementation Issues 74

5.3 Experimental Evaluation and Analysis 76
5.3.1 Effectiveness of the Privacy Manager 76

532 PrivacyLoss. 78

5.3.3 Computational Time 83

5.4 DISCUSSION . . .« v o v i e e e e e e e e e 87
55 Conclusion e e e 88
Chapter 6 Applications 89
6.1 Applications of the EPMS Algorithm 89
6.2 Applications of the Server-Assisted Privacy Protection Mechanism . . 89
Chapter 7 Conclusions and Future Works 93
7.1 Summary of Main Results 93
7.2 Future Works 94
References 96

vi

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Multi-party computation problem 2
Third-party approach for solving the MPCP. 5
Cryptographic approach for solving the MPCP. 6
Data sharing in traditional multi-agent systems. 12

Mobile agent based system for multi-party computation problems. 12

Privacy lossmodel. 13
The VPS privacy metric. 16
The Min privacy metric. 17
Example of the sets of agents for five meetings. 27
EPMS algorithm for scheduling multiple meetings. 30

Number of commonly available slots for varying number of par-
ticipants. L 36
Schedule privacy loss in EPMS for varying number of participants. 37
Relative schedule privacy loss in three algorithms for varying
number of participants. L. 39
Relative preference privacy loss in three algorithms for varying
number of participants.o oL 41
Scheduling success ratio in EPMS and the optimal solutions for
varying number of participants. 43
Relative global utility of EPMS and the optimal solution for
varying number of participants. L. 43

Global utility of EPMS as % of optimal solutions for different

levels of constraints. 44

vil

viii

Figure 4.10

Figure 4.11

Figure 4.12
Figure 4.13

Figure 5.1
Figure 5.2

Figure 5.3
Figure 5.4

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14
Figure 5.15

Global utility of EPMS as % of optimal solutions for varying

number of participants.o

Global utility in EPMS as % of optimal solutions for varying

number of meetings scheduled concurrently.
Agent migration latency and messaging latency in LAN.

Generated TCP traffic for agent migration and inter-agent mes-

saging in LAN.

Proposed problem solving mechanism.
Encoding additional data into a text or binary object results in
different objects.o
Block diagram of covert channel.
Different formats may produce non-identical computational re-
sult from its components.
Process of creating and sending computational result.
iCOP security architecture.
Service protocol sequence diagram.
iCOP domain with multiple agent servers.
Shared server reSOUICES. . . « « v v v v v v v e

Process of encoding data into computational result by adding

extra characters. e e e e

Encoding data into the computational result by changing at-

tribute values creates different object.

Possible cases of the relations among the computational results

from different participants.

An agent can lead to one specific solution by manipulating own

Simple input exchange.

The commitment protocol for exchanging inputs.

45

46

47

48

53

o4
99

58
99
60
62
63
65

67

69

69

Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20

Figure 5.21

Figure 5.22

Summary of data disclosure channels in iCOP and their protec-
tion schemes.
Relative privacy loss for four algorithms in traditional architec-
ture. . . L.
Reducing privacy loss in optAPO algorithm using iCOP.
Reducing privacy loss in ADOPT algorithm using iCOP.
Reducing privacy loss in EPMS algorithm using iCOP.
Reducing privacy loss by using multiple centralized algorithm
iniCOP.
Comparison of computational times in traditional architecture
and in iCOP using CBR metric.

X

74

80
81
82
33

List of Tables

Table 4.1
Table 4.2
Table 4.3
Table 4.4

Table 5.1
Table 5.2
Table 5.3

Table 5.4

Table 5.5
Table 5.6

Table 5.7

Examples of encoded constraint vectors for five agents. 24
Construction of combined utility factor vector. - . . . - 26
Utility factor vectors for five meetings. . . - . . oo - oo 27

Specification of the hosts’ used in measuring latency and network

Summary of data disclosure channels in iCOP. 65
Example of a simple steganography protocol by adding characters 66

Example of a simple steganography protocol by arranging com-

POMENES « « - o o v oo s 67
Example of a simple steganography protocols by changing case

of alphabets oo 67
Simple example protocol for result biasing method. 71

List of malicious agents, their operations and the action taken
by the privacy Manager.« -« - oo 7
Specification of the hosts’ used for measuring remote messaging

time and migration time. 85

Acronyms

ADOPT Asynchronous Distributed Optimization
AS Authentication Server

CBR Cycle-based Runtime

CS Computation Server

DCOP Distributed Constraint Optimization
DisCSP Distributed Constraint Satisfaction Problem
EPMS Efficient and Privacy-aware Meeting Scheduling
GU Global Utility

iCOP isolated Closed-door One-way Platform
JASSO Japan Student Services Organization

MPC Multi-party Computation

MPCP Multi-party Computation Problem

MS Meeting Scheduling

NII National Institute of Informatics

optAPO optimal Asynchronous Partial Overlay
SMC Secure Multi-party Computation

TTP Trusted Third Party

UF Utility Factor

VPS Valuation of Possible States

x1

Thesis Overview

The proliferation of the Internet has opened the opportunities for automated cooper-
ative computation, where people are cooperating with each other to conduct compu-
tation tasks based on the inputs they each supplies. These computations could occur
between trusted parties, between partially trusted parties, or even between untrusted
parties. For example, two competing financial organizations might jointly invest in
a project that must satisfy both organizations’ private and valuable constraints, two
parties want to carry out statistical analysis with their private databases to get mutual
benefit in a collaborative project, and so on. Usually, to conduct these computations,
one must know inputs from all the parties; however if nobody can be trusted enough

to know all the inputs, privacy will become a primary concern.

The Research Issue

Two or more parties want to conduct a computation based on their private inputs, but
neither party is willing to disclose its own inputs to anybody else. The problem of how
to conduct such a computation while preserving the privacy of the inputs is referred
to as Secure Multi-party Computation (SMC) problem in the literature. Generally
speaking, a secure multi-party computation problem deals with computing a joint
function on any input, in a distributed network where each participant holds one
of the inputs, ensuring independence of the inputs, correctness of the computation,
and that no more information is revealed to a participant in the computation than
what can be inferred from that participant’s input and output. We address the data
privacy issue of the participants of a multi-party computation and want to develop
a mechanism for solving multi-party computation problems without disclosing any

participant’s private inputs to the others.

xii

xiii

Goal of this Research

The primary goal of this research work is find a mechanism for protecting private
(input) data while solving multi-party computation problems without having too
much complexity. The mechanism should not be application-specific so that it can be
applied for many applications. In addition, it should not incur very high performance
penalties in other important considerable factors (e.g., computational time), which
might make it impractical.

Existing cryptography-based generalized solutions are too complex to be used
practically. Even though cryptography-based problem-specific solutions are more ef-
ficient than the generalized solutions, the applicability of each of these cryptography-
based algorithms is limited to only the specific problem for which it has been devel-
oped. We need an efficient generalized solution which can be used for many applica-
tions. Besides, very efficient algorithms exist for many multi-party computation prob-
lems in which privacy has not been taken into consideration. We want to utilize those
algorithms for solving the MPCPs. Thus, we want to develop a non-cryptography
based privacy protection mechanism for multi-party computation problems so that

existing traditional (non-cryptography based) algorithms can be used.

The Overall Approach

We have achieved low privacy loss in a mobile agent based scheduling algorithm by
using a common computational space. In the proposed scheme, the participating
mobile agents, with their respective user’s personal information, migrate into a com-
mon agent platform, controlled by an access control mechanism. They encode their
hard constraints and soft constraints into numerical values and build a Utility Factor
(UF) vector at a common computational space at the agent platform. They gradu-
ally update and build the utility factor vector in random sequence without revealing
the current updating participant’s identity to the others. The utility factor vector
of an event reflects all feasible solutions for that event and at the same time group

preference (i.e., utility) for those feasible solutions. An agent then finds out the most

Xiv

preferred time slot for the event from all feasible solutions via simple search. In case of
scheduling multiple events, an agent calculates the scheduling priorities of its events
based on the maximum utility found in the UF vectors and then schedules them based
on their priorities. The use of a common computational space enables us to utilize
pseudonymization technique to preserve data privacy and also makes our algorithm
very simple having low computational complexity.

We have presented a mobile agent-based privacy protection mechanism in which
the participating mobile agents take users’ private data that are required for the
desired computation and then, along with that data, migrate into an agent server
(provided by a third-party service provider), called isolated Closed-door One-way
Platform (iCOP), into which the mobile agents are trapped. To perform the desired
computation, the agents exchange messages locally and solve the problem by sharing
their private data within the server. The privacy manager of the proposed server
architecture restricts the participating agents from disclosing the acquired private
data of other agents to the outside world. It also restricts the participating agents
from leaving the platform with the shared private data. A stationary trusted agent,
called the service agent, sends the computational result to the users after the required
verification that the computational result does not contain any hidden data in it.
Finally, in order to destroy the shared data, the participating agents along with their
acquired data, are terminated (or disposed) at the agent server.

We investigate possible data disclosure channels at iCOP and describe how whose
channels are handled in our proposed mechanism. We also evaluate the proposed
privacy protection mechanism by comparing the privacy loss and computational cost

in it with those in the traditional systems for the same algorithm.

Contributions of the Research

Firstly, after studying the traditional computation models, we have devised a privacy
loss model for multi-party computation and identified three factors for privacy loss

" that give a general guideline for mechanisms of reducing privacy loss. We have also

Xv

proposed a novel privacy metric, called the Min privacy metric, for measuring privacy
loss quantitatively. Then, we have developed a mobile agent-based scheduling scheme
called Efficient and Privacy-aware Meeting Scheduling (EPMS), which has low com-
putational complexity, results in a global utility close to the optimal level necessary,
and achieves better privacy protection by utilizing a common computational space.
We have also introduced multiple criteria for evaluating privacy in the scheduling
algorithm.

We have proposed a mobile agent-based privacy protection mechanism for multi-
party computation problems, the security policies for the participants, and the secu-
rity architecture of an agent server platform for enforcing those security policies. We
prove through intuitive analysis that the enforcement of our proposed security policies
for the agent server platform can provide a very good privacy protection in solving
many MPCPs with traditional (i.e. non-cryptography-based) algorithms. Also, we

have shown a mechanism for achieving complete privacy protection.

Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 1 we describe the multi-
party computation problem with examples and discuss its privacy issues. Chapter 2
illustrates the related previous works and their limitations. In Chapter 3 we devise
the privacy loss model showing the factors that affect privacy loss and propose a
privacy measurement metric. Chapter 4 formalizes the meeting scheduling problem,
presents the EPMS algorithm, analyzes its complexity, privacy loss, global utility, and
computational cost. Chapter 5 describes the proposed mobile agent-based privacy
protection mechanism in details, carries out its security and privacy analysis, shows
its effectiveness by comparing the privacy loss for it with those in the traditional
mechanisms. Chapter 6 discusses about some of the applications of the proposed
EPMS algorithm and the proposed mobile agent-based privacy protection mechanism.
Finally, Chapter 7 concludes the thesis with a description of the summary of the main

results and future works.

xvi

Chapter 1

Introduction

Privacy has many different meanings in different aspects. One of the earliest legal def-
inition of privacy was given by Warren and Brandeis in [62], who identified privacy as
“the right to be left alone”. This definition is very general and includes various issues
concerned with physical intrusion that we will not address. Westin in [63] defines pri-
vacy as “the claim of individuals, groups and institutions to determine for themselves,
when, how and to what extent information about them is communicated to others”.
This definition is well accepted by consumer rights groups and in concordance with
the information related parts of the definitions given by others [45]. Rosenberg in
[50], presents three aspects of privacy: (i) territorial privacy, which is concerned with
the physical area of a person (e.g., his home); (ii) privacy of the person, which is
concerned with direct physical access to a person (e.g., a physical search); (iii) in-
formational privacy, which is concerned with information about a person (e.g., the
processing of personal data). In the context of this thesis, by the term “privacy” we
refer only to the aspect of informational privacy (or data privacy). We believe that
this restriction causes no problems for our application domain due to the inherent
lack of physical interaction in the use of communication and information systems.

Privacy and security are forever entwined, but they are not the same. Generally,
data security is the means of ensuring that data are kept safe from corruption and
that access to them is suitably controlled. Data security helps to ensure privacy.
Without security, there can be no privacy. Privacy, in addition, deals with authorized
use of private data by correct authority and protection from unauthorized parties
during their use.

In the computation involving information sharing the principle problem of infor-
mation disclosure is directly related to privacy. Once some information is shared
with another principal, the original holder of the information loses all control over

it. The receiver can use it without any constraints, duplicate it, or disclose it to an

s

unauthorized party. This is a fundamental problem, for which no efficient generalized
technical solution exists. A solution is said to be privacy-preserving or secure if no
participant can learn more from the description of the joint function and the result of

the calculation than what he/she can learn from his/her own entry and the output.

1.1 Multi-party Computation Problems

In order to solve multi-party computation problems (MPCP), personal information of
some of the parties is required to be shared with other parties. Thus, the problem of
information disclosure is a primary concern in MPCP. In a multi-party computation,
we have a given number of participants or parties p;, ps, ..., pn, each having a private
data, dy,dy, ..., d, respectively. The participants want to compute the value of a joint

function f on n variables (Fig. 1.1).

" User U™ " User Ur1 :

R=f(d,,..d,)

Figure 1.1: Multi-party computation problem

For example, Alice has m private numbers (ai,ag, ..., @) and Bob has another
m private numbers (by, b,, by,). Alice and Bob want to know whether a; > b; for
all 2 = 1,...m. This problem is known as the vector dominance problem [10]. There
are many applications to the vector dominance problem. For example, in business-
to-business bidding, a manufacturer may want to deal with a single supplier that
can simultaneously satisfy all of the m requirements (either because there is some
coordination required in the production of m item types, or simply to avoid the
bureaucratic overhead of having to deal with multiple suppliers).

For another example, consider the following situation: after a costly market re-
search, company A decided that expanding its market share in some region will be

very beneficial. However, A is aware that another competing company B is also plan-

ing to expand its market share in some region. Strategically, A and B do not want to

Chapter 1: Introduction 3

compete against each other in the same region, so both the companies want to know

whether their regions overlap.

A large group of multi-party computation problems are classified as the distributed
constraint satisfaction problem (DisCSP) [53, 59, 65] and the distributed constraint
optimization problem (DCOP) [44, 46]. They are solved with the assistance of soft-
ware agents. A DisCSP consists of a number of variables z1, 22, ..., Z», Whose values
are taken from finite, discrete domains Dy, D, ..., D,, and a set of constraints on
their values. There are inter-agent constraints and inra-agent constraints. Solving a
DisCSP is equivalent to finding an assignment of values to all variables such that all
constraints are satisfied [65]. In a distributed algorithm, the participants exchange in-
formation related to their value assignment to the variables to check if the constraints
are satisfied. Additionally in DCOPs, a global objective function is optimized. The
exchange of information related to the value assignment to the variables is analogous
to negotiation with each other and (re)assigning values to all variables is like reaching

an agreement upon the value assignment to the variables that satisfies the constraints.

As an example of DisCSP, consider that a number of employees of an organization
want to schedule a new meeting in a predetermined time domain. For this job, they
need feedback from their personal calendar information to avoid conflict with other
personal schedules and look for available time slots in the specified time domain and
personal preferences for better user satisfaction. They want to find an agreed upon
meeting date/time slot that satisfies all the constraints (e.g. does not conflict with
other personal schedules). In a DCOP, the solution also maximizes or minimizes some

global objective function (e.g. most preferred, least cost) of the group.

Since, the multi-party computation problems deal with common problems among
a group of participants, the computational result of many multi-party computation
problems can be expressed with a common value for all of the participants. For exam-
ple, in the vector dominance problem, the computational result for both the partici-
pants can be expressed with a common value indicating whether vector A dominates
vector B. Similarly, in the meeting scheduling problem, all of the participants need to
find a common time slot for the meeting. In this thesis, we take into consideration a

type of multi-party problems in which the same computational result can be disclosed

to all of the participants without causing privacy loss. The multi-party problems with
the above assumption are not trivial but typical, and many multi-party applications

are covered with the above assumptions.

1.2 Privacy Issue in Multi-party Computation Problems

Generally speaking, the participants of a multi-party computation problem get mutual
benefit and hence are assumed to be collaborative. Even though they want to solve
the problem, in many contexts, they may want to keep their inputs secret from
one another. The encrypted form of the input data cannot be used in traditional
algorithms for various types of computation. So, for usability, data need to be kept
in normal (non-encrypted) form. Sharing private data (in normal form) with others
causes privacy loss. The privacy challenge in multi-party computation problems is to
share data among participants for the intended computation, while protecting future
use or disclosure of the data to unauthorized parties.

For instance, in the market share expanding scenario mentioned Section 1.1, both
the companies want to know whether their regions overlap. However, they do not want
to give away their location information (not only would disclosure of this information
cost both companies a lot of money, it can also cause significant damage to the
company if it is disclosed to other parties, e.g. another bigger competitor could
then immediately occupy the market there before A or B even starts). Therefore,
they need a way to solve the problem while maintaining the privacy of their location
information.

In the vector dominance problem, Alice and Bob want to determine if Alice’s
bidding vector A dominates Bob‘s price vector B. However, both Alice and Bob do
not want the other party know anything about her/his vector including the elements
of the vectors or the relationship between any element of vector A with any element
of vector B or how many of A’s elements are bigger than the corresponding elements
in B.

In the meeting scheduling problem, the personal calendar information and personal
preferences of individual participants are needed for making an efficient schedule. But

those information are considered private information. Even though the participants

Chapter 1: Introduction 5

want to make the schedule, they may not want to disclose those private information
to others.

The privacy problem is easy to solve if you assume the existence of a trusted third
party (TTP), which can be trusted by all of the participants and the participants are
willing to disclose all of the inputs to the trusted third party. The TTP computes the
function and distributes the result to everyone (Fig. 1.2). However, the problem is
very challenging if you assume that there is no TTP available to which the participants

may want to disclose their private inputs.

A |

Disclose

Third Party
(> @
R=f(A, B

Unauthorized party

Figure 1.2: Third-party approach for solving the MPCP.

Thus, some privacy-aware solutions of multi-party computation problems try to
solve the problem by not disclosing the private data as much as possible. For example,
distributed algorithms solve the problem by not disclosing all of the private data to
others. Some of the private data are disclosed to some other participants. So, the
resulting privacy loss is comparatively low.

Cryptography based algorithms try to solve the problem by keeping the private
data in an encrypted form. They can provide complete privacy protection. However,
their usability is very limited.

Existing cryptography-based generalized solutions are too complex to be used
practically. Researchers have developed a few problem-specific cryptography-based
algorithms for solving specific MPCPs [11][51][64] based on the specific character-
istics of the related specific problem. Even though the problem-specific solutions
are more eflicient than the generalized solution, the applicability of each of these

cryptography-based algorithms is limited to only the specific problem for which it

Cryptographic
algorithm

Figure 1.3: Cryptographic approach for solving the MPCP.

has been developed [51]. Thus, we can conclude that an efficient generalized solution

for protecting privacy in solving the MPCPs has not been evolved yet.

Chapter 2

Background and Related Works

The problems of conducting multi-party computation while preserving privacy of
the inputs is referred to as Secure Multi-party Computation Problem (SMC) in the
literature [64]. This problems was initially suggested by Andrew C. Yao in 1982 by
introducing the millionaire problem: Alice and Bob are two millionaires who want to
find out which is richer without revealing the precise amount of their wealth. Yao
proposed a solution allowing Alice and Bob to satisfy their curiosity while respecting
the constraints.

To solve various secure multi-party computation problems, a common strategy is
to assume the trustworthiness of the service providers, or to assume the existence of
a trusted third party, to whom the inputs can be disclosed. However, this solution
may not be always acceptable. Therefore, the solutions that can support multi-party
computations while protecting the participants’ privacy are of growing importance.

In theory, the general secure multi-party computation problem is solvable [64,
21, 22] but, as Goldreich points out in [21], using the solutions derived by these
general results for special cases of multi-party computation can be impractical; special
solutions should be developed for special cases for efficiency reasons.

Since the introduction of secure multi-party computation problem, many researchers
have provided different solutions. We can classify them into two groups (1) Crypto-

graphic approaches and (2) non-cryptographic approaches.

2.1 Cryptographic Approaches

Cryptographic approaches for solving multi-party computation problems are based on
many cryptographic tools including zero-knowledge proof [52], oblivious transfer [48],
l-out-of-n oblivious transfer [14, 6], oblivious evaluation of polynomials [47], secret

sharing [54], threshold cryptography [17, 9], and Yao’s millionaire protocol [64, 7].

7

Goldwasser [22] and Goldreich [21] provide comprehensive overview articles on secure

multi-party computation.

Goldreich, Micali, and Wigderson [21] and many others have extended Yao’s work
on SMC. These works all use a similar methodology: the computation problem is
first represented as a combinatorial circuit, and then the parties run a short protocol
for every gate in the circuit. While this approach is appealing in its generality and
simplicity, the protocols it generated depend on the size of the circuit. This size
depends on the size of the input domain, and on the complexity of expressing such
a computation. The obvious drawback of the general solutions is efficiency: All pro-
posed protocols for secure multi-party computation suffer from high communication
complexities. This follows from their approaches which involve extensive use of secret
sharing and agreement protocols. For example, in [29] it was shown that any circuit
with S gates can be computed unconditionally secure and t-robust for ¢ < n/3 with
communication complexity O(Sn?k+n2BC'), where k is the size of the elements of the
field secret-sharing is done over and BC is the communication complexity of broad-
casting a k-bit value. Recently, similar communication complexities were achieved for
¢t < n/2, once with cryptographic security (O(Sn’k + nBC), where k is the security
parameter, [30]), and once with information-theoretic security (O(Sn2k + n3BC)),
[60]. Also, privacy protection has been achieved in distributed constraint satisfaction
problems by using cryptographic techniques [66]. However, this technique also incurs
large overhead and requires to use multiple external servers which may not always be

justifiable for its benefit.

The privacy-preserving data mining problem is another specific secure multi-party
computation problem that has been discussed in the literature. In Lindell’s paper [40],
the problem is defined as: two parties, each having a private database, want to jointly
conduct a data mining operation on the union of their two databases. How could these
two parties accomplish this without disclosing their database to the other party, or
any third party. Apart from the above problems, secure multi-party computation

problems exist in many other computation domains as well 11, 10, 12].

Chapter 2: Background and Related Works 9

2.2 Non-cryptographic Approaches

The existing non-cryptography based techniques for solving the multi-party compu-
tation problems are very simple but do not provide complete privacy protection. The
traditional centralized approach (i.e., the trusted third party approach) requires to
disclose all of the inputs to a central entity causing high privacy loss to the central
entity.

Reducing privacy loss is one of the key motivating factors in many distributed
algorithms. The participants of a distributed problem need to share their private
valuation of certain variables to resolve the conflicts or contradictions among them
in distributed constraint satisfaction problems and also to optimize the solution in
distributed constraint optimization problems. Existing distributed algorithms them-
selves cannot offer complete privacy protection [25][41][66]). However, a distributed
algorithm offers better privacy protection than a centralized algorithm. Different dis-
tributed algorithms results in different level of privacy loss. Also, depending upon the
metrics used for privacy loss measurement, the relative privacy loss in an algorithm
may vary with respect to other algorithms [25][41].

The main technique used for reducing privacy loss in most distributed algorithms
is to reduce the amount of shared information with the others. However, all these
algorithms have some inherent privacy loss. To resolve the conflicts among the vari-
ables or to optimize the solution, the participants cannot avoid sharing their private
inputs completely.

One method to reduce privacy loss is to remove or hide the relationship of the
personal data with the identifiable individual [2][58]. This is commonly referred to
as anonymization. In a multi-party computation and for a known number of par-
ticipants, the relationship of the data with an individual is bounded by the number
of individual (n) i.e., some private information can be associated with an individual
with the probability of no less than 1/n. This approach is more suitable in privacy
preserving data mining where there are a large number of individuals related to the
data set.

In some situations, only part of the data set needs to be kept confidential. For

example, when two retail stores want to conduct a joint computation on their joint

10

data, they are only concerned about their customers’ names, not about each single
transaction. In these cases, the problems could be solved using pseudonyms tech-

niques [4, 5] in which the identity of individuals are replaced with some artificial

identifiers.

Chapter 3

Privacy Loss Model

Software agent technology plays a very important role in making autonomous sys-
tem. Autonomy is more essential specially in complex multi-party computation prob-
lems, such as the distributed constraint satisfaction (DisCSP) problem [65][66] and
distributed constraint optimization (DCOP) problem [44][46], that otherwise is a
tedious and time-consuming job for human. Multi-party computation problems (in-
cluding DisCSPs and DCOPs) are generally dealt with software agents, which can
represent the users, and can negotiate and take decisions on behalf of the users.
For example, scheduling meetings among a number of participants, in the presence
of communication delays and other meetings being scheduled concurrently, is a time-
consuming, iterative, and tedious job for humans and may lead to inefficient solutions.
Automating meeting scheduling with software agents can save time and effort, and

may produce more efficient schedules.

3.1 Agent-based Computing

Traditional agent based systems are multi-agent systems in which the agents reside
in a distributed network. The agents communicate with one another through remote
messages. Thus, when an agent shares its (user’s) private data with another agent, the
sender agent retains no control over the given data. Consider the following scenario:
two participants A and B want to compute a joint function f(A, B), which involves
their private inputs ‘A’ and ‘B’ respectively. When agent A shares its private data
‘A’ with agent B, agent B can disclose the shared data ‘A’ to its user B (Fig. 3.1).
Similarly, when agent B shares its private data ‘B’ with agent A, agent A can disclose
the shared data ‘B’ to its user A (Fig. 3.1).

Inter-agent communication takes place point-to-point and the data receiver agent

11

12

l-lost A Hust B Host A Host B
“UserA User B User A User B
@ &) ol A X
Data user ___ Dnm user
enl B - Agent A
i%ﬁ St U
User B Data user Data user User A

Figure 3.1: Data sharing in traditional multi-agent systems.

can easily identify the data sender agent. The communicated private data are inher-
ently associated with the sender agent and its associated user. So, the data receiving
agent, as well as its associated user, can always identify the data subject.
Cryptographic solutions to the multi-party computation problems usually require
a large number of message communication [29, 66], which create a large overhead on
the network and require a large computation time. In a mobile agent based system,

the participating agents can migrate into a common agent platform and communicate

locally from within the agent platform. For example, in Fig. 3.2, mobile agents in '

enl@?

& — Host A

. Host C
Wireless I_gatmn
Network 2
(o »j)\l gration
]

Mobile Agent

_____.. Mobile Agents

Figure 3.2: Mobile agent based system for multi-party computation problems.

hosts A and B may migrate into host C to communicate locally and carry out their

_—-———A

Chapter 3: Privacy Loss Model 13

computation in host C. This can reduce the network load and the communication
latency (i.e., computational time). Mobile agent paradigm offers a number of po-
tential advantages over traditional multi-agent system, especially in wireless network
environments [39]. Thus, it is preferable to use mobile agent technology for those

problems that involve large number of messages.

3.2 Devised Privacy Loss Model

The privacy loss model of multi-party computation consists of three parties: data
subject or owner, data user, and unauthorized party. The data owner or subject is
the entity about whom the data carry some (private) information. The data user is
the entity, who utilizes the shared data for performing the desired computation. The
unauthorized party is the entity to whom the private data should not be disclosed.
When part of the private data is shared with the data user, that shared data goes into
the data user’s system from where it may be disclosed to unauthorized parties (Fig.
3.3). However, the acquisition of private data by an unauthorized third party does
not necessarily mean privacy loss. If the unauthorized party cannot map or associate

the acquired data with the specific individual we do not say it is privacy loss.

Data OWEEF Data U
) ata User
(Sublec _R=/(D,)

Subject
Shared information Probability of disclosure Probability of mapping

Figure 3.3: Privacy loss model.

Therefore, we can define privacy loss from the data user’s system as,
P=P;xP, xi (3.1)

where, P; is the probability of disclosure of the shared data from the data user’s
system, IP,, is the probability of associating or mapping the acquired data with the
identifiable individual by the unauthorized party, and i is the size of the shared data,

which is shared with the data user or visible to the data user.

14

Let the ideal privacy level of a user be a one and the worst case privacy level be

a zero. With this normalization, the privacy loss becomes,
P=axP;xP,xXi (3.2)

where, « is an appropriate scaling factor whose value depends upon the size of the
private data required for the computation. With P privacy loss, the privacy level of
the user becomes,

P=1-P=1-axPyxP, xi. (3.3)

From Eq. (3.2) it can be said that privacy loss takes place if, (a) the shared data
is disclosed by the data user to any unauthorized entity (i.e., Ps > 0) and (b) the
unauthorized data receiver can map or associate the private data with the specific
individual (i.e., P, > 0). In conventional multi-agent based distributed systems,
the agents are the data users and they communicate with one another from their
own hosts administered by the agent owner/user. This sharing of private data from
one agent to another is considered a privacy loss in conventional multi-agent based
systems, because (a) the data receiving agent, which is administered by its owner or
user, is free to disclose the acquired private data to its user (i.e. Py = 1) and (b) the
receiving agent can map or associate the received private data, though point-to-point
communication, with the data sender agent or data owner (i.e. Pp = 1).

Different private data will have different valuation depending upon their sensitiv-
ity. Also, the same private data may be very important for one user, while they may
not be of that much important to another user. Thus, the amount of privacy loss may
be estimated differently by different users depending upon their private valuation of
the private data. So, we introduce a weight factor w in the privacy loss measurement,
which can take a value in the [0..1] span depending upon the valuation of the private

data of the data subject. Thus, the privacy loss of a user can be expressed as,

P=wxaxP;xP,xi. (3.4)

It is assumed that none of the participants of a multi-party computation wants

to disclose her private inputs to the others. In other worlds, the value of w has been

Chapter 3: Privacy Loss Model 15

considered to be greater than 0 for all of the participants. For simplicity, we consider
the value of w to be equal to 1 for all of the participants.

Privacy loss can be reduced by mechanisms that reduce the value of P; and/or
P,, and/or i. Among different approaches to reduce the privacy loss, anonymization
and pseudonymization techniques reduce the value of P,,, and cryptography-based
algorithms and some distributed algorithms reduces the amount of information i

disclosed to the data user.

3.3 Evaluation Metric

In this section, we describe the metrics used in this thesis to measure parameters
(e.g. privacy loss and computational time) for performance evaluation of different

approaches.

3.3.1 Privacy Loss Measurement Metric

There is a need for a quantitative framework that would allow us to express metrics
for measuring privacy loss. The authors of paper [42] have presented a framework,
called the Valuation of Possible States (VPS), for qualitatively analyzing the privacy
loss among collaborative agents. According to the VPS framework, the private in-
formation of an agent can be modeled as a state among a set of possible states. Let
the private information of agent A; be modeled as a state s; € S;, where S; is a set
of possible states that agent A; may occupy. If there are n participants in a compu-
tation, then there would be (n — 1) observing agents for each observed agent. If an
agent has d number of states, each represented by a data unit, then that agent has a
total of (d % (n — 1)) states to all observing agents.

VPS privacy metric: Privacy loss measurement counts the number of states
revealed to the observing agents and the the number of observing agents to whom
the states are revealed. If all of the (d * (n — 1)) states are revealed to the (n — 1)
observing agents, and d states to each of them, the privacy loss is ‘one’ (Fig. 3.4). If
no state of an agent is revealed to any observing agent, the privacy loss is ‘zero’. Let

us call the privacy metric in the VPS framework the “VPS privacy metric”.

16

g S

'{m{ 7]

= A \ g- Privacy loss p= 1 when
8 03 all of the states are

o 215 089 revealed to all of the

g8 Ay)@ observing agents

p=1

Figure 3.4: The VPS privacy metric.

Let P*(s;(T;)) be the probability of characterizing A; into a state s; € S; for
the data unit 7; by any other observing agent A,,. Then, according to the VPS

framework, the privacy metric can be expressed as,

ViBi(S:)) =D > Y Ieremyso) (3.5)

m#i s;€8; j=1
where, Iy is an indicator function. The privacy metric V; counts the number of
states of an agent A, revealed to all other observing agents.

In a general multi-agent environment, P; = 1, since the receiving agent is free to
disclose the acquired private data to its user and P,, = 1, since the receiving agent
can always know the sender (i.e., owner) of the shared private data. So, in a [0..1]

privacy span, the privacy loss P; of agent A; becomes,
Pi = aX Vl(Pl(SI))

d
= aX Z Z ZI{P{”(Si(Tj))>0} (36)

m#i 9,€S; j=1

where, o is an appropriate scaling factor whose value depends upon the number of

subject states. With P; privacy loss, the privacy level of agent A; becomes,
) d
Pi=1—ax Z Z ZI(PT(Si(Tj)PO}' (3.7)
m#i 8;€85; j=1

Proposed Min privacy metric:

The VPS metric takes into consideration that the private information could be

disclosed to only the participants of the MPCP. However, it is reasonable to consider

Chapter 3: Privacy Loss Model 17

that the number of unauthorized parties might be unknown. Also, the leaked infor-
mation can be propagated to unknown number of parties. Thus, in many cases it
is more appropriate to measure the privacy loss based on the amount of information
revealed to the others, regardless of how many of them the information is revealed
to. We propose a privacy loss measurement metric that we call the “Min privacy
metric”, which is not a function of the number of unauthorized parties. In this met-
ric, the amount of privacy loss remains the same if the same amount of information
1s revealed to even less number of observing agents. If all of the d states (private
information) of agent A; are revealed to any observing agent then its privacy loss is
‘one’, and the loss is ‘zero’ if no state is revealed to the observing agents. Figure 3.5
shows three scenarios in which different number of states of an agent are revealed to
different number of observing agents. Even though the amount of privacy losses in
the VPS privacy metric and in the Min privacy metric are the same for scenario 1,

they are different for scenarios 2 and 3.

| p= 1(n-1) p=3/d(n-1)

A

Al

. . A,
Min metric

=

A,

Scenario 1 Scenario 2 Scenario 3

Figure 3.5: The Min privacy metric.

The Min privacy metric accounts for the number of participants that lose their
information and the amount of information that they lose to any observing agents,

regardless of how many observing agents it is revealed to. So, in the Min privacy

18

metric the privacy loss P; of agent A; is defined as,

d
Pi=ax Y) lersim)>o (3.8)

si€S; j=1
where, « is an appropriate scaling factor whose value depends upon the total number
of states of agent A; that represent its private information.

The Min metric should be used to measure privacy loss when the number of unau-
thorized party is not definite and/or the leaked information may be propagated to
other parties than the parties to whom the information is directly disclosed. Other-
wise, if neither of the above conditions is met, the VPS metric can be used to measure

privacy loss.

3.3.2 Runtime Measurement Metric

The runtime measurement for a centralized algorithm is straightforward and can be
done by inspecting the actual time required for a single machine in executing the
algorithm. However, the runtime for a distributed algorithm cannot be measured by
inspecting the time required for single machine.

The acknowledged method of measuring synchronous execution of distributed al-
gorithm is with discrete cycles [65]. However, the total cycle count does not tell us
anything about the length of a cycle or the total runtime of the algorithm. Cycle-
Based Runtime (CBR) [8] appears to be the most appropriate metric for measuring
runtime of a distributed algorithm. Let L denote the time required in a cycle to de-
liver all messages sent in the previous cycle and cc(z;, k) be the number of constraint

checks performed by agent z; in cycle k. Then time for m cycles,

CBR(m)=Lxm+ f:ma:c(cc(zi,k)) Xt (3.9)

k=0

Time required to transmit a message is usually greater than the time for a con-
straint check in most environments, so for simplicity we assume that a constraint
check is the smallest atomic unit of time (£ = 1), and assume L is given relative to t.
By measuring the time for message delivery and the maximum number of constraint

check in each cycle, we can measure relative Cycle Based Runtime of two algorithms.

Chapter 4

Reducing Privacy Loss using Common
Computational Space

One method to reduce privacy loss is to remove or hide the relationship of the per-
sonal data with the identifiable individual [2][58]. This is commonly referred to as
anonymization or pseudonymization. In this chapter we utilize a common compu-
tational space for making the pseudonymization effect to reduce privacy loss in the

meeting scheduling problem.

4.1 The Meeting Scheduling Problem

The meeting scheduling (MS) problem is a collaborative multi-agent problem. Each
participating agent, which represents a user, uses the respective user’s personal cal-
endar and preferences to find a meeting time when all of the participants are free and
the group preference is maximized [15, 26, 61]. We use the terms “user” and “agent”
interchangeably.

In the MS problem, the users’ personal schedules and their preferences are con-
sidered private information [15][28][55][66]. In the centralized algorithm, all of the
participants give their private information to a third party or one of the participating
agents, who solves the problem on behalf of the participants and returns the result.
This algorithm results in a high privacy loss of the participants to the central agent
[25]. Centralization has the advantage of aggregating the preferences and constraints
into a common computational space, which enables the algorithm to avoid large com-
munication costs.

In distributed algorithms [15][26][44][46][55], the participating stationary agents
communicate through remote messages and collaboratively try to find a solution to the
problem. A traditional distributed MS algorithm can be viewed as a mechanism that

uses proposals and replies to find solutions [15][16][66]. One of the agents proposes a

19

20

certain date/time to the others at which it is free. The other agents look into their own
calendars and check whether they are free on the proposed slot and reply accordingly.
The fact that an agent proposes a certain date/time to the other agents, the other
agents can infer that the proposing agent does not have any personal schedule on
that proposed date/time. Thus, they get some private calendar information of the
proposing agent. Similarly, if an agent declines a certain proposal, the proposing
agent can infer that the rejecting agent already has a schedule in that slot or some
overlapping slot. The proposals and replies carry personal information, and they
are inherently associated with the identifiable sender agents. Thus, they reveal a
user’s personal information to the others. When the number of users is large, it
requires a large number of proposals and corresponding replies from the participating
agents to find a commonly available or free date/time slot at which all of them can
have the meeting. Each proposal and reply discloses some of their users’ private
calendar information to other agents. In this way the participating agents learn
private calendar information through the negotiation process.

Privacy protection for the MS problem has been achieved in other mechanisms
[66] by using costly cryptographic tools. Another objective with the MS problem is
to achieve optimality in the solution based on a global objective function, which can
be achieved in a Distributed Constraint Optimization (DCOP) algorithm [43, 44, 46].
Distributed algorithms have the advantage of a level of fault tolerance, but suffer
from high complexity and high privacy loss.

In this chapter, we present a mobile agent-based scheduling scheme called Effi-
cient and Privacy-aware Meeting Scheduling (EPMS), which has low computational
complexity, results in a global utility close to the optimal level necessary, and achieves

better privacy protection by utilizing a common computational space.

4.2 Formalization of MS Problem

The meeting scheduling (MS) problem consists of a number of agents, a set of meeting
variables associated with the agents, and a set of constraints distributed among these
variables, each of which can take values in an associated finite domain. Constraints

may exist between the variables of one agent (i.e., intra-agent) or between the variables

Chapter 4: Reducing Privacy Loss using Common Computational Space 21

of different agents (i.e., inter-agent). Hard constraints represent absolute limitations
imposed on the variables and signify what is and is not allowed. Soft constraints can
be described via the preferences [27][53]. The instantiation of meeting variables must
satisfy all the hard constraints and should try to satisfy the soft constraints as much

as possible. We model the MS problem as follows:

1. A set of agents A = {A4,..., Ax} of cardinality N exists. Each agent A;,

i €{1,...,N}, belongs to one user and is a representative of that user.

2. A meeting set M = {M,, ..., Mk} is the set of all meetings provided by all users.
Each meeting M, k € {1,..., K}, belongs to a different set A* = {A;, ..., 4An,}
of ni agents, where A¥ C A is the subset of participating agents in the meeting
My. Two meetings My, and M,,, where ki, ks € {1,..., K}, may have one or
more common (i.e., A® N A* # () participating agents. The meeting set of

agent A; includes M* C M.

3. Each meeting M; belongs to a set 7% = {T},T};1, ..., T1+a-1} of d candidate
date/time slots on a calendar. This set T* is common knowledge among agents
AF of the meeting Mj.

4. A personal calendar T is a sequence of time slots in which some slots are oc-
cupied with previously fixed schedules. For simplicity let the slots be of equal

duration. A number of slots in the calendar make up the set T*.

5. Each agent A; € AF has its preference variable set, denoted by P**, for its free
slot set. The value of a preference variable Pf’i, corresponding to T; € T*,

represents A;’s preference on the date/time slot T} for the meeting M.

6. A preference variable P; can take a value from a finite domain V = {V1,..V,}.

The domain V is common knowledge among all the participants.

7. The meeting variable set X = {Xi,...Xk} of cardinality K corresponds to the
meeting set M, where X}, corresponds to the meeting My, Vk € {1,..., K}. The

meeting variable of agent A; for meeting My, is denoted by X}.

22

10.

11.

12.

13.

4.3

A meeting variable X, can take a value Tj € Tk. Assigning a value Tj to Xj
means that the meeting Mj has been scheduled for time slot Tj. For simplicity,

Jet the meeting length be one time slot.

Intra-agent constraints exist among the meeting variables of the same agent.
For any pair of meetings, My, and My,, that belong to at least one common
agent A, € (AR N AF2), the corresponding meeting variable values cannot be
equal. Inter-agent constraints exist between variables of different agents. For
any two agents A;, and A;,, the corresponding meeting variables for the same

meeting must be equal.

The intra-agent constraints of agent A; on X} are the private information of
agent A; and known only to agent A;. The inter-agent constraints between
X};‘ and X}f, which belong to A;, and A;, respectively, are distributed between
agents A;, and A;,.

The values assigned to the preference variables Pf tyje{ll+1,..,l+d—1},
Vk € {1,..., K} are the private information of agent A;.

The local utility of a meeting is the sum of the preference values of all agents at

slot T; for which that meeting is scheduled (ie. > 3 PJ}”) and the global
A; €Ak TyeT*
utility is the sum of the local utilities of all the meetings.

A feasible solution S is an instantiation of the meeting variable set to the time
domain that satisfies all the constraints, where S(My) C T is the time slot as-
signed for meeting My. An optimal solution is an instantiation of all the meeting

K ,
variables such that the global utility >, > > P;” is maximized.
k=1 A;€A* T,€S(My)

Proposed Efficient and Privacy-aware Meeting Scheduling (EPMS)
Scheme

EPMS uses a common computational space on the agent server, which is shared among

the participants of the same meeting. Like the blackboard model [13], it is used to

aggregate the agents’ data into a single space. However, unlike the blackboard model,

Chapter 4: Reducing Privacy Loss using Common Computational Space 23

there is no monitor on the common computational space and the sequence of actions
of the agents in it is random and independent of the other agents’ actions. Thus, the
relationship of the private information (used in the common computational space)
with the specific individual remains secret to the participants, resulting in better
privacy. It is not used to monitor and trigger agents’ actions as in the blackboard
model; rather it is utilized for reducing privacy loss.

A common computational space can be a shared file that gives access to only the
participants of the same meeting. An organization may install and maintain its own
agent server to be used for scheduling meetings among its members. Members of dif-
ferent organizations may use a server from a third party service provider. In any case,
the agent server should be configured according to trusted computing specifications
[36].

An organization may install and maintain its own agent server to be used for
scheduling meetings among its members. Members of different organizations may
use servers from third party service providers. We will consider the scheduling of a
single meeting first and then the scheduling of multiple meetings. Finding the proper
schedule for a meeting is to find a common date/time slot from the candidate slots

where all the participants are free and the mean user preference is maximized.

4.3.1 Basic Algorithm

The mobile agent-based meeting scheduling scheme EPMS has four phases. For
scheduling a meeting M, in the first phase, an initiating agent invites all other partic-
ipants and informs them about the meeting parameters, like the candidate date/time
slot set T*, the participant set A*, the meeting length, and some common computa-
tional spaces. For simplicity, let us assume the meeting length to be one time slot.
Each participating mobile agent, along with its corresponding user’s private calendar
information and user preferences on the free slots, migrate into the agent server. This
migration is controlled by the access control mechanisms in the agent server. In the
second phase, each agent A; € A* finds its date/time slot set T C T* in its per-
sonal calendar that is already occupied with previously fixed schedules and the slot

set T%% C T* in which it is available or free. Then, each agent encodes its constraints

24

into a constraint vector C* of size d (where, d is the cardinality of T*) based on its
unavailability and preferences in the free slots. In the third phase, each agent partic-
ipates in constructing a combined utility factor vector U £’ k of size d at the common
computational space synchronously, but in random sequence. If any agent has an
intra-agent hard constraint related to a specific date/time slot Tj € T*% for which
it cannot attend a new meeting at that date/time slot, the UF of that slot U Ff is
made zero; otherwise its preference value Pf’i on that slot is added with the U Ff.
After all of the member agents participation, the UF of all unavailable slots U F¥* will
become zero and that of all available slots U F¥ will have non-zero values reflecting
group preferences or utility at each slot.

The combination of the constraints of all agents into the UF vector gives a picture
of the overall preferences on individual slots of the commonly available slot set Tk C
T* and also shows all unavailable slot set T% C T*. All non-zero valued slots T¥ in
the UF vector are feasible solutions, since all of the members can attend the meeting
at any of them. After constructing the combined UF vector, in the fourth phase, the

agents find slot T}, € T at which the U F,’,Z is maximized and assign Xy = T,.

4.3.2 Encoding Constraints

The constraint vector C* created by agent A; is denoted by C** whose j** element, is

defined as follows.
; 0; if T; € TH
Cit=q .. N (4.1)
Pj’ ; if T; €T,”

In this equation, 0 < PJ]” < 1is the preference value at time slot T}.

Table 4.1: Examples of encoded constraint vectors for five agents.
C®! 11.00 |0 0.45 | 0.70 | O 0.8010.20 |0 0.50
C*2? 10.75 1 0.90 | 1.00 | 0 0.50 | 0.65 | 0.60 | 0.40 | 0.55
C*310.55 [0.30 | 0.80 | 0 0 0 0.70 | 1.00 | 0.30
C** 1025]0.40 [0.90 [0.80 [0.20 [0 0.35 | 1.00 | 0.65
C* 10.50 | 0 0350 0 0 0.30 | 1.00 | 0.45

Between two separate slots, the higher valued slot is considered more preferred

Chapter 4: Reducing Privacy Loss using Common Computational Space 25

than the lower valued slot. Table 4.1 shows an example of the constraint vectors C*1,
Ck2 CF3, C** and C*5 created for My by the participating agents A1, Aj, As, Ag,
and As, respectively. From the table, agent A; has intra-agent hard constraints for
which it cannot attend a new meeting at any of the T3, T5, and T3 slots. Among its
free slots it prefers T; the most, then Tg, and so on. Similarly, other agents also have

hard constraints for some slots and preference values for their free slots.

4.3.3 Utility Factor

After independently encoding constraints into a constraint vector, each agent par-
ticipates in building the combined UF vector of the meeting in random order. Ini-
tially, the UF vector contains null values. Each agent A; updates its j¢* element

UF f Vj e {l,l+1,.1+d— 1} according to the following equation,

0; ifC{f=00rUFf, =0

UFjiy) = (4-2)

UF;C(s_l) + C]’-c’i; otherwise

where, s is the sequence number of agent A; in constructing the U F* vector and U Ff(s)
is the partial UF at slot T}, calculated by A; in sequence number s. For instance, let
the UF vector construction sequence be Ay, A3, As, A;, and A;. With the constraint
vectors given in Table 4.1, the partial UF vectors built by the participants will be as
shown in Table 4.2.

After all member’s have participated, the UF vector created by the last agent in

the construction sequence (e.g., UFys) in Table 4.2) is the combined UF vector.

4.3.4 Search Procedure

The combined UF vector for a meeting may have some non-zero valued slots (e.g.,
Tk = {T1,T3,T7, Ty} in Table 4.2 (e)) indicating that all of the participants are free
in those slots. All these available slots T are feasible solutions to the problem. The
utility factor value at slot T; expresses the utility and the overall preference value
of the participants in the Tj slot. To get the maximum utility, an agent performs a
linear search for slot Ty, in T* for which UF?¥ is maximized and assigns to Xy = Tpy,.
In the example in Table 4.2, X = T5.

26

Table 4.2: Construction of combined utility factor vector.

(a)Partial UF vector U Fl) after Ay’s participation
0 | | [T, |T5 |Ts T Ty Ty
1 0.25 [0.40 [0.90 [0.80 | 0.20 | 0 0.35 | 1.00 | 0.65
(b)Partial UF vector U F(’;) after A3’s participation
h |, |3 Ty | [Te [T |Ts |Ts
0.80 [0.70 | 1.70 | O 0 0 1.05 | 2.00 | 0.95
(c)Partial UF vector U F(’g after As’s participation
L |, |3 |Ty |Ts [Te |Tm |Ts |To
1.30 | 0 205 |0 0 0 1.35 | 3.00 | 1.40
(d)Partial UF vector UF(;, after A;’s participation
LoV (B 1T 1% 1T I G 15
230 |0 250 |0 0 0 155 |0 1.90
(e)Complete UF vector UF* after Ay’s participation
Ty | T, I3 | T, |T3 Ts | Tr Ly | Ty
3.06 |0 350 |0 0 0 215 |0 2.45

4.3.5 Multiple Meetings

For scheduling multiple meetings concurrently, the construction of the UF vectors for
each meeting can be done simultaneously in the same process as described in Sections
4.3.2 to 4.3.4. However, they cannot be scheduled without synchronization because
one or more agents that participate in more than one of these meetings may exist.
The scheduling priority SP; of meeting M; is determined by the maximum value in

U F* according to the following equation.

SP, = Max(UFF),vT; € T* (4.3)
J J

For any two meetings M}, and My, that have at least one common agent A, €
(A% N AF2), the meeting with the higher scheduling priority, say Mj,, is scheduled
first, say for slot 7;,, at which U Ffffz is maximized. Then, each common agent A,
updates the UF value of the other meeting in slot T, (ie., UERL) to zero if Ty, is
also a candidate slot for the meeting My,. This update is necessary because a new
intra-agent constraint (X %, 7 Xi,) has arisen due to the newly scheduled meeting
My, Then, meeting members find the slot T, for My, at which UF® is maximized.

Figure 4.1 shows an example of the sets of agents A* for five meeting and Table

Chapter 4: Reducing Privacy Loss using Common Computational Space 27

4.3 shows the respective utility factor vectors of those meetings in which the sets of
candidate slots for each meeting are shaded. There are common agents for two or
more meetings (e.g., A*N A® = {A4, A14}. Also, there are meetings with overlapping
candidate slots (e.g., T3 NT° = {T3, Ty, Ts, T, Tr, Tz }).

= {AG; A127 A15a A19}
A? = {Ay, Ay, Az, A1z, Ars}
A3 = {Ab A4, Ag, A14}

= {A1, As3, Ais}

= {43, A4, As, Aro, Ara}

Figure 4.1: Example of the sets of agents for five meetings.

Table 4.3: Utility factor vectors for five meetings.

T\ |2 [T |[Tu [T [T6 [Tr [Ts [T [T | Tu | The
Mi|o 2403110 [29]0
M, 350 |0 [29]0
M, 2114 (260 06 | 28 | 1.7
My 19 [24 13 1.2
M; 4210 o |0 |25 |31

According to Table 4.3, the scheduling priorities of the meetings are SP; =
3.1,SP, = 35,5P; = 2.8, SP, = 2.4, and SPs = 4.2. Thus, M5, which has the
highest scheduling priority, is scheduled first at the highest utility valued slot T3, i.e.,
Xs =T3. But ASNA? = {Ay, A4} and AN A3 = {Ay4, A14}. However, since T; ¢ T2,
agents A4 and Aj4 do not update UF} with zero and since T3 € T, agents A4 and
Ay4 update UF3 with zero. Although T; € T, there are no common agents between
them i.e., A' N A® = @. So, UF} is not updated by any agent after scheduling Ms.

The scheduling of the highest priority meeting and updating of the UF vectors
of the remaining meetings are carried out until all meetings are scheduled. In the
example shown in Fig. 4.1 and Table 4.3, the meetings will be scheduled as X; = T3,
Xo =T, X3 =Ty, X4 =T7, and X5 = T3. Note that M5 and M; both are scheduled
at T3 because T3 has the maximum utilities for both of them and A'MN A% = @. Figure

28

4.2 presents the EPMS algorithm.

01: when received invite(T*, A*) do //creating C*
02: add My to AL?

03: for VT; € TF do

04: if free at T}

05: C']"-c — P]k;

06: else

. k
07: Cj —0
08: end if
09: end for

10: call migration(server address);

11: procedure buildUF (k) //procedure for building U F*
12: while updating_flag(k) == true do

13: wait (random());

14: end while

15 wupdating_flag(k) < true

16: for VT, € T* do

17 if CF == 0||[UF¥ == 0 do

18: U Ff «— 0;

19: else

20: UFf — UFF+C¥,

21: end if

22: end for

23: wupdating_flag(k) «— false

24: procedure calculateSP (k) //calculating SP,
25: SP, «— 0; maz « O;

26: for VI, € T* do

272 if UFF > maz do

28: max — U Ff ;

29: end if

Chapter 4: Reducing Privacy Loss using Common Computational Space

30: end for

31: SP, = maax;

32: procedure schedule(k) //scheduling k** meeting
33: max «— 0;m «— —-1;

34: for VT; € T* do

35: if UF; >=maz do

36: maz «— UF;; m « j;
37: end if
38: end for

39: if m>=0do

40: X = Tom;

41: end if

42: for VM, ¢ € M do
43: if T, € T" do

44: while updating_flag(k:) == true do
45: wait (random());

46: end while

47: updating_-flag(ky) «— true

48: UFR —0;

49: updating_flag(k,) <« false

50: end if

51: end for

52: remove M from M?

53: procedure schedule(M?) //scheduling all meetings M® of A;
54: for VM, € M*¢ do

55: call buildUF (k);

56: call calculateSP(k);

57: end for

58: call sort (M?, SP*);//arrange M® based on SP* order
59: for VM € M do

60: call schedule(k)

30

61: end for

Figure 4.2: EPMS algorithm for scheduling multiple meetings.

We considered the utility as the sum of user preferences and accordingly, the
scheduling priority of a meeting in scheduling multiple meetings was taken as the
maximum utility. Our objective function was to maximize the utility. Sometimes the
scheduling cost is taken into account and the objective function is to minimize the cost
and sometimes both the cost and the utility are taken into account and accordingly
the objective function is to maximize utility and minimize the cost. Based on the
objective function, the scheduling priority in EPMS must be changed. For example, if
the cost is included in the objective function, then the scheduling sequence in EPMS
would be determined by the maximum value of the ratio of the sum of the preferences

to the sum of the costs, instead of the maximum value of the sum of the preferences.

4.4 EPMS Characteristics

In this section we analyze the EPMS algorithm to measure its complexity, privacy

loss, and global utility (GU) in scheduling multiple meetings concurrently.

4.4.1 Complexity

In EPMS algorithm, for each meeting M, € M each of the ny participants encodes
their own constraints into a dj sized constraint vector C* , where dj, is the cardinality

of the candidate date/time slot set 7% and ny is the number of participants in the
K
meeting M. This encoding requires maximum C; = > (nk x dy) key operations by all
k=1
agents of all meetings. Then, for building the combined utility factor vector U F*, each

participant compares and updates the dj element data at the common computational
K

space, which needs maximum G, = > (ng x d) key operations for all meetings.

k=1
Next, for calculating the scheduling priorities for all meetings, a maximum of Cs; =
K
> (g x dr) key operations are necessary. Before scheduling multiple meetings, an
k=1
agent arranges the meeting set M* based on their scheduling priorities’ descending

Chapter 4: Reducing Privacy Loss using Common Computational Space 31

n
order, which requires maximum Q, =) m? operations, where n is the number
.. . . i=1 . . .
of participants in all meetings and m; is the number of meetings in which agent
A; is a participant. While scheduling each meeting My, each agent A; performs a

linear search operation in the UF* vector to find a slot having the maximum UF

value, which requires maximum C; = i(nk X d) number of key operations for all
meetings. Finally, after scheduling a m];’ting My, each of its participants A; updates
the UF vector at slot T} for its remaining meetings, if any. An agent A; updates
maximum (m; — 1) + (m; — 2) + ... + 1 = m;(m; — 1)/2 slots for all of its meetings.
The maximum update operation by all agents is Cg = i(mi(mi —1)/2). Combining
all key operations, the total number of key operationsiT)ly all agents for all meetings
becomes

K n

C=43 (n x dk)+zw. (4.4)

k=1 i=1 2
If we assume that all of the agents participate in all meetings (i.e., ng, = ng, =
n,Vki, ko € K and m;, = m;, = K,VA;,, A;, € A) and all meetings have the same
number of candidate slots (i.e., dy, = di, = d,Vk1, k2 € K), then C =4 x K x n X
d+nx K(BK —-1)/2=K xn(4d + (3K — 1)/2). So, the worst case complexity for
the EPMS algorithm is of the order O(Knd). If one meeting is scheduled in each of
the candidate slots (i.e., K = d), then the complexity of EPMS becomes O(nd?) i.e.,

polynomial.

4.4.2 Privacy Analysis

Existing privacy evaluation techniques for an MS algorithm take into consideration
only one criterion (usually preference) [25][42]. But we think that both the user’s
personal schedule and preferences at different candidate slots should be considered
private information. Thus, we introduce multiple criteria, which considers both the

schedule privacy and preference privacy, for evaluating privacy in an MS algorithm.

Schedule Privacy

For the schedule privacy loss measurement of agent A;, we need to find out the number

of schedule states of A; in the candidate slot span that other agents can figure out.

32

An agent can be either busy, say an s1 state, or free, say an s2 state, for any specific
time slot (i.e., S; = {s1, 52}) and the schedule states of an agent at a slot are mutually
exclusive. The VPS privacy metric of agent 4; in meeting M), for its personal schedule
can be represented as,

ViPi(S)) = Y > I (si=s1(7;,)} +

mA Ty, €Tk

Z Z Lppn(si=s2(13,))) (4.5)

mF#i Ty, €Tk

where, TF and TF are the sets of unavailable (i-e., zero valued) slots and available
(i-e., non-zero valued) slots in the UF vector, respectively. Once the value of a slot
of the UF vector UF; is set to zero, no other agent changes its value. Thus, a zero
valued slot confirms one agent’s busy state (s1). Since, the UF vector is created
by multiple agents in a random sequence, the probability of characterizing agent A;
with the busy state (s1) at a zero valued slot Tj;, € T¥ by an observing agent A,, is
P(s; = 51(T},)) = 1/(n—1). On the other hand, the probability of characterizing an
agent A; with the free state (s2) at a non-zero valued slot T;, € TF by an observing
agent A, is P{*(s; = s2(T},)) = 1, since all of the agents are free at Tj,. The states
of A; revealed to each observing agent are the same, because the probability function
IP;(.S;) is the same for each observing agent. So, the VPS privacy metric for a personal
schedule is,

z

Vi(i(S:) = (n—1) x (

+ (d - 2)) (4.6)

n—1
where, z is the cardinality of Tk c T* representing the number of unavailable slots
and (d — z) is the cardinality of T* ¢ T* representing the number of free slots. Note
that T} UTF = T*. In the VPS privacy metric, an observed agent has ((n — 1) * d)
schedule states to the observing agents and potentially a total of one unit of privacy
to lose. Thus, the value of o is equal to (1/((n — 1) * d)) and A,’s schedule privacy

loss is,

Pys) = % X (=t (d-2)). (47)

The Min privacy metric does not account for the number of observing agents to

whom the states are revealed. So, the Min privacy metric for a personal schedule is,

Vi(Pi(5) = —== + (d - 2). (4.8)

Chapter 4: Reducing Privacy Loss using Common Computational Space 33

In the Min privacy metric, an observed agent has a total d number of states to lose
to the observing agents. If all of the d states are revealed to the observing agents,
the privacy loss is one i.e., @« = 1/d. Thus, in the Min privacy metric, A;’s schedule
privacy loss P;(s) is,

1 z

PZ(S)zEX(

The schedule privacy loss in EPMS is the same in the two metrics and high for

+(d—2)). (4.9)

n-—1

a small number of participants. In a worst case scenario, for two participants, the
schedule privacy loss is one. This is determined from Eq. (4.7). For a fixed value of d,
if the number of participants in a meeting is increased, the number of zero-valued slots
z in the UF vector will increase and the non-zero-valued slots (d — z) will decrease;

as a result the schedule privacy loss will decrease, and the privacy level will increase.

Preference Privacy

The preference privacy loss measures the number of preference states of an observed
agent revealed to its observing agents. If the observing agents can accurately deter-
mine all of the preference values (i.e., states) of agent A;, then the privacy loss of A4;
will be one. If they cannot determine any of its preference values, the privacy loss
will be zero. The participating agents in EPMS do not exchange their preferences for
different slots amongst themselves. While constructing the combined UF vector, each
agent reads existing values and updates them by adding its own preference values for
each slot. Thus the preference values of all agents get modified in the UF vector.
When the agents read the existing values from the UF vector, each of them, except
for the first two agents in the construction sequence, reads sum of the preferences of
the previous agents. They cannot split them up into values that were summed up.
But, the first agent reads no other agent’s preference values and the second agent
reads the preference values of only the first agent.

Suppose agent A; has p number of free slots and a preference value for each of
its free slots in UF*. In EPMS, out of n agents, only one agent’s (i.e. the first
agent)preference values are revealed to only one observing agent (i.e. the second
agent). But agent A;’s probability of being the first agent in the construction sequence

is 1/n. So, on the average, each agent A; loses p/n preference states to all of the

34

observing agents. Thus, the VPS privacy metric for preferences becomes,
_ b
Vi(Pi(S:)) = e (4.10)

Agent A; has ((n—1) xp) preference states to the observing agents. Similar to the
schedule privacy loss, the value of « in the VPS privacy metric is @ = 1/((n — 1) xp)

and A;’s preference privacy loss is,

Pz(p) = E(Tb—l—ﬁ; n > 2. (411)

Since, an agent A; loses p/n preference states to the observing agents, the Min

privacy metric for the preferences becomes,

p
p
ViBilS)) = DD Ipmeiiamyy = o (4.12)

$i€8; j=1

In the Min privacy metric, agent A4; has a total p number of preference states to the

observing agents. If agent A, loses its p number of preference states to the observing

agents, its preference privacy level will be zero. So, @ = 1 /p and A;’s preference
privacy loss is,

Pi(p) = =; n>2. (4.13)

In the special case of only two participants, the second agent reads the first agent’s
preferences and the first agent can also deduce the second agent’s preferences by
subtracting its own preference values from the combined UF vector. So, for two

participants, the preference privacy loss in EPMS is one in both metrics.

4.4.3 Global Utility

In scheduling a single meeting with EPMS, the agents always find the slot with
maximum utility among all the available slots for that meeting. In scheduling mul-
tiple meetings, the global utility (GU) obtained in the solution depends upon the
scheduling sequence, because a newly scheduled meeting creates new constraints on
the remaining meetings; each scheduled meeting may change the remaining meetings’
possible solution sets, and thus their utility may change. A simple way of gaining

optimal GU is to calculate the GU of all possible scheduling sequences (i.e., sequence

Chapter 4: Reducing Privacy Loss using Common Computational Space 35

permutations) and then finding the sequence that gives the maximum GU. However,
this approach is not feasible in terms of computational complexity. An optimization
algorithm, such as optAPO [44], can always find the optimal solution. EPMS is not
an optimization algorithm. The global utility in EPMS will be less than the optimal.
We compared the GU achieved in EPMS with that of an optimization algorithm using

simulation experiments.

4.5 Experiments and Analysis

4.5.1 Experimental Setup

For evaluation and analysis of the privacy loss and global utility in the EPMS algo-
rithm, we carried out simulation experiments written in Java. We chose a maximum
of K = 10 new meetings to be scheduled concurrently, among a maximum of N = 20
agents and with a total of D = 40 time slots. For different meetings, we used random
values for n from a range of 3 to 20 and random values for d from a range of 5 to
15. The candidate slots of a meeting were adjacent and started at a random position
between the 1 slot and the (D — d + 1)** slot. For each agent, a random percent-
age of slots, ranging from 5% to 50% of the candidate slots, were considered already
occupied with previously fixed schedules and distributed at random positions within
the candidate slots. In the free slots, non-zero random preference values (0 < p; < 1)
were set. The simulation was run 400 times for each experiment, and the average
values for the runs were taken. Unless otherwise stated for any other values for an

input parameter, the above-mentioned values should be considered.

EPMS uses mobile agents while distributed algorithms use stationary agents. The
mobile agents in EPMS need to migrate to the agent server and the stationary agents
in distributed algorithms need to exchange remote messages. We also measured the
mobile agent migration cost/overhead and stationary agent messaging cost/overhead
and compared the two systems. For this exﬁeriment, we used an open source agent
development kit (Aglet Ver. 2.0.2) [39].

36

4.5.2 Experimental Results

For a fixed number of candidate slots d, if the number of participants n in a meet-
ing increases, the probability of having an intra-agent constraint at a specific slot
increases, i.e. (d — z) decreases towards zero. Figure 4.3 shows the number of com-
monly available slots for three different values, d = 5, d = 10, and d = 15, for varying

numbers of participants 7.

18— —

! —5¢—d=15
‘ —=—d=10
i
|

Ne —+=d=5
§ 11—t
—_— Lo

0 5 10 15 20
No. of Agents(n)

s —— = =
!

No. of available siots

Figure 4.3: Number of commonly available slots for varying number of participants.

From Fig. 4.3 we see that, with the increase in the number of candidate slots, the
increase in the number of available slots is more for smaller numbers of participants
than that for larger numbers of participants.

We compare the privacy loss P; in EPMS algorithm with those of two other
algorithms- centralized algorithm, which has a low privacy loss in the VPS metric [42]
and optAPO [44], which is a well-known optimization algorithm. For the centralized
algorithm, we consider that one of the participants takes all of the inputs and solve
the problem by using a centralized algorithm. The privacy loss of an agent in optAPO
depends upon how many neighbors the agent has. For the purpose of analysis, we
show the minimum privacy loss for opt APO, which occurs for cases where each agent

discloses all its private information to only one neighbor in the initialization phase.

Schedule Privacy Loss

The schedule privacy loss P;(s) of an agent A; depends upon the number of unavailable

slots z, and commonly available slots (d — z) among the candidate slots in the UF

vector as per equation(14).

Chapter 4: Reducing Privacy Loss using Common Computational Space 37

|
|
[
|
|
|

o©
o
T

—¥—d=15
e d=1 0
—+—d=5

o o
H ()]
——+

o
(%)

Schedule Privacy loss

o

No. of Agents(n)

(a) Over-constrained.

-t
1

o
[o 2]
[

2
o

o
a

Schedule Privacy loss
©
N
|
|

o

10 15 20
No. of Agents(n)

(=
[5)]

(b) Under-constrained.

Figure 4.4: Schedule privacy loss in EPMS for varying number of participants.

Figure 4.4(a) shows the schedule privacy loss P;(s), in the VPS privacy met-
ric, of an agent A; in EPMS for different values of d = 5, d = 10 and d = 15
with varying number of participants in over-constrained settings (occupancy with
formerly scheduled events is 5% to 50% of candidate slots) and Fig. 4.4(b) shows
for under-constrained settings (occupancy with formerly scheduled events is 0% to
20% of candidate slots). In real life, the level of constraints of a participant in the
candidate date/time slots is low if the candidate date/time slot is far from the current
date.

From Fig. 4.4(a) we see that for small number of participants n, the schedule pri-
vacy loss of an agent is high. For three participants the loss is above 0.7. But if the

number of participants n is increased, the schedule privacy loss of an agent gets de-

creased. The schedule privacy loss in under-constrained settings is more than that in

38

over-constrained settings because of the increase in the number of commonly available
slots (d — z). We also see that when the number of candidate slots d for a meeting is
increased, the schedule privacy loss gets decreased more in under-constrained settings

than in over-constraint settings.

In the VPS privacy metric, each agent in optAPO has ((n — 1) * d) states to
the observing agents and in the best case (i.e., one neighbor) each agent loses its d
states to its neighbors. So, its schedule privacy loss in the VPS privacy metric is
Pi(s) =d/((n—1)*d) = 1/(n — 1). On the other hand in the centralized algorithm,
(n — 1) agents (out of n agents) give away their d number of schedule states to the
central agent making the average number of states revealed per agent ((n—1) xd/n).
In the VPS privacy metric, each agent has ((n — 1) * d) states to the observing
agents. So, the schedule privacy loss of an agent in the centralized algorithm is
Pi(s) = ((n — 1) *d/n)/((n — 1) xd) = 1/n. Figure 4.5(a) compares the scheduling
privacy loss (for d = 10) in EPMS with two other algorithms in the VPS privacy

metric.

We see that, in the VPS privacy metric the schedule privacy loss in the centralized
algorithm is less than that in EPMS and optAPO. This is because, in addition to the
number of participants who lose their information, the VPS privacy metric accounts
for the ratio of the number of observing agents to whom the information is revealed
to the total number of observing agents. Generally speaking, in the centralized algo-
rithm, the entire schedule information of an agent is revealed to only one observing
agent while in EPMS algorithm, part of the schedule information is revealed equally
to all observing agents through inference on the feasible solution set. The privacy
loss in optAPO algorithm shown here is for the case in which each agent has only
one neighbor. The more number of neighbors in optAPO, the more privacy loss in
VPS privacy metric. The loss will be doubled if the agents have 2 neighbors on an

average.

In the Min privacy metric, each of (n — 1) agents in the centralized algorithm
lose its d number of states to the observing agents making the average number of
states revealed per agent ((n — 1) % d/n). Each agent has d states to the observing

agents. So, the schedule privacy loss of an agent in the centralized algorithm is

_—

|
Chapter 4: Reducing Privacy Loss using Common Computational Space 39
T e Rt
808 __ — -
g 0.6 __j_i_\]k_ o - | —&— optAPO
& —+— Cenlralized
% 0.4 —i— EPMS
E 02 +—
A
0
0 5 10 15 20
No. of Agents(n)
(a) VPS privacy metric
1 [S = > 80—
Bosf - _—#' — - T
go.G = Tx-”; Sae : ‘ —8—optAPO
= +— Centralized
304 S — ——EPMS
E 0.2 "\"_\‘_ﬁi = ==}
8 ! H“?‘-‘H""i_‘i‘*k—-j—lf—
0]
0 5 10 15 20
' No. of Agents(n)
(b) Min privacy metric

Figure 4.5: Relative schedule privacy loss in three algorithms for varying number of
participants.

Pi(s) = ((n—1)*d/n)/d = (n—1)/n. In optAPO each agent loses its entire schedule
to its neighbors. So, the schedule privacy loss in optAPO in the Min privacy metric is

one. Figure 4.5(b) compares the scheduling privacy loss in EPMS algorithm with that

of two other algorithms in the Min privacy metric. We see that in the Min privacy

metric, the privacy loss in EPMS is much less than the two other algorithms.

From Fig. 4.5(a) and 4.5(b), the privacy loss in the centralized algorithm decreases
in the VPS privacy metric while it increases in the Min privacy metric with the
increase in n. This is due to the differences in the definition of the two metrics. The
Min privacy metric accounts for the number of participants that lose their information
to any observing agents, regardless of how many observing agents it is revealed to.

In the centralized algorithm, (n — 1) agents lose their information to other (i.e.,

—

40

central) agents. Thus, with an increase in n, the privacy loss increases in the Min
privacy metric (Fig. 4.5(b)). But, when the privacy metric includes the fraction of
the observing agents to whom the information is lost, as in the VPS privacy metric,
the privacy loss in the centralized algorithm becomes much less (Fig. 4.5(a)), since
the loss occurs only to one observing agent. The schedule privacy loss in optAPO is
one in the Min privacy metric. But in the VPS privacy metric, the loss in optAPO
is much less for the same reason as described above for the centralized algorithm. In
EPMS, the schedule privacy loss does not change in the VPS privacy metric because

the information is revealed to all observing agents.

Preference Privacy Loss

An agent has p number of preference values in its free slots. Similar to the schedule
privacy loss, in optAPO, at least p states are revealed to at least one neighbor. So,
the preference privacy loss P;(p) in the VPS privacy metric is P;(p) = p/((n — 1) *
p) = 1/(n — 1) and that in the Min privacy metric is Pi(p) = p/p = 1. In the
centralized algorithm, all the agents, except the central agent (i.e., (n — 1) agents
out of n agents), give away their p number of preference states to the central agent
making the average number of states revealed per agent (n — 1) * p/n. So, in the
centralized algorithm, the preference privacy loss of an agent in the VPS privacy
metric is Pi(p) = ((n — 1) *p/n)/((n — 1) * p) = 1/n and that in the Min privacy
metric is Pi(p) = (n — 1) *xp/n)/p = (n — 1)/n.

The graph in Fig. 4.6(a) shows the preference privacy loss P;(p) for three algo-
rithms, in the VPS privacy metric and Fig. 4.6 (b) shows the same information in the
Min privacy metric, for varying number of participants n. EPMS outperforms both
the centralized algorithm and optAPO for any number of participants and its prefer-
ence privacy loss is very low. Also, in the Min privacy metric, the preference privacy
loss in EPMS is much less than for the other two algorithms. The preference privacy
loss is independent of the number of candidate slots and the level of constraints when

it is normalized for [0..1] scale.

Unlike schedule privacy loss, the preference privacy loss in EPMS is less in the VPS

privacy metric than in the Min privacy metric. This is because unlike the schedule

T ——

Chapter 4: Reducing Privacy Loss using Common Computational Space 41

.
|
|
|
I
|

g 0.8 — S N
> 1
é B N — | —=—optAPO
8 | —=— Centralized
8 04
8 L e
E 0.2

0

0 5 10 15 20
No. of Agents(n)
(a) VPS privacy metric
1+ —HH—HH—HEH—H—HHHHH&HDE&T
)... P -

Bos | e ‘
g 0o s —&— optAFPO
; 0.4 - — o ‘ —— Centralized
5 X -—
] . ‘
'E 0.2 > :=+ - __
o ‘T"‘+--.-_.'___‘_ L‘—r‘-i-—}-—rl— I_

0 =t

0 5 10 15 20

No. of Agents(n)
(b) Min privacy metric

Figure 4.6: Relative preference privacy loss in three algorithms for varying number
of participants.

information, the same preference information is not revealed to all observing agents.
Only one agent’s preference information is revealed to only one observer. Thus, in the
VPS privacy metric, which accounts for a fraction of the observing agents to whom
the information is revealed, the average loss becomes less than that in the Min privacy

metric.

Unlike the traditional algorithms, the agents in EPMS do not exchange their
private information directly with one another; they update the shared UF vector with
their personal information in a random sequence. Thus, the probability of mapping
(Pm) the data, found in the utility factor vector, with a specific agent A; is less
than one. As a result, the privacy loss in EPMS is less than those in the centralized
algorithm and distributed algorithms.

42

Global Utility

Distributed Constraint Optimization (DCOP) algorithms (e.g., OptAPO [44]) give
the optimal global utility (GU) for solving distributed constraint satisfaction prob-
lems. Since all optimization algorithms give the same (optimal) GU, we use the
legend “Opt” to represent a DCOP algorithm. To show EPMS performance, we mea-
sure global utility of EPMS and compare it with that of a DCOP algorithm for various
input parameters. We took the sum of preferences at the scheduled slot of a meeting
as its local utility and the global utility is the sum of local utilities of all meetings.
If a meeting cannot be scheduled, its local utility becomes zero. So the GU value
depends upon the number of successfully scheduled meetings. In our experiments, we
found that the average scheduling success ratio of a meeting decreases sharply with
the increase in the number of participants and EPMS has almost the same scheduling
success ratio as in DCOP algorithms.

Figure 4.7 shows the average scheduling success ratio of a meeting in EPMS and
the optimal solutions with over-constraint settings for varying n. The graph shows the
average success ratio for seven meetings in 400 runs. We also measured the average
scheduling success ratio for four and five meetings and they were found to be very
close to that of seven meetings. To better visualize the relative success ratio of EPMS
and optimal solution, we do not put all data in Fig. 4.7. From the graph, we see
that the success ratio in EPMS is very close to the DCOP algorithms. The more the
number of participants, the more constraints at a time slot and the less chance of
finding a commonly available slot for the meeting. When the number of participants
increases, less number of meetings can be scheduled.

Figure 4.8 shows the GU in EPMS and in the optimal solution for varying num-
bers of participants n. Initially, the GU increases with the increase in the number
of participants n, since each participant increases the local utility. However, after a
certain value of n, the GU starts decreasing because of the decrease in the number of
successful scheduling. From Fig. 4.8, the GU of EPMS is very close to the optimal
solution for smaller and larger numbers of participants. However, the difference be-
tween them increases near the value of n that gives a maximum GU in the optimal

solution. Depending upon the objective function (whether cost or utility or both are

Chapter 4: Reducing Privacy Loss using Common Computational Space 43

Scheduling success ratio
[=} [=] =]
£ [+2] [¢] -
|
| : |
M
|
/
| |
[
' |
I |
‘ .
.
| ——]
3
€3
&

|
;_

&
|

o

=}
t

10 15 20
No. of Agents (n)

Figure 4.7: Scheduling success ratio in EPMS and the optimal solutions for varying
number of participants.

&e A EPMS(K=T)
5.20 —&— Opt(K=7)
S5 ()
3 —o— Opt(K=5)
(—310 i | X EPMS(K=4)

5 | REm —=— Opt(K=4)
0

10 15 20
No. of Agents(n)

Figure 4.8: Relative global utility of EPMS and the optimal solution for varying
number of participants.

included in the objective function), the shape of the curves in Fig. 4.8 will vary.
However, the relative difference between the GU in EPMS and that in the optimal
solution will remain the same.

To better understand the relative GU of EPMS with respect to the optimal so-
lution, Fig. 4.9(a) shows the GU obtained in EPMS as the percentage of the GU
obtained in the optimal solution with the over-coustrained settings, i.e. the GU of
the optimal solution is considered as 100%. The difference in the optimal solution is
maximized around n = 7 for our settings. Also, the difference is larger when larger
numbers of meetings (K) are scheduled concurrently. Figure 4.9(b) shows the GU
obtained in EPMS with under-constrained settings, which is closer to the optimal

solution than that with the over-constrained settings.

44

100 —
(-

(-8

O g9

°

® 98 —+—k=7
3 —e—ks5
:__>_.97 e —)
S 9 — —

E

S 95)

G 9 5 10 15 20

No. of Agents(n)

(a) Over-constrained.

=300 R s = === =

E i

Q 99— ———e

[

R 98 + — = — | =1=JK=V
8 —s— k=5
Y N
5 96 — —

3

9 95

S o 5 10 15 20

No. of Agents(n)
(b) Under-constrained.

Figure 4.9: Global utility of EPMS as % of optimal solutions for different levels of
constraints.

Figure 4.10(a) shows the GU obtained in EPMS as the percentage of the optimal
solution, in scheduling seven meetings concurrently, for different values of average
occupancy with previously fixed schedules (i.e. different levels of constraints) and
Fig. 4.10(b) shows the same information but for different values of the number of
candidate slots d. From Fig. 4.10(a), the worst performance of EPMS was found for
the average occupancy level of 20% in our set of experiments. EPMS performs better
(i.e. closes to the optimal) for lower occupancy levels and also for higher occupancy
levels. Also, from Fig. 4.10(b), we see that EPMS performs better for smaller values

of n with larger values of d, and for larger values of n with smaller values of d.

The graph in Fig. 4.11 shows the average GU obtained in EPMS for varying

numbers of meetings scheduled concurrently. In this experiment, we considered that

N S TR T e

Chapter 4: Reducing Privacy Loss using Common Computational Space 45

©
-3
|
|
|

_100
&
5 99
2 —>— o0ce=10%
8 9% ! —=— 0cc=20%
4 o) | —+—occ=30%
5 —6— occ=40%
.§ 96 | — e,
o
95 ; |
0 5 10 15 20
No. of Agents(n)
(a) For different levels of occupancy.
§1 00
s 99
g 98 —=—d=20
y
£ 97 = {|| Fimiraizsd
3 —6— d=40
8
L2
o

©
(4,

0 5 10 15 20
No. of Agents(n)

(b) For different values of d.

Figure 4.10: Global utility of EPMS as % of optimal solutions for varying number of
participants.

K meetings are scheduled in K slots (one meeting for each slot), any meeting can be
scheduled in any of the slots from the same slot span, and the occupancy level of the
participants was considered zero. From the graph, the average GU in EPMS is above
98% of the optimal solution, when small numbers of meetings are scheduled concur-
rently. However, it decreases slowly with the increase in the numbers of meetings

scheduled concurrently.

Agent Communication Cost

The mobile agents in EPMS migrate to the agent server and after completing the job
they return back to their hosts. On the other hand, stationary agents in distributed

algorithms exchange remote messages. We measure the overhead incurred in both

46

984;_ - — e p——— === == —_— —_—

97

Global Utllity (as % of Opt)
8
|
|
|
|
|
[

[7o]
(3]

5 B 7 8 9
No. of meetings (K)

@
'

Figure 4.11: Global utility in EPMS as %
meetings scheduled concurrently.

of optimal solutions for varying number of

systems in a full-scale mobile agent platform. We used an open-source agent platform
named Aglets [39, 33).

Experiments were carried out with four agent hosts (A, B, C and D) connected
to local area networks with Ethernet cards. The hosts’ specifications are shown in
Table 4.4. We measured the latency and total traffic needed for agent migration and
single messaging in the same environment. Their value varied in different runs due

to other running processes and we took the average of 25 runs.

Table 4.4: Specification of the hosts’ used in measuring latency and network traffic.

Host A Host B Host C Host D
Processor 1.4 GHz 600 MHz 1.2G Hz 1.8G Hz
RAM 768 MB 192 MB 512 MB 256 MB
'NIC 100 Mbps | 10 Mbps | 100 Mbps | 100 Mbps
oS Windows Windows Windows Windows
[XP XP XP XP

Figure 4.12(a) shows the average latency for agent migration of different sizes and
that for inter-agent messages. The legend “Migration(A-B-A)”/ “Message(A-B-A)”
in the graph means the round-trip migration/ messaging between host A and host B,
starting from host A. Higher latency was incurred for both migration and messaging
when host B, having low specifications, was involved. A single messaging latency

between agents is small compared with agent migration latency. If the number of

messages is small in stationary agent based systems, mobile agent based system are

Chapter 4: Reducing Privacy Loss using Common Computational Space 47

140 — === AT =
E 120 —— Al —A— Mgralion(A-B-A)
5 100 e — > — = —= Mgfation(A'C'A)
§ 80l . =i | —+— Mgration(A-D-A)
S
e 60 |- | —%—Message(A-B-A)
= 2 -8 N
o) dode 5 s — *. Message(A-C-A)
5 20 , ——Message(A-D-A)
° —_— - -— —— = gt 4
= e % 8

0 |
0 10 20 30

Agent size (KB)

(a) Single agent migration/single messaging round-trip latency for various agent size.

10000 — — —— — ———
/
®8000 —— —— — - S
E
g 6000 e y | —s EPMS
[
9 4000 - - | =F=spitro
g sl |
£ 2000 — |
= _*
. - SR
0 5 10 15 20

No. of Agents(n)

(b) Total latency for varying number of participants.

Figure 4.12: Agent migration latency and messaging latency in LAN.

more costly. But if the number of messages is large, the messaging cost becomes larger
than total agent migration costs. The same type of advantages of using mobile agents
has been shown by researchers [35]. The papers [26][46][44] show that stationary agent
based distributed algorithms require a large number of messages. Figure 4.12(b)
compares total agent migration latency in EPMS (agent size was 23KB) and total
messaging latency in optAPO. Since the agent migration is one time round-trip for
each agent, the total agent migration cost in EPMS is much less than that of the

total messaging cost in distributed algorithms.

To measure total (TCP) traffic generated for agent migration and for inter-agent
messaging between different hosts, we used a packet analyzer software [34]. Figure

4.13(a) shows the results for single agent migration/single messaging and Fig. 4.13(b)

shows total traffic for varying number of participants n in EPMS and in optAPO. Here

48

40 — —_— —_ J— ———

35 —— //'7/"—]|

30 —= 7"' —|
Bzt |
EZO fee ’T_,.--"" ‘ —=— Migration
§15 _’_.},.:"_"_ - —8—Message

o+ ——]

S a 2|

0

5 10 15 20 25 30

Agent size (KB)

(a) Single agent migration/single messaging traffic for various agent size.

4000 — — —————— - -

/J
g 3000 - - —
= / —e EPMS
E 2000 ——— /| —e—omro
B
2 1000 — — - =
P e
. e ——
0 5 10 15 20

No. of Agents(n)

(b) Total traffic for varying number of participants.

Figure 4.13: Generated TCP traffic for agent migration and inter-agent messaging in
LAN.

also the mobile agent based solution (EPMS) generates less traffic as compared with
stationary agent based solutions (optAPO) since stationary agents based solution
requires a large number of messages.

Our measurement was on Aglet platform that uses Agent Transfer Protocol (ATP)
[39]. The cost will be different in other agent platforms that use other protocols.
However, since mobile agent migration is one time round-trip and stationary agent
based systems require a large number of remote messages, in any platform the mobile

agent based systems could cost less than the stationary agent based systems.

4.6 Discussion

In mobile agent-based applications, an untrustworthy host (or its user) may attack the

visiting mobile agents by virtue of its superior control over them. So, the participating

Chapter 4: Reducing Privacy Loss using Common Computational Space 49

agents should not visit any untrustworthy host. In EPMS, the participating agents
need to migrate into the agent server where the common computational space is
located. We assume that the agent server has been configured according to the
trusted computing specifications [20]36] so that the users can trust it. Also, the

users should make service agreement contracts with the service provider.
4.7 Conclusion

We have presented a mobile agent-based meeting scheduling scheme, EPMS, and
evaluated it with respect to computational complexity, privacy loss, and global utility.
The algorithm has a polynomial time complexity for scheduling multiple meetings
concurrently. We measured its schedule privacy loss and preference privacy loss in
the VPS privacy metric and Min privacy metric. We compared the privacy loss in
EPMS with that in a well-known optimization algorithm, optAPO, and that in the
centralized algorithm, which was shown to be efficient in the VPS privacy metric.
The schedule privacy loss in the VPS privacy metric is the minimal in the centralized
algorithm, while in the Min privacy metric, it is the minimal in EPMS. The preference
privacy loss in EPMS is the minimal in both the VPS privacy metric and the Min
privacy metric. The global utility in EPMS was found to be close to the optimal level
for smaller numbers of meetings but decreases slowly for larger numbers of meetings.
Thus, we can say that EPMS results in a good tradeoff among complexity, privacy,

and global utility for solving the meeting scheduling problem.

Chapter 5

Reducing Privacy Loss using Agent Server

Traditional (non-cryptographic) algorithms can be classified as either centralized or
distributed. A centralized algorithm is run by a single agent (participant) and results
in a high privacy loss to the central agent, because all of the participants need to
give away all their private information to the central agent. A traditional distributed
algorithm is run by multiple agents (participants) and the participants do not have
to disclose all their private information to the others. However, they need to disclose
a fraction of their private information to others. Therefore, a traditional distributed
algorithm does not offer complete privacy.

Cryptography based algorithms can solve the privacy problem by keeping the
input data in an encrypted form. However, existing cryptography-based general-
ized solutions are too complex to be used practically. Researchers have developed
a few problem-specific cryptography-based algorithms for solving specific MPCPs
[11][51][64] based on the specific characteristics of the related specific problem. Even
though the problem-specific solutions are more efficient than the generalized solution,
the applicability of each of these cryptography-based algorithms is limited to only the
specific problem for which it has been developed [51].

We present a new server-assisted privacy protection mechanism in solving many
multi-party computation problems which does not use complex cryptography. First,
we describe the basic idea of our privacy protection mechanism and analyze the tra-
ditional computing models to identify the requirements for realizing our basic idea.
Then, we propose a problem solving approach, the security policies for the participat-
ing agents (including resource access policies and the policies for the computational
result), and the security architecture of an agent server platform for enforcing those
security policies. Rather than using cryptography-based protection mechanism, we
use a server-assisted protection mechanism, which does not restrict our protection

mechanism for only specific problems or specific algorithms. Thus, traditional (i.e.

a0

Chapter 5 Reducing Privacy Loss using Agent Server 51

non-cryptography-based) algorithms can be used to solve the problems.

5.1 Proposed Server-Assisted Privacy Protection Mechanism

The basic idea of our privacy protection mechanism is to solve the problem by shar-
ing the private information among the participants in a controlled environment, but
protecting the shared private information from being disclosed from the controlled
environment.

Agents in traditional multi-agent systems are located at different hosts in a dis-
tributed architecture. It is very difficult to achieve uniform control over all of the par-
ticipants in a distributed architecture and the private information, which is shared
with other participants, cannot be protected from disclosure, because each of the
participants is administered and controlled by individuals. In order to achieve the
required control of our basic idea, (1) the architecture need to be a centralized archi-
tecture, (2) the participants need to migrate into the centralized architecture, (3) the
participants need to bring all of their input data into the centralized architecture, (4)
the architecture need to be capable of restricting the participants from disclosing the
shared private information to others, and (5) secure computational result (containing
no private information) should be sent to the users.

In our proposed server-assisted privacy protection mechanism, the participating
agents are trapped into an agent server platform called iCOP (isolated Closed-door
One-way Platform), which is the controlled environment for the participants. iCOP
has the following characteristics.

Isolation: The agent server platform is isolated from the user hosts and the users
retain no direct control over their agents in iCOP. The participating agents gather
for interaction and negotiation at the iCOP instead of interacting at any of the user
host platforms. This eliminates the necessity of accepting external agents into the
user hosts where most of the user private data are stored and eliminates the risk on
the user’s local data store from external malicious agents.

Closed-door platform: iCOP is a closed-door platform from which the partic-
ipants cannot communicate with the outside world. Agents can only communicate

with the other agents that are brought into the platform. This characteristic of the

52

iCOP helps to protect malicious agents from leaking any kind of private data of other
agents that are learnt in the problem solving process.

One-way platform: iCOP allows agents to only enter into the iCOP host plat-
form with proper authorization but does not allow them to leave the platform. Ac-
cordingly the iCOP host is made as a one-way platform. On completion of their task,
all the external agents, along with their data, are terminated at the iCOP host.

Following, we briefly describe the problem solution mechanism and then analyze
its data disclosure channels to comprehend important suggestions leading to the pro-

tection technologies.

5.1.1 Problem Solving Mechanism

In our proposed mechanism for solving the multi-party computation problem, the
participating mobile agents, along with their private input data, migrate into the
iCOP (provided by a service provider) with proper authorization, share their private
information within the iCOP through local messages amongst them, and carry out the
computation within the platform (Fig. 5.1). Each user must be registered with the
service provider and should sign a service contract. The service provider must have
a privacy policy and the registered users should set their own privacy policies. The
participating agents read the privacy policies from the users’ settings and match with
the policies of the service provider. If they match, the participating agents migrate
into the iCOP host for conducting the desired computation. The trust relationship
between a participating agent and the agent server is managed using digital signatures.
A participating agent from a registered user is given authorization by checking the
digital signature, which the agent carries with it.

Ideally, only the final result (e.g., in the MS problem, the date/time slot that all
the agents have decided as the schedule of the meeting) for which they reach the
agreement should be known to the respective users only, and any other information
about the users should be protected from sneaking away by the agents.

Because of the closed-door and one-way nature of iCOP, the participants cannot
send the computational result to the users by their own. However, without sending

the computational result to the users, the system will be useless. So, the participants

Chapter 5 Reducing Privacy Loss using Agent Server 53

Platform (iCOR)

e

User Host

(N7

User Host
4.

_Mobile Agent

Migration Migration _Mobile Agent

Service Agent

/
Security check
Resuit

Figure 5.1: Proposed problem solving mechanism.

handover the computational result to a trusted stationary agent, called the service
agent, which enforces the policies for the computational results (described in Section
5.1.3) for protecting them from leaking out hidden data through the computational

result, and sends it to the users.

5.1.2 Problem Analysis

This section analyzes the probable data disclosure channels in the iCOP and finds
the recommendations for realizing our basic idea. Data disclosure requires a commu-
nication channel (open or covert) between the sending and receiving entities and any
communication channel between two entities requires using system resources. Thus,
any communication between two entities can be protected if the sender can be pro-
tected from accessing the required system resources. However, if two entities should
be allowed to communicate certain data (e.g., computational result) through a com-
munication channel but should not be allowed to communicate other data (e.g., shared
private information), then the communicated data must be checked and verified that
they do not contain any encoded (hidden) data.

The participants should be granted access to necessary system resources to help
them solve the problem and at the same time to protect them from leaking out the
shared private information, all output channels accessible by them must be closed or
otherwise controlled. Thus, the security policy should not allow the participants access

to any system resources that could be used to create open channels to transfer data

to the outside world and should allow them access to the minimum system resources,

o4

which are mandatory for solving the problem.

The system must protect leaking any additional data through the result sending
process. To send any additional data with the computational result, the data need to
be encoded into it. Data can be encoded into the resulting object in many different
ways (e.g., by adding directly, using steganography [3] etc.) and even the encoded
data can be kept hidden by using cryptography. However, it is obvious that encoding
any additional data into the resulting object produces a different object regardless of
the content type of the object (text or binary) and encoding method of the additional
data. Figure 5.2 shows a simple steganographic method for encoding data by changing
some of the attribute values (marked with dotted ovals) of the original object [3]. It

also shows a simple cryptographic method for hiding the encoded data.

THE RESULT, x=2006/08/20, y=30 THE RESULT, x=2006/08/20, y=30
| I
steganography cryptOjraphy

.......

<The Resulfx£2006/20/08; y=30.0> || UIFISFTVMU-\y>3117019031-Iz>41

Figure 5.2: Encoding additional data into a text or binary object results in different
objects.

In order to detect possible hidden data into the transferring computational re-
sult, which the security policy allows to be sent to the users, the system security
policy should ensure the availability of the original computational result (containing
no hidden data) to be compared with the transferring computational result.

In addition to protecting the private inputs of the participants, the computational
result created by the participants should also be protected from others, including the
service agent. So, it should be encrypted with a group key of the participants [67] so
that a non-participant cannot decrypt it.

Besides open channels, covert channels can be created through the shared re-
sources or objects between the participants and the outside world. The sender changes
the attribute values of the shared resources or objects to encode/signal the data and
the receiver reads the changes in the attribute values of the shared resources to inter-

pret the encoded/signaled data. Such communication channels are generally known

Chapter 5 Reducing Privacy Loss using Agent Server 55

as covert channels [19]. Figure 5.3 shows a block diagram of the covert channel.

Change = Read
Attribute value ‘Anribute value

Figure 5.3: Block diagram of covert channel.

A covert channel can be classified either Storage Channel or Timing Channel.
Various examples of covert channels can be found in paper [19]. In a storage channel,
the sending process alters a particular data item, and the receiving process detects
and interprets the altered data to receive information. For example, the sender can
signal bits by locking and unlocking a file and the receiver can interpret the bits by
reading the locked status of that file. Both the sender and the receiver need to access
the lock status of the same file. In a timing channel the sending process modulates
the amount of time it takes for the receiving process to detect a change in an attribute
value or to perform a task, and the receiving process interprets this delay or lack of
delay as information. A covert channel is noisy if the corresponding shared object
is available to other processes as well as to the sender and receiver and its attribute
values are modified by more than one processes; it is noiseless if the corresponding
shared object is available only to the sender and the receiver and its attribute values
are modified by only the sender [19].

We can protect using covert channels with the outside world by a potential senders
by not granting access to the resources to the potential senders (i.e. not sharing) and
by protecting them from changing the attribute values of the shared resources or
objects. In addition to closing/controlling all possible open channels with the outside
world, the system must detect and handle all of the possible covert channels through
which data can be transferred in a covert/hidden manner.

System security policies define the set of rules which the participants should follow.
However, without any policy enforcement mechanism, the policies do not guarantee

information security/privacy. Thus, the system security architecture must have a

policy enforcement mechanism to enforce the defined policies.

56

5.1.3 Security Policies

The security policy of our agent server platform consists of the resource access policies

and the policies for the computational result.

Resource Access Policies

Some system resources, such as the memory and CPU, are mandatory for every
program for their normal operations. So, our resource access policies allow the par-
ticipating agents access to the mandatory resources (such as OS, CPU, and memory)
at the server. The participating agents cannot create any communication channel
with an outside entity by using only the mandatory resources, which are granted to
them. In order to solve the problem, they need to share their private information. So,
our security policies allow them to exchange local messages and share their private
information from within the iCOP. However, they are not granted access to any other
system resources, such as files and network sockets, which can be used to create com-
munication channel with outside the iCOP to transfer the shared private information
directly.

For carrying out various tasks, including the coordination among the participating
agents, sending the computational result to users, and terminating the participating
agents (after the computation is over), our resource access policies grant the service

agent all-permission.

Policies for the Computational Result

In order to protect the participating agents from leaking the shared private infor-
mation through the result sending process, the service agent enforces two policies
before sending the result R to the users: (1) each participating agent A; must pass
the computational result R; to the service agent and (2) the computational results
passed by the participating agents must be identical, i.e. R; = R; Vi,5 € {l..n},
where n is the number of participants. The first policy helps in making the original
computational result available to be compared with any suspicious computational

result and the second policy helps in detecting any encoded private information in

Chapter 5 Reducing Privacy Loss using Agent Server 57

the computational result. If at least one of the participating agents A; does not in-
clude any private information into its computational result R; i.e., creates the actual
computational result (R; =)R then any encoded data into the computational results
R; created by any other agent A; can be detected by comparing R; with R;. Thus,
the enforcement of the above two policies can protect the participating agents from
leaking the private information through the computational result, provided that at
least one of the participating agents does not include any private information into its
computational result.

In order to meet the first condition, each participating agent A; must actively
participate in the computation and get its copy of the result R; by using any simple
algorithm. To meet the second condition, i.e. to make identical computational re-
sults from their components, we propose to use a pre-defined format in creating the
computational results from their components. Without using a pre-defined format,
individual agent may make the same result in different formats (and thus hide private

information into it) making them non-identical.

Result Format

The computational result consists of a set of variables and constants. The result
format defines the rules of constructing a single message with its components’ name-
value pairs so that the result created by individual agent match with each other. Each
of its component value has a data type. We broadly classify the data types as (1)
integers (2) real numbers (3) date (4) string, and (5) boolean and assume that the
variable names are string. The format should define at least following characteristics
(where applicable).

1. Component format
e Data type of each component (integer, string, date etc.)
e Character case of string type
e Number of digits after decimal point of real numbers

e Date format (“yyyy/mm/dd”, “mm/dd/yyyy” etc.)

58

e Boolean value (T/F or True/False)

2. Appearance order of the component_name-value pairs.
3. Separation character between component_name-value pairs.

Suppose, the result consists of four components- one constant and three variables
x, y and z. Figure 5.4 shows a computational result in six different formats. Even if
they are semantically equivalent, they are not identical. The differences in the objects

in lines 2-6 with the object in line 1 are marked with dotted ovals.

THE RESULT, x=2006/08/20, y=30

THE RESULT,: x=2006/08/20, | 'y=30
THE RESULT, x=2006/08/20, y=30.0

THE RESULT, y=30, x=2006/08/2Q

Figure 5.4: Different formats may produce non-identical computational result from
its components.

By using a pre-defined format, say (1) component format- {constant}<string>
<upper-case>, x=<real> <two digits> y=<integer> and z=<date> <yyyy/mm/dd>,
(2) appearance order- {constant}, z, y, x, and (3) separation characters- a comma fol-
lowed by a space “, 7, the resulting object R; created by the individual agents A;
will be identical to the object in the first line in Fig. 5.4.

The rules mentioned here are not fixed for every context, but it is necessary to de-
fine those characteristics of the components to create a guideline for the participating
agents to create identical results (messages) that are to be matched with each other
by the service agent. In general, fixing the string case or a specific date format or
the appearance order of the components does not affect the semantic much. Allowing
different formats to represent the result creates the scope of hiding information into
it and enforcing them to a fixed format prevents data hiding into it.

In order to keep the computational result secret from the service agent and any
other unauthorized parties, we also propose that the participating agents should en-

crypt the computational result using a group private key so that a non-participant

cannot know the computational result.

Chapter 5 Reducing Privacy Loss using Agent Server ' 59
b fos
/ Participant 1 0 I

sl

sle

Participant

o

—

=]
e

Participant Service Agent

Figure 5.5: Process of creating and sending computational result.

The process of creating and sending the computational result R in our mechanism
has been illustrated Fig. 5.5 The figure shows that each of the participating agents
shares its private information, actively participates in the computation to get its copy
of the computational result, uses a pre-defined format to create identical computa-
tional result, encrypt the computational result with the group key, and passes its copy
of the encrypted result to the service agent, which compares them with each other

for equality and sends to the users.

5.1.4 Security Architecture

iCOP architecture consists of two basic units: a) Management or control unit and
b) Computational unit. Figure 5.6 shows a simple conceptual diagram of iCOP
architecture. The computational unit, consisting of the participating agents, performs
basic computations. The input data, which it needs to solve the problem, come
along with the agents through the input channel. The management unit oversees
the operations of the computational unit, monitors and controls the resources, which
the computational unit may use to perform its computation. The management unit
exercises access control over the computational input channel and output channel.
In addition to defining the security policies, a protection mechanism must have a
policy enforcement technology. Accordingly, the proposed iCOP security architecture
has a privacy manager for enforcing the resource access policies and a service agent

for enforcing the policies for the computational result (Fig. 5.6).

60

/ Access

Control

_ Monitor,
Control

Access
Control

Figure 5.6: iCOP security architecture.

The privacy manager is a reference monitor that monitors and controls the access
to the system resources by the agents in iCOP. It restricts the participating agents
from accessing the system resources without which they cannot communicate with
the outside world to disclose the shared private information. When any direct or
indirect request to access any of the system resources is made by an agent in iCOP,
the privacy manager holds the request, checks if any of the participating agents are
involved in the access request, and grants or denies the access based on the system
security policies. To make sure that the participating agents are not allowed any
unintended access (by virtue of high level permission) to the system resources, the
privacy manager explicitly checks each permission. For any access request to the
optional system resources, which are not allowed by the resource access policies, the
privacy manager inspects the stack frame execution context (the list of classes in the
system class stack) corresponding to the current series of method calls and throws
exceptions (i.e. deny the request) if it finds any external agent in the stack having a
codebase other than the server host. Thus, the privacy manager enforces the resource
access policies and makes the platform one-way and closed-door.

To enforce the policies for the computational result, we assume that the service
agent 1s a trusted agent. The service agent gets the computational result from the

participants and sends it to the users, provided that the computational result con-

forms to the defined security policies. Section 5.2.3 describes how the enforcement of

Chapter 5 Reducing Privacy Loss using Agent Server 61

those two policies can restrict the participating agents from leaking out the shared
private information through the computational result. Finally, in order to destroy the
shared data, which the participating agents acquire in the problem solving process,
the service agent terminates the participating agents along with their data at the

agent platform.

5.1.5 Service Protocol

A registered user can initiate the service by sending a request to the service agent.
The initiator agent must give all of the initial parameters to the service agent before it
migrates into the iCOP host. The service agent invites other participants to join the
computation and provides the initial parameters to them including list of participants,
problem description such as name of the problem, list of variables to be assigned, the
domain of the variable values, the domain of personal valuation of certain variables
etc. The parameters that are sent to the service agent before the participating agents
migrate into iCOP and before they share their private information among them are
treated as the initial parameters. The initial parameters cannot contain other agents’
private data because those parameters are sent before private information is shared.
Thus, it is safe to send them out of iCOP host with the invitation. Upon getting
the invitation, all participating agents collect related necessary data based on the
supplied initial parameters for the computation and migrate into the iCOP host.
The participating agents migrate into iCOP with their input data. This migration
is controlled and checking digital signatures, which the participating agents carry
with them, so that only the registered users can send their participating agents. The
participating agents carry out the computation by sharing their personal data through

local messages.

Each of the participating agents create the computational result in the process
illustrated in Fig. 5.5 and hands over to the service agent, which compares the results
for equality, send the result to the users and terminates (disposes) the participating

agents. Figure 5.7 illustrates an example of a simple service protocol diagram.

62

User Host 1, iCOP Host User Host 2
I

| IA: Initiator Agent
: SA: Service Agent
:In out data UA: User Agent

Privacy Policy Matching
'

Service start request
"

T
|

: > Authentication
I

Initial param request [

———

"5—<Param(1) name, value> | Authentication
J (Digital Signature)

— =

1

1

I

|
[<<Migration>> n ! [UA:
U@ =71 Invite (initial param)

i

]

I

— CoH
<Param(n) name, value>
1

[1 Input data
Authantication Privac licy matchin
(Digital Signatursa) P _Yio _y —— :_g
~ <<Migration>>
Negotiation

]

]

]

]

]

]

]

F L=

I

]

| [

: Computation(R) l :

: “Result RT T Result R? '

| e — — 3 k= — 1

] !

- > Compare (R1,R2)

: R R :
Q__r___..__—-_—_— ———r—~)

: Dispose Dispose :

I i I

Figure 5.7: Service protocol sequence diagram.

5.1.6 Reliability and Scalability Issues

A single server is subject to a single point of failure. In case of using a single server, if
the server fails or somehow compromised, the whole system fails. In order to handle
the fault tolerance, increase the reliability and availability of the server, and achieve
better scalability, we need multiple iCOP servers. These servers make up the iCOP
domain. After checking digital signatures of incoming agents, the authentication
server dispatches all of the participating agents of the same application to one of the
several computation servers (Fig. 5.8). Each of the computation server of the iCOP

domain must be made closed-door and one-way. By distributing different applications

into different computation servers in iCOP domain, we can achieve scalability and

Chapter 5 Reducing Privacy Loss using Agent Server 63

load balancing. If one the server systems fails, only the applications in that server
will fail, the rest of the servers can continue their computation. All of the applications
will not be affected by the failed system. Thus, we can achieve application-wise fault
tolerance. The use of replication server or backup server also provide fault tolerance

of the whole system.

sle

als

=

CS (iCOP)

Ap ﬁcﬁﬁon
B]El’s_patch .

1 CS (iCOP)
AS: Authentication Server

CS: Computation Server

Figure 5.8: iCOP domain with multiple agent servers.

If different agents of the same application could be distributed into different com-
putation servers, we could achieve in-application fault tolerance for which if one of
the servers fails, the rest of the applications could continue computation. However,
since the participating agents of the same application need to communicate among
them, in-application fault tolerance needs inter computation server communication,
i.e. resource permission for the participating agents. As previously explained, allow-
ing resource permission (even within iCOP domain) would create possibility of covert
channel between iCOP and other programs at the server. So, in order to avoid such
covert channels, we do not distribute the agents of the same application into different

computation servers.

64

5.2 Security and Privacy Analysis of the Proposed Mechanism

It is a common assumption in multi-party computation domains that a secure com-
munication channel between any two hosts exists. Also, we assume that standard
language level safety and operating system level safety are maintained in the server.
So, because of the limited resource permissions, the participating agents cannot at-
tack each other or the platform. This section shows through intuitive analysis how
the enforcement of the security policies protects from information leakage.

The participating agents in iCOP are not granted access to any system resources
(other than mandatory resources) without which the participating agents cannot cre-
ate any open channel with the outside world. However, there may be covert channels
being used that may try to leak the shared private information. All of the covert
channels in a trusted system must be identified and handled [19]. Thus, we perform

a covert channel analysis on iCOP.

5.2.1 Covert Channel Identification

We use the shared resource matrix method [37] to identify potential covert channels
in iCOP. With this method, if an attribute of a shared resource is found that can
be modified and referenced by two different processes, which are not allowed to com-
municate through legal channels, then potential covert channels exist through that
resource.

Every process at the agent server, including those of the participating agents at
1COP, uses mandatory system resources (Fig. 5.9). A participating agent in iCOP
may try to modify the attribute values of those resources and the external processes
may be able to refer to those attribute values. So, potential covert channels between
the participating agents and other programs in the system may exist through the
mandatory system resources.

The computational result from the participating agents is sent to the outside
receivers (i.e. users) by the service agent, i.e. the resulting object is shared between
the participating agents and the users by transferring the object itself. Thus, potential

covert channels between the participating agents and the users may exist through the

Chapter 5 Reducing Privacy Loss using Agent Server 65

Result

Policies

T Privacy|Manager

Owm A

oo | A

c g 1 N P i

Other |- Z| | I’? '

Programs |@ , ,

3 s) 1 . 1

o2 ' Service '

2 o NV Agent 1,

1]

83| &

Mobile Agents

Figure 5.9: Shared server resources.

computational result.

Our security policies do not allow any other objects or resources to be shared
between the participants and any other entity outside the iCOP. So, there can be no
covert channels between the participating agents and the outside entity through any
other resources/objects. Table 5.1 summarizes the data disclosure channels between

the participating agents in the iCOP and the outside world.

Table 5.1: Summary of data disclosure channels in iCOP.

Chan. Type Through Exist?

Open Any resource or object No

Covert 1. Mandatory system resources | May exist
2. Computational result May exist
3. Optional system resources No

5.2.2 Potential Data Leakage Mechanisms

A potential sender (participating agent) may try to leak out the acquired private
data though communication channels, which it can access. There are no open channel
accessible to the participating agents. However, two types of covert channels may exist

in iCOP: through the mandatory system resources and through the computational

result.

66

A participating agent may create covert channels through mandatory system re-
sources by implicitly changing their attribute values. For example, the sender may
signal a 0 through relinquishing CPU by going into sleeping mode and may signal a
1 by running CPU extensive process; the receiver measures how quickly it gets CPU
and detects 0 if delay is low and detects 1 if the delay is high. Also, the sender may
exhaust memory to signal, say 1, and releases memory to signal, say 0. The receiver
need to try to allocate memory and depending upon success or failure, it can detect
signal 0 or 1.

The computational result created by the participating agents is transferred to the
users. Thus data leakage though any covert channel via the computational result
requires to encode (and hide) the encoded data into it. Hiding data into an object is
generally known as steganography [3] and requires some kind of modulation on the
original object. In our context, the original computational result refers to the actual

computational result which does not contain any hidden data.

The modulation technique uses some kind of protocol to encode information and
the receiver need to perform related demodulation to interpret the encoded data.
Different kinds of modulation are possible. Following are séme examples.

Adding text: The sender adds additional characters like white space, punctuation
marks or decimal point in numerical values etc. without changing the semantic of the
text. Table 5.2 shows an example of simple protocol and Fig. 5.10 shows an example
of hiding data using that protocol. If the first line of Fig. 5.10 is the original object,
then with the protocol shown in Table 5.2, the second line of Fig. 5.10 contains
hidden data “010000011110”. But, semantically both lines are equivalent.

Table 5.2: Example of a simple steganography protocol by adding characters

Signal Means
Additional 1 white space 00
Additional 2 white space 01

Additional 1 digit with numerical value 10
Additional 2 digit with numerical value 11

Chapter 5 Reducing Privacy Loss using Agent Server 67

This is the computational result, x=3, y=2

This JsOtheCcomputational_yesult, x=300) y=2(0)

Figure 5.10: Process of encoding data into computational result by adding extra
characters.

Arranging components: An object may possess the same semantic even after re-
arranging its distinguishable components. For example, a date may be represented
with different formats. A simple steganography protocol can be built using different
formats as shown in table 5.3. With the protocol shown in Table 5.3, to send “101”
the sender must send a date value in the “yyyy/dd/mm” format. Similarly, by using
different sequence of components of the computational result, a number of bits can

be transferred covertly.

Table 5.3: Example of a simple steganography protocol by arranging components

Format Means Format Means
dd/mm/yyyy 000 |mm/yyyy/dd 011
dd/yyyy/mm 001 |yyyy/mm/dd 100
mm/dd/yyyy 010 |yyyy/dd/mm 101

Changing case: Data can be encoded by changing the case of certain alphabets
(e.g., start of each sentence, first alphabet of each word or an alphabet of any position)
of the text. With the protocol shown in table 5.4, the text “This is the Computational
Result” contains hidden data “10011”.

Table 5.4: Example of a simple steganography protocols by changing case of alphabets

Format Means
Capital letter 1
Small letter 0

Above, we have shown few examples of data encoding/hiding techniques. However,
there can be many other techniques of encoding data into an object and even the

encoded data can be kept hidden by using different techniques e.g., cryptography.

68

However, it is obvious that encoding any additional data into the resulting object
produces a different object regardless of the content type of the object (text or binary)

and encoding method of the additional data.

5.2.3 Covert Channel Handling

Two types of covert channel may exist in iCOP: thought the mandatory system
resources and though the computational result. In this section we describe how these
covert channels are handled in the iCOP.

The covert channels through the mandatory system resources are very noisy i.e.
their bandwidth is very low, because all the processes in the system use the mandatory
system resources. This type of covert channel is common in every system, because in
every system the mandatory system resources are shared among all system processes.
Thus, the underlying operating system handles these covert channels using various
techniques (e.g. memory partitioning, CPU scheduling etc.) to eliminate them or to
reduce their bandwidths to very low values making them ineffective [56][19]. So, we
do not take any special measures for them. As an additional measure, their band-
widths can be further reduced by introducing additional delays and noise deliberately
into those channels (e.g., using random allocation algorithms: introducing extraneous
processes that modify covert channel variables in random patterns) [19].

The enforcement of the two specific policies (conditions) set forth for the compu-
tational results can protect the participants from using covert channels through the
computational result. A covert channel through the computational result is possible
only when the result is sent to the users by the service agent. Let us suppose that
the actual computational result is not equal to some private data of some participant.
Let us suppose that an actual computational result containing no private informa-
tion is R. Additional data can be encoded into the computational result using many
different techniques [3][31] and the encoded data can even be kept hidden by using
cryptography (Fig. 5.11). However, it must be noted that encoding any additional
data into the resulting object produces a different object, regardless of the content
type of the object (text or binary) and encoding method of the additional data (Fig.

5.2, 5.4 and 5.11). In other words, if a suspicious object is identical with the original

Chapter 5 Reducing Privacy Loss using Agent Server 69

one, which contains no hidden data, then the suspicious object cannot contain any
hidden data. Thus when a participating agent A; encodes some private information

with its computational result R; will not be identical to the actual computational

result R.
Encoding
Table

Change

Sender atributes

Figure 5.11: Encoding data into the computational result by changing attribute values
creates different object.

We categorized the possible maliciousness, associated relationships among the
computational results passed by the participants, and the corresponding inferences

for the enforced policies into five cases (Fig. 5.12).

Case | Malicious Non- Created Results | Policy met? | Privacy loss
malicious (data sent?)

1 A, A,.A, |R;=null, R,=..R=R No No

2 A, A A, R;#R,=..R =R No No

3 A, A, A, R=R=R,=..R, No No

4 None A.A, N R=R,=.R=R Yes No

5 | A.A, | None [\R,R,-..R R Yes Mutual

/ \
No agent cares about At least one agent cares
its own privacy about its own privacy

Figure 5.12: Possible cases of the relations among the computational results from
different participants.

In Case 1 in Fig. 5.12, one of the participants, say A;, has not provided any
computational result to the service agent. So, the policies are not met, and the result
1s not sent to the users, i.e. no scope for creating a covert channel. In Case 2, one of
the participants, say A;, is malicious; it has encoded some private information into its

computational result. So, the computational results will not be identical, the policies

70

are not met, and the result is not sent to the users, i.e. no scope for creating a covert
channel. In Case 3, most of the participants are malicious and they have encoded
private information with their results, which are not identical to the non-malicious
participant. Thus, the policies are not met, the computational result is not sent to
the users, and there is no scope for creating a covert channel. In Case 4, none of the
participants are malicious, they have created identical computational results (that
are equal to the actual computational result) containing no hidden information, i.e.
no covert channel has been created, the policies are met, and the result is sent to
the users. Finally, in Case 5, all of the participants have been considered malicious
and each of them has encoded private information into their results. If they make
identical results, the result is sent to the users and it causes a mutual privacy loss.
From the above analysis, we see that (mutual) privacy loss is possible when all of
the participants are malicious (i.e., Case 5). If at least one of the participants cares
about its own privacy and wants to protect its own private information from being
leaked out, all it needs is to be not malicious and make its own result identical to the
actual computational result, which eliminates the possibility of a Case 5 and there
remains no scope for privacy loss. Thus, the enforcement of the policies set forth for
the computational results can prevent encoding hidden data into the computational

result for leakage.

5.2.4 Other Methods of Leaking Data

During our investigation, we found an example of how to make it possible to signal
hidden data to the users in the result sending process without encoding the data into
the computational result. We have devised one such method, which we call the result
biasing method. If there are a number of possible solutions to a given problem, a
protocol can be created that maps one bit stream with each of the solutions numbers
(Table 5.5). To send one of the bit streams, which are defined in the protocol, an
agent needs to manipulate its own inputs in the algorithm so that the final result
leads to the respective solution number in the protocol. For example, Fig. 5.13 shows
four possible solutions and their flow. After observing the given value of al, Agent

B may give a value for bl so that the solution leads to either S3 or S4. Then, after

Chapter 5 Reducing Privacy Loss using Agent Server 71

observing the given value of a2, Agent B may give a value for b2 so that the solution
leads to S3. Thus, Agent B can lead to the solution number S3 when it needs to
send a “10” (according to the protocol in Table 5.5) to its users. Agent A is not
aware of such input manipulation. , When the user receives solution no. 3 as the
computational result, she can recognize that her agent has sent a “10”. We see that
hidden data can be sent through this method in the result sending process without

encoding it into the computational result.

Table 5.5: Simple example protocol for result biasing method.

Soln. no. Mapped with | Soln. no. Mapped with
S1 00 S2 01
S3 10 S4 11
Start
v
--at» nputal, bl <«b1—
. Agent A’s , AgentB’s
inputs =al a2 v inputs =b1,b2
— bi=? =
Y 4

-a2p Inputa2 b2 «4b2- azp Inputa2, b2 «b2

b2=? -

A
S1 §2

&‘—‘ﬂ

v
S4
Figure 5.13: An agent can lead to one specific solution by manipulating own inputs.

Leaking data through the result sending process without encoding it into the
resulting object requires the existence of multiple solutions of the problem, they are
priory known (for creating the decoding table) and an agent can successfully bias all

the other agents towards a specific solution.

72

5.2.5 Complete Privacy Protection

There are distributed algorithms as well as centralized algorithms for some problems
(e.g. the meeting scheduling problem). However, there are no distributed algorithms
for some other types of problems (e.g. the vector dominance problem). These prob-
lems are solved with centralized algorithms. In the iCOP, even though the participants
are protected from encoding the shared private information into the computational
result and disclosing it to the users, they can not be protected from manipulating
their own inputs during execution of a distributed algorithm and thus signaling hid-
den data to the users as described in Section 5.2.4. However, the manipulation of
the inputs can be protected and complete privacy can be achieved if the inputs are
exchanged first with a commitment protocol [49] and then centralized algorithms are
used by each of the participants to solve the problem. Simple exchange of inputs also
allows input manipulation and thus result biasing. For example, in a simple input
exchange (Fig. 5.14 after getting values (al,a2) from Agent A, Agent B can calculate
its required value of bl and b2 for leading the solution number to the desired one and
then give those values to Agent A. In a commitment protocol (Fig. 5.15, the values
need to be committed before actual values are exchanged. In the verification phase,
any mismatch between the committed values and the given values can be detected.
Thus, after committing values, if an agent gives different values than the committed

ones by observing the other parties inputs, the other party can detect it.

Agelnt A Agent B
| |

al,a2 - Sendst ,a2-->{

<+-Sendbib2— bi, b2

’ \
Figure 5.14: Simple input exchange.

Our system requires that all of the participants must give identical result to the
service agent. So, if a centralized algorithm is to be used in iCOP, in order to meet

the conditions for the computational result, each of the participants should execute

a centralized algorithm individually with the committed inputs. Thus, they can be

Chapter 5 Reducing Privacy Loss using Agent Server 73

Agent A Agent B
| |
e X-—b{ Commit
I ~ values
«—SendY— Y=H(b1,b2)
| |
al, a2 —Sendal,a2-»
| . Simple
4 Sendb1,b2- bi, b2 exchange
Compare 3
(Y, H(b1,b2)

Compare > .- .
(X, H(at.a2) | Verification

Figure 5.15: The commitment protocol for exchanging inputs.

protected from manipulating their inputs for biasing biasing the result to signal any
data to the users. However, executing multiple centralized algorithm at a the server
will require much higher computational time than executing a distributed algorithm.

So, complete privacy protection is achieved at a cost of higher computational time.

Figure 5.16 shows a summary of the data disclosure channels in iCOP and their
protection schemes. All of the open channels are protected by the privacy manager.
The possibility of creating covert channels, which requires shared resources, are pro-
tected by not sharing objects/resources, except the computational result, between the
participating agents and the outside world. Enforcing the policies set forth for the
computational result protects most of the scope of creating covert channels through
the computational result. In addition to enforcing these policies, the participants can

ensure complete privacy by committing inputs and solving the problem themselves

using centralized algorithms.

74

Channels Protection

o

Open Privacy Manager
channels\ (Restrict Resources)

Service agent
Covert el
4 =R

channels \Enforce Policy A=A |
Input Manipulation med Input

Figure 5.16: Summary of data disclosure channels in iCOP and their protection
schemes.

iCOP

5.2.6 Implementation Issues

The Java architecture has a reference monitor, which can monitor and control the use
of system resources [23]. But, the Java security manager enabled JVM itself is not a
one-way closed-door platform. Thus, we use the Java architecture and customize the
Java security manager to make the platform one-way and closed-door. Even though
Java technology can provide security to end user system against untrusted code (e.g.,
applet from the Internet) by putting them into sandbox and protecting them from
security sensitive activities on local system, it allows downloaded code in the sandbox
to connect back to the originator i.e., open channels between the sandbox of end user
host and the originator host of the agent can be created. So, if an agent can get
some information (due to sloppy security policy) from local system, it can send the
information to its originator. Even the server can be made secured from mobile agents
by activating the Java security manager with proper policy, the agents of multi-party
computation exchange their private information in their problem solving process,
which is unavoidable. Thus, the agents get seusitive information at the first place
(due to the nature of the multi-party collaborative problem) without compromising

the security manager and can send the acquired information to their originator hosts.

Customizing the Java security manager to close all channels, which may be used
by the mobile agents, can prevent them from leaking out any information. However,
without sending the computational result to the users, the system becomes useless.

It needs a mechanism to send the computational result to the users. For this, iCOP

uses a trusted service agent, which is assumed to be not malicious. To ensure that

Chapter 5 Reducing Privacy Loss using Agent Server 75

the mobile agents don’t send hidden information through the result sending process,

the service agent enforces the security policies defined for the computational result.

We developed a prototype server for multi-party computation based on the secu-
rity policies and security architecture described in Sections 5.1.3 and 5.1.4, respec-
tively. We used the Aglet environment (Ver. 2.0.2) [39][33], which is a Java-based
open-source agent development kit. The original Aglet platform is not a closed-door
one-way platform. We customized the Aglet security manager (which in turn is a
customized Java security manager) to make the iCOP privacy manager. We also

modified the parts of the Aglet platform that do not conform to our security policies.

The default Aglet environment has a retract facility that allows the users to re-
tract their agents from an Aglet server. We removed that facility in the iCOP server,
by modifying its source code, so that the users cannot retract their agents from the
ICOP. To allow exchange of local messages, the participating agents were granted
Aglet defined message permission. However, with experiments, we found that the
Aglet defined message permission includes some Java defined permissions e.g., net-
work socket permission. To make sure that the participating agents are not allowed
any unintended permissions (by virtue of implied Java defined permission caused by
any Aglet defined permission) on the system resources, the privacy manager explicitly
checks each permission on system resources. For any access request to the optional
system resources, the privacy manager inspects the stack frame execution context
(the list of classes in the system class stack) corresponding to the current series of
method calls and throws exceptions (i.e., deny the request) if it finds any external
class (mobile agent) in the stack having a codebase other than the server host. Thus
the privacy manager restricts the external agents (i.e. participating agents) from us-
ing any of the system resources other than the mandatory resources, and makes the

platform one-way and closed-door.

In our prototype, the service agent was made a simple stationary agent. After
it gets the computational result from any of the participating agents, it waits for
a threshold amount of time to get the results from all other participating agents.
Then it checks if all of the present participating agents have given the results and

if the result from them are identical. If both the conditions are met, it disposes the

76

participating agents and sends the result to the users.

5.3 Experimental Evaluation and Analysis

5.3.1 Effectiveness of the Privacy Manager

For evaluating the effectiveness of the privacy manager in protecting mobile agents
from disclosing the shared private data to the outside world, we created several ma-
licious mobile agents with the same functionalities of the hostile applets reported by
the Java community [38]. Besides, we created several other mobile agents to test the
capability of the privacy manager in protecting them from performing other forbidden
operations in the iCOP. Then, we sent those mobile agents into the iCOP server and
observed whether they were successful in performing their malicious tasks.

Table 5.6 lists the mobile agents of our experiments, the operations that they tried
to carry out in order to leak the personal information, and the protection result of
the privacy manager. Following are the short descriptions of the agents.

Besides direct message communication, a mobile agent may send sensitive data
to external world by e-mail. The mailer agent is an agent capable of sending e-mail
to any address. The maliciousness of this agent we considered was to send some
information by e-mail.

The re-director agent tried to make connection to any host by redirecting the
connection with the originator. The URL opener agent also tried to open an URL
connection with any host in the network.

The thread killer is a type of agent which tried to kill a thread in the system. If
it becomes successful, it can kill the threads of all other agents including the service
agent.

The mutator agent is capable of modifying an existing class file. A mutator agent
may modify the class file of the service agent and modify its functionality to work for
the mutator agent.

The messenger agent can send messages to its originator. This agent was given
a host address and a directory name of the host. It listed the contents of the given

directory and tried to send back the listing to the originator.

Chapter 5 Reducing Privacy Loss using Agent Server

77

Table 5.6: List of malicious agents, their operations and the action taken by the
privacy manager.

Agent

Operations

Action by the Privacy Manager

Mailer

Send e-mail to the origin host

Blocked (Lack of SocketPermission)

Re-director

Re-direct the connection to a
different URL

Blocked (Lack of SocketPermission)

URL opener

Open a new URL

Blocked (Lack of SocketPermission)

ID, Password
sender

Asks for the ID and password
and sends them to the origin
host

Blocked (Lack of SocketPermission)

server

Thread killer | Kill all threads except itself Blocked (Lack of modifyThread
per.)
Mutator Modify class files located at lo- | Blocked (Lack of FilePermission)
cal host
Messenger Send messages to a remote | Blocked (Lack of SocketPermission)
agent
RMI client Open connections to an RMI | Blocked (Lack of SocketPermission)

Agent creator

Create Agents from the origin
host

Blocked (Lack of SocketPermission)

host

Cloner Create clones of itself Blocked (Lack of Clone Permission)
Dispatcher Send agents to the origin host | Blocked (Lack of SocketPermission)
Migrator Migrates to the origin host Blocked (Lack of SocketPermission)
Retractor Retract agents from the origin | Blocked (Lack of SocketPermission)

The RMI client mobile agent is an RMI client that can send message to a remote

RMI server. A malicious mobile agent may try to send unauthorized data to a remote
RMI server by invoking RMI methods.

The agent creator agent can create agents from the origin host. Thus, an agent

creator may send signal to the origin by creating/not creating agents from the origin

host at some intervals indicating “0” or “1”.

The cloner agent may create its clone and leave its copy at the server. Thus it

may avoid the termination by the service agent.

The dispatcher agent may dispatch another agent to an external host. Thus a
malicious agent may dispatch its partner malicious agent to an external host from

the agent server.

The migrator agent simply migrates to another host from the server and takes

78

away the collected private information with it.

The retracting agent collects private information and waits for retraction. The
originator retracts the agent from the server along with the private information.
Retraction can be said as an indirect migration process.

In our experiments, we found that the privacy manager blocked every types of
forbidden operations according to the security policies, which defines granted permis-
sions, and proved its effectiveness in protecting malicious activities. An operation
may require several permissions and the lack of any one of them can protect an agent
from performing that operation. However, the privacy manager shows only the first
permission which the agent lacks and which it encounters in the permission check
(Table 5.6).

In web browsers, the hostile applets can send the acquired data to their origin
hosts, because the browsers allow any downloaded applet to connect back to its origin
host. iCOP does not allow the the mobile agents to connect to the outside world or
to access to local resources through which they may transfer the acquired private

information.

5.3.2 Privacy Loss

We measured the privacy loss through mathematical analysis and compared the pri-
vacy loss in our mechanism with those in traditional mechanisms for solving the
vector dominance problem [51] and the meeting scheduling problem [66]. For the
vector dominance problem, each participant solved the problem with a centralized
algorithm separately by exchanging their private vectors with commitment protocol.
For the meeting scheduling problem, the participants used a centralized algorithm
such as standard (centralized) backtracking algorithm or a distributed backtracking
algorithms such as ADOPT [46]. Privacy loss was measured using the Min metric
[32] and the VPS metric [41]. The privacy loss of the system is taken as the average
privacy loss of all the participants.

For the vector dominance problem, the agents exchange their vectors using a
commitment protocol [49] from within the iCOP, resulting in both agents getting

both vectors. Then, each agent simply compares the respective components of the two

Chapter 5 Reducing Privacy Loss using Agent Server 79

vectors, creates the computational result, say “TRUE”, (in the pre-defined format)
and passes it to the service agent. Even though the participants get each other’s

private vectors from inside the iCOP, they cannot leak anything, i.e. no privacy loss.

With the meeting scheduling problem, a number of participants schedule a meeting
with their private valuations of time at each slot (i.e., preferences) whose components
can take values from the set V := {1, ..., K}. The value of K was varied from the set
{3,4,5,6,7}. The number of time slots d was assumed to be 10 and the number of

participants n was varied from 3 to 20.

The privacy loss in optAPO occurs in the initialization phase at which the partici-
pants exchange their private information with their neighbors. The minimum privacy
loss (i.e., one neighbor) in optAPO is d/((n — 1) *d) = 1/(n — 1) in the VPS metric
and n* 1/n =1 in the Min metric.

The privacy loss in the ADOPT algorithm varies from scenario to scenario and is
calculated from the amount of information shared with the others. Thus, we measure
the privacy loss in the ADOPT algorithm by taking the average privacy loss from

different scenarios in the simulation.

In the EPMS algorithm, the privacy loss in the VPS metric is 1/(nx(n—1)); n>

2 and that in the Min metric is d/n where, n is the number of participants [32].

In the centralized algorithm, the privacy loss in the VPS metric is (n—1) % (1/(n—
1))/n = 1/n and that in the Min metric is ((n — 1) *1)/n = (n — 1) /n where, n is the
number of participants. Note that we have taken into consideration that one of the
participants solve the problem by accumulating all the inputs and using a centralized

algorithm.

Figure 5.17(a) shows the privacy loss for varying numbers of participants in the
four algorithms in the traditional architectures in the Min metric and Fig. 5.17(b)
shows the same in the VPS metric. From the figure, we can see that in the traditional
architecture, the privacy loss in the optAPO is the highest, followed by the centralized
algorithm (in which one of the participants solves the problem), the ADOPT, and
the EPMS.

The maximum privacy loss in the iCOP depends upon the inherent privacy loss in

the algorithm and the maximum amount of information that can be leaked out from

80

18 - - - ™ = -
_a— e _.I
08 —>2— I
r TO—9—6—6 & ¢ —o— ADOPI(Trad)
£ 04y e - —¢— EPMS(Trad)
B —e— Centr(Trad)

No. of Agents(n)

(a) Min metric

—— optAPO(Trad)

—o&— ADOPT(Trad)

~| —>¢— BPMS(Trad)
—o— Centr(Trad)

No. of Agents(n)

(b) VPS metric

Figure 5.17: Relative privacy loss for four algorithms in traditional architecture.

the iCOP. For the purpose of analysis, the maximum privacy loss in the iCOP has
been shown.

Figure 5.18(a) shows the average privacy loss for optAPO in the traditional archi-
tecture and in the iCOP for the Min metric and Fig. 5.18(b) shows the same in the
VPS metric. We see that the privacy protection by the iCOP is significant.

Figures 5.19 and 5.20 show the average privacy loss in ADOPT and EPMS, re-
spectively, and Fig. 5.21 shows the average privacy loss in the traditional centralized
approach and multiple centralized algorithm by each participant.

The privacy losses in the iCOP security architecture using a distributed algorithm
are much lower than those the algorithm causes in the traditional distributed archi-

tecture. We take into consideration that a number of possible solutions exist and a

participating agent can bias all other participating agents towards a specific solution

Chapter 5 Reducing Privacy Loss using Agent Server 81

1. m - ™ = ==
0.8 +——— = —
3 H
8 06 F———— e ———
= | —8— optAPO(Trad)
§ 04— —— —a— optAPO(ICOP)
=
a ‘ ‘
0.2 —-
i i
0 EPM—E——E—E—@
3 8 13 18
No. of Agents(n)
(a) Min metric
§ s=== - e
0.8 +— —— =
E 0.6 1 — -—
g —&— optA PO(Trad)
£ 04 x_ - = — | —5&— optAPO(IiCOP)
o
0.2 - - - —
—
b - —a
0 H—p —E 28— 5 T <3
3 8 13 18

No. of Agents(n)

(b) VPS metric

Figure 5.18: Reducing privacy loss in optAPO algorithm using iCOP.

by manipulating its own inputs. However, if there are fewer possible solutions, then
the privacy loss in the iCOP architecture using a distributed algorithm will be less
than that shown in the graph. Finally, the privacy loss in the iCOP security archi-
tecture using a centralized algorithm executed by each participant separately (i.e.,
multiple centralized algorithm) with the committed inputs resulted in no privacy loss
(Fig. 5.21).

The privacy loss in the VPS metric is much lower than that in the Min metric.
This is due to the differences in the definitions of the two metrics [32] [41]. The
Min metric accounts for the number of participants that lose their information to
any of the other participants, regardless of how many participants the information

is revealed to. However, when the privacy is measured considering the fraction of

the participants to whom the information is lost, as in the VPS metric, the privacy

82

08— —_— -
go.sﬁam{_} e |
~ F—O—6—O & ¢ —o— ADOPT(Trad)
E 0.4 + _— | —e— ADOPT(iCOP)
0.2 - -_—
* =
0 Tt —e—— > — — & &
4 8 13 18
No. of Agents(n)
(a) Min metric
1 = s e —
0.8 +——— —
2 06+ —— —— —]
% | | —o— ADOPT(Trad)
E 0.4 | = — — | —e— ADOPT(iCOP)
0.2 <'BE";":‘—: —_—— {
e]
0r—o b3 _? : %’——_@T@
3 8 13 - 18

No. of Agents(n)

(b) VPS metric

Figure 5.19: Reducing privacy loss in ADOPT algorithm using iCOP.

loss becomes much less, because the loss does not occur to all of the (n — 1) other
participants.

For the distributed algorithm in the iCOP security architecture, the same infor-
mation is revealed to other agents as for it in the distributed architecture, but within
the iCOP, and only a very small fraction of the revealed information can be disclosed
outside the iCOP, resulting in very low privacy loss. On the other hand, with each of
the participants using centralized algorithms, no information can be disclosed outside
the iCOP, resulting in no privacy loss.

We took into consideration that a number of possible solutions exist and a par-
ticipating agent can bias all other participating agents towards a specific solution by

manipulating its own inputs. However, if there are fewer possible solutions, then the

privacy loss in the iCOP architecture using a distributed algorithm will be less than

Chapter 5 Reducing Privacy Loss using Agent Server 83

0.8 —— s
LYY]
g —>¢— EPMS(Trad)
g0 —*—Ervs(oon

No. of Agents(n)

(a) Min metric

0.8 = == |
3 06 +—- — |
= —>— EPMS(Trad)
% it | -2 = | —k— EPMS(iCOP)
0.2 }54—&— T |
0 KWK
3 8 13 18

No. of Agents(n)

(b) VPS metric
Figure 5.20: Reducing privacy loss in EPMS algorithm using iCOP.

that shown in the graph.

5.3.3 Computational Time

A distributed algorithm in the iCOP results in very low privacy loss compared to that
algorithm executed in the distributed architecture. On the other hand, a centralized
algorithm executed individually in the iCOP by all of the participants results in no
privacy loss. Executing a distributed algorithm in a server may require higher com-
putational time than executing it in a distributed architecture. Also, the execution of
a centralized algorithm by multiple agents in a server (as in our scheme) will require

a much higher computational time than executing it once (as in a traditional central-

ized scheme). For the purpose of analysis, we consider the worst case, i.e. only one

84

o 0
08 +——*" - ——
o
2 O
§~ ®— Centr(Trad)
g o4 M-centr(iCOP)
02— —
0 &- { <3 =
3 8 13 18
No. of Agents(n)
(a) Min metric
1 -— —— — - —— -
L e e ——
_go,a-—.— —
! #— Centr(Trad)
go.d = ———— —= | —%— M-centr(iCOP)
[
0.2 — — —— — e = =
vyl - —o- 5 ®
04 :
3 8 13 i8

No. of Agents(n)

(b) VPS metric

Figure 5.21: Reducing privacy loss by using multiple centralized algorithm in iCOP.

agent server exists in the iCOP domain. Then, we measure the computational time
in the iCOP and compare it with the computational time in traditional architecture
for the same algorithm.

For computational time measurements, the Cycle-based Runtime (CBR) metric [§]
was used, which takes into consideration the concurrency in distributed algorithms
and the latency of the underlying communication environment. To measure inter-
agent remote messaging delays (in distributed architecture) and inter-platform agent
migration delays (required in our mechanism), we used two hosts (Host A and Host
B) with the specifications shown in Table 5.7 and the Aglet environment [33].

For a 23KB agent, it took about 21 ms for a single migration (including the

serialization, de-serialization, class loading etc.) between two platforms, and the

single messaging latency between the two agents at two platforms was 4 ms. The

Chapter 5 Reducing Privacy Loss using Agent Server 85

Table 5.7: Specification of the hosts’ used for measuring remote messaging time and
migration time.

Host A Host B
Processor 1.4 GHz 1.8 GHz
RAM 768 MB 256 MB
NIC 100 Mbps 100 Mbps
(ON] Windows XP | Windows XP

value of the messaging/migration time was represented in terms of the number of
(concurrent) constraint checks. We also considered that one constraint check requires
no more than 100 language level key instructions. From the measurement in our
environment, single messaging time = 5000 constraint checks and agent migration

time = 26250 constraint checks.

Figure 5.22(a) shows the relative computational times (taken averages of 15 runs)
of the ADOPT algorithm in the distributed architecture, the ADOPT algorithm in
the iCOP architecture, the centralized algorithm executed by a single agent, and
the centralized algorithm executed by each of the participating agents in the iCOP
architecture for varying numbers of agents/participants. The input values to the
algorithm were taken randomly from a specific range. The complexities of the DCOP
algorithms (e.g. ADOPT) become exponential with the number of agents because of
their backtracking mechanisms. Computational time in the iCOP includes the agent
migration time and the algorithm execution time at the server, while that in the
distributed architecture includes remote messaging time and the algorithm execution
time. From the Fig. 5.22(a), we see that for a small number of participants, the
traditional centralized mechanism requires the least computational time, followed by
the distributed algorithm executed in the traditional distributed architecture, the
centralized algorithm executed by each of the participants in the iCOP, and the
distributed algorithm in the iCOP. With the increase in the number of agents, the
growth of computational time is minimized in the centralized mechanism, followed by
the distributed algorithm in the iCOP, the distributed algorithm in the distributed
architecture, and the centralized algorithm executed by each participant in the iCOP.

Even though the single agent migration time in our mechanism is relatively larger

86

2500 —— —

il

2000 +—————— o

/| —o— ADOPT(Trad)
4 £
' G{ 7| —— ADOPT(iCOP)

. —®—Centr(Trad)

#7 | —o— M-centr(iCOP)

CBR (Thousands)
&
o
(=]

No. of Agents

(a) For different number of agents.

5000 ————— —

—&— ADOPT(Trad)
+— ADOPT(ICOP)
®— Centr(Trad)

—&— M-centr(iCOP)

CBR (Thousands)

1000

Network speed

(b) For different network speed.

Figure 5.22: Comparison of computational times in traditional architecture and in
iCOP using CBR metric.

than a single messaging time in the distributed mechanism, the total agent migration
(performed once) time in our mechanism is small as compared with the time for a
larger number of remote messages in the distributed mechanism for large number of
participants. However, in problems which involve only few a messages per agent,
the distributed mechanism would require fewer CBR. Finally, a centralized algorithm
executed by all of the participants separately at a single host requires the highest
computational time, when the number of participants is very large.

Figure 5.22(b) shows the computational time (10 agents) with different relative

network speeds L. The value of L for the network used in our experiment has been

labelled 100. If the communication latency is decreased i.e., if we use a faster network,

say L = 1000, then the computational time in the distributed mechanism becomes

Chapter 5 Reducing Privacy Loss using Agent Server 87

lower than that in the iCOP. So, in a very high speed network, even for a large number
of agents, the larger inter-agent messaging time in the distributed mechanism becomes
very low and the serial execution time for all agents in our mechanism becomes high
and as a result, the computational time in the distributed mechanism becomes lower
than that in our mechanism. However, if we use a slower network, say L = 10,
then the computational time in the iCOP becomes lower than that in the distributed
mechanism.

The iCOP provides very good privacy in using distributed algorithm and complete
privacy in using multiple centralized algorithms. For small number of participants,
the computational times are almost the same in the two cases. However, for large
number of participants the computational time in using a distributed algorithm in
the iCOP is lower (Fig. 5.22(a)). Thus, for very sensitive data, multiple centralized
algorithm should be used and for less sensitive data, distributed algorithm can be

used, especially for large number of participants.

5.4 Discussion

The iCOP security architecture is similar to the Java Sandbox architecture. However,
the default policies of the Sandbox architecture allow its agents to connect back to the
originator [23], i.e. open channels between the Sandbox and the agent originator exist.
This problem cannot be solved by simply closing all the Sandbox channels, because
if this is done, the computational result cannot be sent to the users. In addition,
the necessary message permission for the participating agents also creates additional
permissions (e.g. socket permission). Due to the additive nature of Java permissions
[23], when message permission is granted to the participating agents, access to the
network sockets cannot be prevented in the default Sandbox. But by customizing
the Java security manager, we can precisely control (restrict) the access to every
resources. In addition, the service agent and the security policies of our protection
mechanism help in sending only the computational result to the users protecting the
shared private information.

The traditional centralized scheme for solving the multi-party computation prob-

lem requires disclosing all the private inputs of the participants and the computational

38

result to the central agent, who solves the problem on behalf of the participants. On
the other hand, in our scheme, the participants solve the problem by themselves
without disclosing their private information to a central agent and any other unau-
thorized party. One key advantage of using the proposed protection mechanism is
that the maximum privacy loss is very low for any algorithm. Thus, existing simplest

algorithm can be used.

5.5 Conclusion

We have presented a new privacy protection mechanism in solving multiparty com-
putation problems without using complex cryptographic algorithms. In the proposed
mechanism, the participating agents can use existing distributed algorithms or cen-
tralized algorithms to solve the problem, but in a confined agent platform named
iCOP. In using a distributed algorithm, only a few bits may be leaked through the
result sending channel depending upon the problem characteristics. The maximum
privacy loss in using a distributed algorithm in our mechanism is much lower than the
privacy loss caused by the algorithms in traditional distributed architecture. Also,
our mechanism can provide complete privacy if the participants exchange their in-
puts with a commitment protocol and each of them solve the problem independently
using centralized algorithms with the committed inputs within the iCOP. However,
this requires higher computational time than for a distributed algorithm when the
number of participants is large and a single server is used. The computational time
can be reduced by load balancing i.e., by distributing the participating agents into

different servers of the iCOP domain.

Chapter 6

Applications

6.1 Applications of the EPMS Algorithm

The EPMS algorithm has been evaluated for the MS problem. However, it can be
used for other distributed scheduling problems, such as distributed resource allocation
problems [18], distributed scheduling problems [59], and nurse time-tabling tasks
[57]. For example, in the distributed resource allocation problem, each agent can be
treated as a resource. Each task requires a number of resources, i.e. a number of
participating agents. The resources have their constraints (e.g., they have previously
fixed schedules). Allocating all of the required resources for a task is equivalent to
scheduling a meeting. In our future work, we plan to evaluate the EPMS algorithm
for the above-mentioned scheduling applications. We also plan to reduce privacy loss

by reducing the value of probability of disclosure P, in the agent server.

6.2 Applications of the Server-Assisted Privacy Protection Mechanism

Besides the application scenarios described in previous chapters, there are many other
applications for which our proposed server-assisted privacy protection mechanism can
be used. Following we briefly describe few applications.

Privacy-preserving Match-making The match-making problem [24] is an in-
teresting problem in which privacy is an important issue. Suppose Alice and Bob
want to find out whether they are interested in each other by matching their inter-
ests. The protocol has to be such that if both parties are found to be interested in
each other, they will know the result, otherwise none of them should learn anything
about the other party.

Privacy-preserving Cooperative Scientific Computations One such prob-

lem can be described as: Alice has m private linear equations represented by M;(z) =

89

90

by, and Bob has n — m private linear equations represented by Ms(z) = by, where x
is an n-dimensional vector. Alice and Bob want to find a vector z that satisfies both

of Alice’s and Bob’s equations.

The linear systems of equations problem, the linear least squares problem, and
the linear programming problem have proved valuable for modeling many and diverse
types of problems in planning, routing, scheduling, assignment, and design. In many
cases, those linear equations or linear requirements are proprietary data and are too

valuable to disclose to anybody else, especially to a potential competitor.

For instance, two financial organizations plan to cooperatively work on a project
for mutual benefit. Each of the organizations would like its own requirements being
satisfled (usually, these requirements are modeled as linear equations or linear in-
equalities). However, most of their requirements are proprietary data which includes
interest and inflation rates, economic statistics, portfolio holding, etc. Therefore, no-
body likes to disclose its requirements to the other party, or even to a third party.
How could they cooperate on this project that has to satisfy everybody’s private re-
quirements without compromising the privacy requirements? The current practice is
to operate “in the clear”, that is, by revealing requirements to the other party or to
the agent performing the computation. The consequence is obvious if the other party

or the agent is not trusted.

Privacy-Preserving Database Query Suppose, Alice has a string ¢, and Bob
has a database of strings T' = ¢;....t5; Alice wants to know whether there exists a
string ¢; in Bob’s database that “matches” g. The “match” could be an exact match
or an approximate (closest) match. The privacy requirement is that Bob cannot know
Alice’s secret query g or the response to that query, and Alice cannot know Bob’s

database contents except for what could be derived from the query result.

Privacy-Preserving Data Mining Alice has a private database Dy, and Bob
has a private database Dy. They want to jointly identify association rules in the

union of D; and Ds.

For example, country A’s intelligence agents have observed the activities X —
(z1...z,) for a period of time, and Country B’s intelligence agents have observed the

activities Y = (y;....yn,) for the same period of time. They want to collaboratively

Chapter 6 Applications 91

find out whether the activities in Y has any correlation with the activities in X. The
results of collaboration could help both countries to understand the trend of the be-
haviors of the target, such as the behaviors of some suspected terrorism organization,
the military movement of a dangerous country, etc. However, neither A4 or B is willing
to disclose its observation to the other countries because they don’t fully trust each
other. It is possible that B might use A’s intelligence information (or sell it to the

target) to uncover A’s agents, and thus causing damage to A’s intelligence agents.

Privacy-Preserving Geometric Computation Alice has a private shape a,
and Bob has another private shape b; they both want to know whether a and b
intersect. Alice does not want Bob or anybody else know any information about the
shape a, nor does Bob want to disclose information about his shape b. Moreover, in
no case should anybody learn the relative position between a and b, and, if these two

regions intersect, nobody should learn where they intersect with each other.

One application of the above problem could be: Two companies plan to expand
their market shares in certain regions, but, they do not want to compete in the same
region. What they really want to know is whether their selected regions overlap with
each other. Because the information about its own selected region is so valuable to

each company, neither of them wants to disclose it to the other party.

Privacy-Preserving Statistical Analysis This problem has a lot of applica-
tions. For example, a bank wants to investigate if ages can affect people’s financial
activities. However, the bank only has customers’ financial activities, it does not
know the ages of its customers. Therefore, the bank turns to some government bu-
reau who has the knowledge of every person’s dates of birth, but the government
bureau is required by laws not to disclose it. On the other hand, the customers’
financial activities are the bank’s proprietary data that the bank does not want to

disclose to anybody.

In another example, a school wants to investigate the relationship between people’s
intelligence quotient (IQ) score and their annual salary. The school has its students’
IQ score, but does not have students’ salary information; therefore the school needs
to cooperate with companies that hire the students, but those companies are not

willing to disclose the salary information. On the other hand, the school cannot give

92

students’ IQ score to their employers either. A privacy-preserving statistical analysis

method [12] is needed to solve this problem.

Selection problem (select median, select the k£ smallest element): Alice has a
private data set d;, and Bob has a private data set dp; they want to find the median
(or the k** smallest element) among the data in d; U ds.

Sorting problem: Alice has a private data set d;, and Bob has a private data set
do; they want to sort the elements in the union of these two data sets d; U dg, such
that each element in these two data sets is marked by a number representing the

order of this element.

Chapter 7

Conclusions and Future Works

7.1 Summary of Main Results

Firstly, we have devised a privacy loss model for multi-party computation problems
and shown the factors which affect the amount of privacy loss. Then, we have pro-
posed a metric for measuring privacy loss qualitatively. We have also presented a
mobile agent-based scheduling scheme, called EPMS, and evaluated it with respect
to computational complexity, privacy loss, and global utility for the meeting schedul-
ing (MS) problem. The algorithm has a polynomial time complexity for scheduling
multiple meetings concurrently. We measured its schedule privacy loss and preference
privacy loss for the MS problem according to the VPS privacy metric and Min privacy
metric. We also compared the privacy loss in EPMS with that in a well-known op-
timization algorithm, optAPO, and that in the centralized algorithm. The schedule
privacy loss in the VPS privacy metric is the minimal in the centralized algorithm,
while in the Min privacy metric, it is the minimal in EPMS. The preference privacy
loss in EPMS is the minimal in both the VPS privacy metric and the Min privacy
metric. The global utility in EPMS was found to be above 98% of that in the opti-
mal solution, for scheduling smaller numbers of meetings concurrently, but decreases
slowly for larger numbers of meetings. Thus, we can say that EPMS results in a
good tradeoff among complexity, privacy, and global utility for solving the scheduling

problem.

We have also presented a new privacy protection mechanism in solving multi-
party computation problems without using complex cryptographic algorithms. In
the proposed mechanism, the participating agents are trapped into a confined agent
platform, named iCOP, where they can use existing (distributed or centralized) algo-

rithms for solving the problem. In using a distributed algorithm, only a few bits may

93

94

be leaked out through the result sending channel depending upon the problem char-
acteristics. The maximum privacy loss in using a distributed algorithm in iCOP is
much lower than the privacy loss caused by the algorithms in traditional distributed
architecture. Also, our mechanism can provide complete privacy protection if the
participants exchange their inputs with a commitment protocol and each of them
solve the problem independently with centralized algorithms within the iCOP using
the committed inputs. However, this requires higher computational time than using
a distributed algorithm when the number of participants is large and a single server is
used. The computational time can be reduced by load balancing i.e., by distributing

the participating agents into multiple servers of the iCOP domain.

7.2 Future Works

In this thesis, we have evaluated the EPMS algorithm for the MS problem. In our
future work, we plan to evaluate the EPMS algorithm for other scheduling problems,
such as distributed resource allocation problems [18], distributed scheduling problems
[59], and nurse time-tabling tasks [57].

Currently, iCOP deals with the type of multi-party problems in which the same
computational result can be disclosed to all of the users. In other words, we considered
that the disclosure of the same computational result to all of the participants does
not causes privacy loss. However, there are some applications in which different
participants should have different computational result and the disclosure of the same
computational result to all of them results in privacy loss. For example, in e-commerce
applications such as virtual marketplace, it is needed that different private information
should be kept secret from different parties. For example a buyer may want to keep
her postal address secret from the vendor and the item information secret from the
delivery company. In our future work, we plan extend iCOP for protecting privacy
in solving such applications.

Data integration, sharing, and mining the integrated data from distributed, het-
erogeneous, and autonomous sources in order to discover important knowledge have

been a long standing challenge for the database and data mining communities. The

Chapter 7 Conclusions and Future Works 95

increasingly exponential growth of distributed personal data could fuel data integra-
tion applications to address real life and more importantly life threatening problems
such as efficient disease control. However, these important activities have also raised
legitimate and widespread concerns of data privacy. We want to take into account
such more practical privacy protection problems.

Privacy risk is the business risk resulting from the collection, use, retention, and
disclosure of personal information. Like all business risk privacy risk could result
in a loss of revenue or increased cost. Privacy risk management is organizational
actions that control privacy risk. Privacy risk management is most often a pragmatic
approach to reducing privacy threats. Three most common privacy risk management
are: (a) advice provided by a privacy officer to business units upon requests, typically
in support of a project or a corporate initiative, (b) Proactive initiatives (such as
personal information handling policies, employee training and audits) implemented
corporate-wide to reduce privacy risk, initiated by the privacy office, (c) a privacy
officer and a business unit representative go through processes, often during an audit
process or in support of a project, such as identifying privacy risk, assessing current
risk management measures and developing new strategies to mitigate the identified
risks. We want to address the risk management issue in our future works.

Finally, server security and trust management among the servers in the iCOP
domain is an important security issue. What type of relationship among the servers
should be maintained, how they should be configured to maintain robust security etc.
are critical concerns. Also, detection of unusual suspicious events and their preventive

measures are important. In our future works, we want to address these issues.

Bibliography

(1] M.J. Atallah and W. Du, Secure multi-party computational geometry, Proc. of the
Seventh Int. Workshop on Algorithms and Data Structures, 2001, pp. 165-179.

[2] D.E. Bakken, R. Parameswaran, D.M. Blough, A.A. Franz, and T.J. Palmer,
Data obfuscation: anonymity and desensitization of usable data sets, IEEE Se-
curity & Privacy 2 (2004), no. 6, 34-41.

[3] K. Bennett, Linguistic steganography: survey, analysis, and robustness concerns
for hiding information in text, Tech. Report 2004-13, CERIAS.

[4] J. Biskup and U. Flegel, On pseudonymization of audit data for intrusion de-
tection, Workshop on Design Issues in Anonymity and Unobservability, 2000,
pp. 161-180.

, Transaction-based pseudonyms in audit data for privacy respecting intru-
sion detection, Proc. of the Third Int. Workshop on Recent Advances in Intrusion
Detection, 2000, pp. 28-48.

[6] G. Brassard, C. Crepeau, and J. Robert, All-or-nothing disclosure of secrets,
Lecture Notes in Computer Science, no. 263, 1987, pp. 612-613.

[7] C. Cachin, Efficient private bidding and auctions with an oblivious third party,
Proc. of the 6th ACM Conf. on Computer and communications security, 1999,
pp. 120-127.

[8] J. Davin and P.J. Modi, Impact of problem centralization in distributed constraint
optimization algorithms, Fourth Int. Joint Conf. on Autonomous Agents and
Multiagent Systems, 2005, pp. 1057-1063.

[9] Y. Desmedt, Some recent research aspects of threshold cryptography, Lecture
Notes in Computer Science, no. 1196, 1997, pp. 158-173.

[10] W. Du, A study of several specific secure two-party computation problem, Ph.D.
thesis, Purdue University, USA, 2001.

[11] W. Du and M.J. Atallah, Privacy-preserving cooperative scientific computations,
Proc. of the 14th IEEE Workshop on Computer Security Foundations, 2001,
pp. 273-282.

[12] , Privacy-preserving statistical analysis, Proc. of the Seventeenth Annual

Computer Security Applications Conf., 2001, pp. 102-110.

96

97

[13] L.D. Erman, F. Hayes-Roth, V.R. Lesser, and D.R. Reddy, The hearsay-ii speech
understanding system: integrating knowledge to resolve uncertainty, Computing
Surveys 12 (1980), no. 2, 213-253.

[14] S. Even, O. Goldreich, and A. Lempel, A randomized protocol for signing con-
tracts, Communications of the ACM 28 (1985), 637-647.

[15] M.S. Franzin, E.C. Freuder, F. Rossi, and R. Wallace, Multi-agent meeting
scheduling with preferences: Efficiency, privacy, loss, and solution quality, Proc.
of the Eighteenth American Association for Artificial Intelligence Conf., 2002,
pp- 25-32.

[16] E.C. Freuder, M. Minca, and R.J. Wallace, Privacy/efficiency tradeoffs in dis-
tributed meeting scheduling by constraint-based agents, Proc. of Int. Joint Conf.
on Artificial Intelligence, 2001, pp. 63-72.

[17] P. Gemmell, An introduction to threshold cryptography, CryptoBytes 2 (1997).

[18] K. Ghedira and G. Verfaillie, A multi-agent model for the resource allocation
problem: a reactive approach, Proc. of the Tenth European Conf. on Artificial
Intelligence, 1992, pp. 252—254.

[19] V. D. Gligor, A guide to understanding covert channel analysis of trusted sys-
tems, Tech. Report NCSC-TG-030, American National Computer Security Cen-
ter, 1993.

[20] V.D. Gligor, A guide to understanding trusted facility management, Tech. Report
NCSC-TG-015, American National Computer Security Center, 1989.

[21] O. Goldreich, Secure multi-party computation, Available from
http://www.wisdom.weizmann.ac.il/oded /PS/prot.ps, 2002.

[22] S. Goldwasser, Multi-party computations- past and present, Proc. of Sixteenth
Annual ACM Symposium on Principles of Distributed Computing, 1997, pp. 1-
6.

[23] L. Gong, G. Ellison, and M. Dageforde, Inside java 2 platform security: Archi-
tecture, api design, and implementation, second ed., Addison-Wesley, 2003.

[24] V. Graaf, The matchmaking problem, CWI Quarterly 8 (1995), no. 2, 129-146.

[25] R. Greenstadt, J.P. Pearce, E. Bowring, and M. Tambe, Ezperimental analysis
of privacy loss in dcop algorithms, Proc. of Fifth Int. Joint Conf. on Autonomous
Agents and Multiagent Systems, 2006.

[26] A.B. Hassine, X. Defago, and T.B. Ho, Agent-based approach to dynamic meeting
scheduling problems, Proc. of the Int. Conf. on Autonomous Agents & Multiagent
Systems, 2004, pp. 1132-1139.

98

[27]

[33]
[34]

[35]

[36]

[37]

T. Haynes, S. Sen, N. Arora, and R. Nadella, An automated meeting scheduling
system that utilizes user preferences, Proc. of the First Int. Conf. on Autonomous
Agents, 1997, pp. 308-315.

T. Herlea, J. Claessens, G. Neven, F. Piessens, B. Preneel, , and B.Decker, On
securely scheduling a meeting, Proc. of IFIP Int. Information Security Conf.,
2001, pp. 183-198.

M. Hirt and U. Maurer, Robustness for free in unconditional multi-party compu-
tation, Lecture Notes in Computer Science, vol. 2139, 2001, pp. 101-118.

M. Hirt and J.B. Nielsen, Upper bounds on the communication complexity of opti-
mally resilient cryptographic multiparty computation, Lecture Notes in Computer
Science, vol. 3788, 2005, pp. 79-99.

M.N. Huda, E. Kamioka, and S. Yamada, A mobile agent based computing
model for enhancing privacy in multi-party collaborative problem solving, Proc.
of the Third Int. Conf. on Mobile Computing and Ubiquitous Networking, 2006,
pp. 107-115.

, An efficient and privacy-aware meeting scheduling scheme using com-
mon computational space, IEICE Trans. on Information & Systems E90-D
(2007), no. 3.

IBM, Aglet software development kit, http://sourceforge.net/projects/aglets/.

Javvin Technologies Inc, Network packet analyzer, http://www.javvin.com/
packet.html.

L. Ismail and D. Hagimont, A performance evaluation of the mobile agent
paradigm, Proc. of the Int. Conf. on Object Oriented Programming, Systems,
Languages, and Applications, 1999, pp. 306-313.

R. L. Kay, How to implement trusted computing: a guide to tighter enterprise
security, Tech. report, Trusted computing group.

R.A. Kemmerer, A practical approach to identifying storage and timing channels:
twenty years later, Proc. of Eighteenth Annual Computer Security Applications
Conf., 2002, pp. 109-118.

M. LaDue’s, Hostile applets source code, http://www.cigital.com/hostile-
applets/SourceCode.html.

D.B. Lange and M. Oshima, Programming and deploying java mobile agents with
aglets, second ed., Addison-Wesley, 1998.

Y. Lindell and B. Pinkas, Privacy preserving data mining, Lecture Notes in
Computer Science, vol. 1800, 2000, pp. 20-24.

[41]

[42]

[43]

[48]

[49]

[50]

[51]

[52]

99

R.T. Maheswaran, J.P. Pearce, E. Bowring, P. Varakantham, and M. Tambe,
Privacy loss in distributed constraint reasoning: o quantitative framework for

analysis and its applications, Journal of Autonomous Agents and Multi-Agent
Systems 13 (2006), no. 1, 27-60.

R.T. Maheswaran, J.P. Pearce, P. Varakantham, E. Bowring, and M. Tambe,
Valuations of possible states (vps)- a quantitative framework for analysis of pri-
vacy loss among collaborative personal assistant agents, Proc. of Fourth Int. Joint
Conf. on Autonomous Agents and Multiagent Systems, 2005, pp. 1030-1037.

R.T. Maheswaran, M. Tambe, E. Bowring, J.P. Pearce, and P. Varakantham,
Taking dcop to the real world: efficient complete solutions for distributed multi-
event scheduling, Proc. of the Third Int. Joint Conf. on Autonomous Agents and
Multiagent Systems, 2004, pp. 310-317.

R. Mailler and V. Lesser, Solving distributed constraint optimization problems
using cooperative mediation, Proc. of the Third Int. Joint Conf. on Autonomous
Agents and Multiagent Systems, 2004, pp. 438-445.

S. T. Margulis, Conceptions of privacy: Current status and next steps, Journal
of Social Issues 33 (1977), no. 3, 5-21.

P.J. Modi, W. Shen, M. Tambe, and M. Yokoo, Adopt: asynchronous distributed
constraint optimization with quality guarantees, Artificial Intelligence Journal
161 (2005), 149-180.

M. Naor and B. Pinkas, Oblivious transfer and polynomial evaluation (extended
abstract), Proc. of the Thirty-first ACM Symposium on Theory of Computing,
1999, pp. 245-254.

M. Rabin, How to exchange secrets by oblivious transfer, Tech. Report Memo
TR-81, Aiken Computation Laboratory, 1981.

J.C. Roca and J.D. Ferrer, A non-repudiable bitstring commitment scheme based
on a public-key cryptosystem, Proc. of Int. Conf. on Information Technology:
Coding and Computing, 2004.

R. Rosenberg, The social impact of computers, Academic Press, 1992.

Y. Sang, H. Shen, and Z. Zhang, An efficient protocol for the problem of se-
cure two-party vector dominance, Proc. of Int. Conf. on Parallel and Distributed
Computing, Applications and Technologies, 2005.

B. Schneier, Applied cryptography: Protocols, algorithms, and source code in c,
John Wiley & Sons, Inc., 1996.

100

[53] S. Sen, T. Haynes, and N. Arora, Satisfying user preferences while negotiating
meetings, Int. Journal of Human-Computer Studies 47 (1997), no. 3, 407-427.

[54] A. Shamir, How to share a secret, Communication of the ACM 22 (1979), no. 11,
612-613.

[55] M.C. Silaghi and D. Mitra, Distributed constraint satisfaction and optimization
with privacy enforcement, Proc. of the IEEE/WIC/ACM Int. Conf. on Intelligent
Agent Technology, 2004, pp. 531-535.

[56] B. Snow, Four ways to improve security, IEEE Security & Privacy Magazine 3
(2005), no. 3, 65-67.

[57] G. Solotorevsky and E. Gudes, Solving a real-life time tabling and tramsporta-
tion problem using distributed csp techniques, Proc. of Workshop on Constraint
Programming Applications, 1996, pp. 123-131.

[58] L. Sweeney, K-anonymity: A model for protecting privacy, Int. Journal of Un-
certainty, Fuzziness and Knowledge-Based Systems 10 (2002), no. 5, 557-570.

[59] K. Sycara, S. Roth, N. Sadeh, and M. Fox, Distributed constrained heuristic
search, IEEE Tran. on Systems, Man and Cybernetics 21 (1991), no. 6, 1446~
1461.

[60] Z. B. Trubiniova and M. Hirt, Efficient multi-party computation with dispute
control, Lecture Notes in Computer Science, vol. 3876, 2006, pp. 305-328.

[61] T. Tsuruta and T. Shintani, Scheduling meetings using distributed valued con-
straint satisfaction algorithm, Proc. of European Conf. on Artificial Intelligence,
2000, pp. 383-387.

[62] S. D. Warren and L. D. Brandeis, The right to prwacy, Harvard Law Review 4
(1890), no. 5, 193-220.

[63] A. F. Westin, Privacy and freedom, Atheneum, 1967.

[64] A. Yao, Protocols for secure computations, Proc. of the 23rd Annual IEEE Sym-
posium on Foundations of Computer Science, 1982.

[65] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara, The distributed constraint
satisfaction problem: formalization and algorithms, vol. 10, 1998, pp. 673-685.

[66] M. Yokoo, K. Suzuki, and K. Hirayama, Secure distributed constraint satisfac-
tion: reaching agreement without revealing private information, Proc. of the
Eighth Int. Conf. on Principles and Practice of Constraint Programming, 2002,
pp- 387-401.

101

[67] S. Zhu, S. Setia, and S. Jajodia, Performance optimizations for group key man-
agement schemes, Proc. of the 23rd Int. Conf. on Distributed Computing Sys-
tems, 2003, pp. 163-171.

