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Abstract

There are numerous proposals for the physical realization of a quantum
computer. However, distributed approaches, making use both of flying and
stationary qubits, seem to constitute the most promising route towards a
truly scalable device. Such systems guarantee extendibility, they incorpo-
rate the interface with communication applications and relax the physical
realization of the device, allowing for defect tolerance. Flying qubits are
included in the more general concept of a quantum bus, a mediating sys-
tem which can be of higher dimension. Such a quantum bus can be used
in the straightforward preparation of a standard multi-qubit resource en-
abling measurement based quantum computation, the cluster state. This
constitutes the framework for the results presented in this thesis.

We begin by investigating the effects of dissipation in the continuous
variable bus scheme known as the qubus scheme. By considering loss in the
bus as it mediates interactions between the stationary qubits, we obtain an-
alytical results for the effective action of the induced quantum gate. We find
that a particular two-qubit gate operates with high fidelity in the presence
of moderate loss and give a simple iteration scheme to simplify the effects
of loss on the qubits. We then attempt to reduce these effects by preparing
the bus in more elaborate state, however no improvements are observed.

We then apply the qubus scheme to the probabilistic generation of cluster
states and develop an entangling gate working with high success probability.
This allows us to produce cluster states far more efficiently than other pro-
posals. Investigating new methods to analyze the performance of different
generation strategies constitutes the second part of this set of results. We
begin by making the large flow approximation, used in queuing theory, to
obtain the optimal strategy in a regime with large resources. After what
we take the other more familiar limit of single cluster growth and introduce
absorbing Markov chains as a key mathematical tool.

Finally we look at the transmission of composite quantum systems via a
single higher dimensional bus. We provide generalized protocols and inter-
actions guaranteeing a full transfer of the information from one composite
system to another. These protocols can also serve information process-
ing tasks, as useful logical operations can be applied to the data as it is
transfered. We notice lastly that the qubus scheme constitutes a potential
physical realization.
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Chapter 1

Introduction

1.1 Historical background

Understanding the context in which quantum information and computation
arose requires us to look at the different fields which contributed to its
development.

A good starting point is the field of physics and its state at the end of
the 19th century. At this point in time, physicists were confronted with dif-
ferent phenomena observed experimentally, lacking an explanation based on
the known theories of gravitation, thermodynamics and electromagnetism.
One such phenomenon was black-body radiation. The problem was initi-
ated in 1858, when Kirchhoff showed that the energy emitted from a black
body (an object that absorbs all the light that falls upon it, reflecting none
and thus appearing black to an observer when cold) depended solely on the
temperature T of that body and the wavelength λ = 2π/ω of the emitted
radiation. He challenged the physicists of the time to find the mathemati-
cal expression characterizing this emission spectrum. In the following two
decades, a fourth power dependence on temperature T 4 of the spectrum was
proposed. First by Stefan on experimental grounds and then by Boltzmann
from theoretical considerations based on Maxwell’s theory of electromag-
netism. The result known as the Stefan-Boltzmann law did not however
provide a full characterization of the spectrum at all wavelengths. A sub-
sequent expression by Wien matched the experimental data well but only
for small wavelengths. The problem subsided until 1900 when Planck wrote
down his expression, now know as Planck’s law of black-body radiation,
fitting experimental data at all wavelengths [1]. In order to arrive at this
result, Planck assumed that the total energy was made up of indistinguish-
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able elements - quanta of energy ~ω (where ~ is Planck’s constant) - thus
discretizing for the first time a physical quantity and going against the wave
nature of light as defined by Maxwell’s theory. This brilliant result earned
him the Nobel Prize for physics in 1918.

Another set of experimental observations which didn’t fit with the elec-
tromagnetic theory of the time came from the photoelectric effect. This
physical process consists in electrons being emitted from matter through
the absorption of energy from electromagnetic radiation. In 1905, inspired
by Planck’s work, Einstein postulated that light itself consisted of individual
quanta (now known as photons), to successfully characterize the photoelec-
tric effect [2], more precisely to account for the fact that energy of the
emitted electrons does not depend on the intensity of the incoming light,
but on the energy (frequency) of the individual photons. He was in turn
awarded the 1921 physics Nobel Prize for this experimentally verified theory
which now further concretised the wave-particle duality of light, displaying
both wave-like and particle-like properties. This result, combined with the
quantum theory of the atom proposed by Bohr in 1913 [3, 4] to overcome
the problematic classical definition of electron orbitals triggered the rapid
development of a full blown quantum theory of light and matter. Some ini-
tial elements of this development were the extension to all particles of the
wave-particle duality by de Broglie [5] and the exclusion principle stated by
Pauli providing theoretical foundations to the periodic table. Heisenberg
then derived a matrix mechanics formulation of quantum theory [6] before
Schrödinger gave an equivalent wave-mechanical formulation [7]. Finally
special relativity was brought into the quantum picture by Dirac, providing
a relativistic quantum theory of the electron [8]. From quantum mechan-
ics was later born the field of quantum electro-dynamics (QED), the most
accurately verified physical theory of all times.

The above physicists and their discoveries are part of what constituted
a great scientific revolution, in which many familiar concepts about Na-
ture were overturned. The rules of quantum mechanics are hard, if not
impossible, to grasp intuitively. Wave-particle duality is one of them, best
illustrated by Young’s double slit experiment. Interference effects have been
observed for various particles and even large molecules such as C60 [9], no
matter how small the intensity of the incoming beam. This means that
particles can interfere with themselves although at the time of the mea-
surement, when they hit the screen, they are localized. Trying to check
which slit each particle comes through will in turn destroy the interference
pattern. These observations are accounted for by the wave function. This
wave function which fully characterizes a physical system, contains complex
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probability amplitudes, leading to interference effects. From them we can
obtain the probabilities of finding the system at different locations. Once
we physically measure where the system is, the wave function collapses to a
particular location with a certain probability, yielding a localization of the
system. However the interpretation of the quantum measurement has been
an open question ever since the rules were written down. The intrinsically
probabilistic aspect of the wave function representation in quantum mechan-
ics is also hard to accept; no matter how much we know about a physical
system, there are circumstances in which we can only assign probabilities to
different outcomes. In other words determinism cannot hold any longer.

One consequence of these single system properties is the possibility for
nonlocal correlations to arise when we move to composite systems. This
was first pointed out by Einstein, Podolsky and Rosen in their famous 1935
paper [10]. The thought experiment they conducted is now known as the
EPR paradox and underlines a ‘spooky action at a distance’, which refutes
the principle of locality they proposed. Attempts at resolving the paradox
through locally hidden variables (shared randomness which we do not have
access to) were cut short when a lot later in 1964, Bell showed very elegantly
that no hidden variable theory could possibly reproduce the measurement
statistics predicted by quantum theory [11]. Since then many experiments
have verified these predictions, the most famous of which were led by Aspect
and collaborators in the 1980s [12]. We will leave the field of quantum
physics at this exciting point before returning to it later, to quickly outline
the progress in another all important field of the 20th century.

Modern computer science was initiated by Turing in 1936, when he de-
fined an abstract machine, now referred to the Turing Machine, which per-
forms algorithmic tasks in a very general way, providing a model for com-
puting [13]. He also conceptualized at the time a Universal Turing Machine
(UTM), capable of simulating any other Turing machine. This was formu-
lated more rigorously in joint work with a mathematician to the name of
Church, becoming the Church-Turing thesis. The thesis states that given an
algorithm being run on any form of hardware, there always exists an equiva-
lent algorithm completing the same task on a UTM. In the 1940s, two great
minds focused their attention on computation and information. One was
von Neumann who created the field of cellular automata [14], but more to
the point proposed a computer architecture [15] in which data and program
memory are mapped into the same address space. This architecture is widely
used today. The other great mind was Shannon who defined communica-
tion in a mathematical context, producing the two fundamental noiseless
and noisy channel coding theorems [16], the latter setting the maximum
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attainable efficiency of an error-correcting scheme. These vital theoreti-
cal advances were accompanied by the development of hardware systems,
in particular the creation of the transistor in 1947 by Bardeen, Brattain
and Shockley. Since then the processing power of computers hasn’t ceased
to increase, deeply affecting society and tremendously amplifying scientific
progress.

The growth in processing power of devices successfully projected by
Moore in 1965 [17], leads us to the first factor that triggered the field of
quantum computation. Moore’s law states that the number of transistors
that can inexpensively be placed on an integrated circuit is increasing expo-
nentially, doubling approximately every two years. However this exponential
growth in power is not sustainable, as eventually the components will reach
the scale of the atom, at which quantum mechanical effects come into the
picture, making them inoperable in a classical sense. Another version of
Moore’s law illustrating this point is that the number of electrons contained
in each memory element will halve every two years, eventually reaching the
single electron regime. In addition to this there is the financial cost, which
depending on the technological advances may blow up once we reach a cer-
tain scale. In any case, at this point there are two options. One is to develop
a whole arsenal of techniques to fight quantum effects and preserve the in-
formation in the classical form of bits. The other is to use quantum effects
to process information, that is to encode the information in quantum sys-
tems which we let behave in a quantum fashion. This direction had already
started to be paved in the 1970s by physicists who managed little by little to
isolate single quantum systems and observe their behavior. Here quantum
physics comes back into our picture.

This triggering factor arose from a technological challenge lying ahead,
however there was also a shift of mindset amongst physicists. They had been
struggling with the interpretation of quantum mechanical rules for decades
and now some of them decided to just accept those rules and see what in-
teresting things could be done in this new framework. Illustrating this line
of thought, Feynman asked in 1986 [18] whether it would be possible to
efficiently simulate quantum systems on a classical computer. It is believed
that the answer is negative although there is no rigorous proof of the conjec-
ture. He also pointed out that in contrast, an information processor using
quantum effects may be able to efficiently do this simulation. The obser-
vation was later shown to be true by Lloyd [19] and represents one of the
strongest incentives to the realization of quantum information processing
(QIP) devices. Such a technology could potentially accelerate other areas
of scientific research would accelerate progress in all kinds of fields across
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medical, chemical and life sciences.
At the same time as Feynman made his observations, Deutsch tried to

understand and extend the Church-Turing thesis from a physical point of
view. In so doing he was led to consider quantum theory and defined a
Universal Quantum Computer [20], providing an even more powerful com-
putational model. The units of memory in this computer are quantum bits
(qubits). In 1992, in collaboration with Jozsa, he devised a quantum algo-
rithm [21] to estimate whether a given function is constant (returns 0 on
all inputs or 1 on all inputs) or balanced (returns 1 for half of the inputs
and 0 for the other half). Although initially this algorithm was of little use,
it showed very simply how some tasks could be realized more efficiently on
a quantum computer. The algorithm was rapidly generalized and a cou-
ple of years later inspired one of the central breakthroughs of the field. In
1994, Shor revealed two quantum algorithms [22] efficiently solving impor-
tant problems for which no efficient classical algorithm has been found. The
first one consists in finding the prime factors of an integer and the second
is referred to as the discrete logarithm problem. These results were fol-
lowed by a search algorithm devised by Grover in 1995 [23], which provides
a quadratic speedup over known classical algorithms.

Advances in quantum computing were accompanied by equally impor-
tant developments in quantum communication. The concept of quantum
cryptography goes all the way back to the 1960s and Stephen Wiesner. How-
ever the first result to be accepted was only proposed in 1984 by Charles
Bennett and Gilles Brassard [24]. They constructed a communication pro-
tocol using quantum systems with which two parties, commonly known as
Alice and Bob, can generate a shared random bit string only known by them,
without the possibility of an eavesdropper gaining any information. This bit
string constitutes a one time pad with which Alice and Bob can communicate
securely over a public channel. It is worth noting here that some classical
public key ciphers, including the algorithm developed by Rivest, Shamir and
Adleman (RSA), rely on the hardness to factor large integers. Quantum key
distributions in contrast is in theory 100% secure, independent of the eaves-
droppers information processing power. The use of the nonlocal correlations
mentioned earlier was made clear first in 1992 when Bennett and Wiesner
invented superdense coding [25]. In this protocol, Alice and Bob can com-
municate two bits of information while only transmitting one qubit. Then
in 1993 these correlations were employed in a famous theoretical scheme to
teleport (transmit via quantum correlations and classical information) an
unknown quantum state [26].

Quantum teleportation and quantum key distribution have since then
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been implemented experimentally using single photons and even single atoms.
There are already commercial quantum cryptography devices being sold and
fabrication costs will rapidly decrease. However skeptics at the time of the
theoretical breakthroughs in QIP may have judged the physical realization of
a quantum computer to be fundamentally limited by the presence of noise.
This argument was overcome in 1995 at which point Shor [27], Andrew
Steane [28], and Robert Calderbank [29] initiated the field of quantum er-
ror correction by providing the first quantum error correction codes. These
results comforted scientists in their search for a physical realization of a
quantum computer. They include ion traps [30], nuclear magnetic reso-
nance [31], quantum dots [32], silicon based implementations [33] and linear
optical implementations [34]. Many experiments have been undertaken in
which single qubit control or few qubit controlled interactions were realized.
Scaling up these few qubit achievements is one of the main challenges of the
exciting field of quantum computation and information. Along with physi-
cal realizations, research is stretching out in many directions, from quantum
complexity theory to the foundations of quantum physics.

1.2 Motivation and outline

As just mentioned, the field focusing on the implementation of quantum
computing is at a crucial point. Many different physical realizations have
been proposed but we are still lacking a truly scalable approach. Distributed
architectures, in which qubits communicate via a shared quantum bus or
mediating system, seem to be the most promising. They insure well iso-
lated memory regions with low decoherence, allowing for straightforward ex-
tendibility of the processor. Another key feature of this approach is that the
interface with communication applications is incorporated into the processor
and does not constitute an extra technological challenge. Distributed archi-
tectures are also compatible with the measurement-based model of quantum
computing, a powerful model relying solely on the gradual measurement of a
multi-qubit state (cluster state), which relaxes several implementation con-
straints. The results obtained in this thesis lie within this framework of
quantum buses and cluster states. They are organized as follows.

In chapter two we provide an overall background study of the fields rel-
evant to the work presented. The first section of this chapter introduces
the mathematical framework of quantum mechanics, presenting the notion
of quantum information and underlining some striking features of the the-
ory itself. With these tools in hand we describe two different models for
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quantum computing, the circuit and measurement-based models. The next
section focuses on quantum optics, starting from the quantization of the
classical theory and ending with irreversible processes. Along the way we
also consider light-matter interactions. These two sections lead naturally to
an overview of optical quantum computing. The final section of this back-
ground chapter introduces the continuous variable quantum bus (qubus)
and it’s applications. This scheme constitutes one of the main tools in the
results to be presented.

Chapter three marks the beginning of the original work with an inves-
tigation into the effects of bus loss on qubus gates. We first characterize
loss during the interaction between the continuous variable bus and a dis-
crete subsystem. The we proceed to adding loss in between interactions
with different subsystems so as to fully characterize the impact on logical
gates themselves. Having understood the process by which the subsystems
undergo decoherence we propose a bus engineering scheme so as to boost
the fidelity of a particular logical gate.

In the first section of chapter four we provide some results on the gen-
eration of cluster states using the qubus scheme. Achieving a higher logical
gate efficiency enables us to achieve true scalability in the generation of clus-
ter states and makes it possible for us to consider new growth strategies. In
the second section we introduce two frameworks in which to characterize the
growth of cluster states via probabilistic logical gates. The first one makes
a flow approximation of the resources, converting the problem of finding the
optimal strategy into a simple linear programming problem. The second
introduces the concept of absorbing Markov chains to calculate production
rates and compare a range of different strategies.

The fifth and last chapter of the thesis goes over some work involving
the transfer of information held by composite systems via a single higher
dimensional bus. We propose two protocols and find interactions allowing a
deterministic transfer of the information. The protocols can then serve data
transfer as well as QIP roles.
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Chapter 2

Background

2.1 Quantum information and computation

In this chapter we introduce some basic concepts in quantum information
and computation. To do so we first go over the mathematical framework of
quantum theory by recounting the so called postulates of quantum mechan-
ics. This will provide us with the tools necessary to understand the main
ideas involved in quantum computation. Two different models are then in-
troduced, the circuit model and the cluster state model. There are other
models such as adiabatic or topological quantum computing which we do not
consider here. Interested readers can find good reviews on these in [35,36].

2.1.1 Quantum states, measurements and evolution

All the results in different branches of quantum theory have their roots in
a set of fundamental postulates. We will go over them so as to provide
the basic tools needed in the present work. The first postulate of quantum
mechanics states that any quantum system corresponds to a Hilbert space
H and that any state of an isolated system (without any correlation to other
systems) can be represented by a unit vector in this Hilbert space. This unit
vector is referred to as the state vector and in the simplest case of a two-
dimensional Hilbert space can be written in the orthonormal basis {|0〉, |1〉}
as

|ψ〉 = c0|0〉 + c1|1〉. (2.1)

Here we are using the Dirac notation [37], where the ‘bra’ 〈ψ| in dual space,
represents the conjugate transpose of the the ‘ket’ |ψ〉. For |ψ〉 to be a unit
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vector we require

〈ψ|ψ〉 = (c∗0, c
∗
1).

(

c0
c1

)

= |c0|2 + |c1|2 = 1. (2.2)

Thus the inner product defined on the Hilbert space, between two states
〈ψ|φ〉, maps an ordered pair of vectors to a complex number. It is often
referred to as the overlap between a pair of quantum states. This two
dimensional state |ψ〉 constitutes the most fundamental unit in quantum
information, the qubit. Unlike its classical analogue, the bit, a qubit can be
in a coherent superposition of two binary states. Being in a superposition
where |c0|, |c1| > 0, it is not possible to say whether the qubit is in state |0〉
or in state |1〉 with certainty, as it is fully characterized by |ψ〉. This is to
be contrasted with a classical uncertainty and will become clearer as we go
on. Now extending the size of the Hilbert space to d dimensions, we obtain
what is called a qudit

|ψ〉 =
d−1
∑

n=0

cn|n〉, with 〈ψ|ψ〉 =
d−1
∑

n=0

|cn|2 = 1. (2.3)

Such states are also of interest to quantum information applications and
qubits are often obtained experimentally by restricting ourselves to the dy-
namics of a subspace of a higher dimensional system.

Having defined the representation of quantum states we move on to
another postulate of quantum mechanics, that of observables and measure-
ments. An observable is a property of a system that can be observed and in
quantum mechanics it takes the form of a Hermitian operator acting on the
state space of the system. It is convenient to define a linear operator via
the outer-product, for example the rank-one operator M = |φ〉〈ϕ|, mapping
state vectors to state vectors as M |ψ〉 = 〈ϕ|ψ〉|φ〉 with |ψ〉,|φ〉,|ϕ〉 ∈ H. For
an operator M to be Hermitian means that it is self-adjoint M † = M . All
self adjoint operators in Hilbert space have a spectral decomposition

M =
∑

n

anAn, (2.4)

where an are eigenvalues of the operator M and An is the corresponding
orthogonal projection on onto all eigenstates with eigenvalue an. If the
eigenvalues are non-degenerate then the An become projectors |n〉〈n| where
|n〉 is an eigenvector with eigenvalue an. Given a state |ψ〉, the probability
of obtaining the result an when measuring M precisely is given by
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p(an) = 〈ψ|An|ψ〉, (2.5)

and the state of the system right after this particular measurement outcome
is

|ψ〉 an→ An|ψ〉
√

〈ψ|An|ψ〉
. (2.6)

We note here that |ψ〉 and eiλ|ψ〉 represent the same physical state as they
cannot be distinguished, with |eiλ| = 1 representing a global phase. The An
projectors satisfy

∑

nA
†
nAn = I as a consequence of normalization, where

I is the identity operator. They are orthogonal following AnAm = δnmAn
and Hermitian An = A†

n. Now the average result of the measurement can
simply be written as

〈M〉 =
∑

n

anp(an) = 〈ψ|M |ψ〉. (2.7)

To illustrate these expressions, let us come back to our qubit |ψ〉 = c0|0〉 +
c1|1〉 and measure the valid observable M = |0〉〈0| − |1〉〈1|, where we iden-
tify A0 = |0〉〈0| and A1 = |1〉〈1| with associated eigenvalues a0 = 1 and
a1 = −1. This corresponds to a measurement in the computational basis
{|0〉, |1〉}. The probability of measuring the qubit in the state |0〉 is given by
〈ψ|0〉〈0|ψ〉 = |a0|2 and similarly measuring it in the state |1〉, correspond-
ing to the eigenvalue -1, is |a1|2. Now we see how the modulus squared of
the probability amplitudes c0 and c1 give rise to the actual probabilities of
finding the qubit in either state. Setting c0 = c1 = 1/

√
2 yields an average

measurement outcome 〈ψ|M |ψ〉 = 0, meaning that there is a 50% chance of
finding the qubit in either state. There are more general forms of measure-
ments but projective measurements will be sufficient for the work presented
herein.

In addition to measurements, the axioms of quantum mechanics tell us
that quantum systems evolve unitarily in time. The statement can be arrived
to through the Schrödinger equation describing the time evolution of a closed
quantum system

i~
∂|ψ(t)〉
∂t

= H|ψ(t)〉, (2.8)

where H is the Hamiltonian of the closed system and ~ is Planck’s constant,
as we saw in the introduction. Taking an infinitesimal time step dt,the above
equation becomes
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|ψ(t+ dt)〉 = (1 − i

~
Hdt)|ψ(t)〉. (2.9)

Now identifying the operator U(dt) = 1 − i
~
Hdt, we find that it is unitary

(U †U = 1) to linear order in dt because H is Hermitian (H† = H), corre-
sponding to the total energy. Thus the quantum state of a system at a given
time t is related to the state at an earlier time t = 0 by a unitary operator
U such that

|ψ(t)〉 = U(t)|ψ(0)〉. (2.10)

In the case that the Hamiltonian is time independent, we have U = e−iHt/~.
One fascinating consequence of the last two postulates is that the evolution
of a closed system is deterministic, as can be seen from Schrödinger’s equa-
tion, while the measurement process and the collapse of the wave function
is probabilistic. The interpretation of the quantum measurement is one of
the many conceptual challenges posed by quantum theory.

The last postulate we have to consider is that of composite systems. It
holds that the state space of a composite system is generated through the
tensor product of the state spaces of the individual systems composing it.
Thus supposing HA is the Hilbert space of system A and HB the Hilbert
space of system B, then the Hilbert space of the composite system is given
by HA⊗HB. Taking the example of two qubits |ψ〉A = c0|0〉A + c1|1〉A and
|ψ〉B = d0|0〉B + d1|1〉B , with |ψ〉A ∈ HA and |ψ〉B ∈ HB , the state of the
combined system is

|ψ〉AB = |ψ〉A ⊗ |ψ〉B = c0d0|0〉A ⊗ |0〉B + c0d1|0〉A ⊗ |1〉B
+ c1d0|1〉A ⊗ |0〉B + c1d1|1〉A ⊗ |1〉B . (2.11)

When the combined state of two systems cannot be written in the tensor
product form |ψ〉A ⊗ |φ〉B , we call them inseparable or entangled. The two
systems exhibit quantum correlations. For example the state c|0〉A⊗ |0〉B +
d|1〉A ⊗ |1〉B is clearly entangled for c, d 6= 0. This is the type of state
Einstein and his collaborators alluded to in the EPR paradox and we will
see that they are a very useful resource for quantum communication and
computation. It is also important to note that any operator M acting on
the Hilbert space of system A is identified by M ⊗ I on HA ⊗ HB , where
I corresponds to the identity. From now on we will only use the tensor
product symbol when clarity is needed but will omit it otherwise.
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So far we have only discussed pure states, states which only exhibit
coherent superposition. However the probability amplitudes arising from
these states are, as I announced earlier, different from classical probabilities.
That is we may be given one of two pure states with a certain probability,
representing an incoherent superposition. Characterizing the resulting state
requires the density matrix (or equivalently density operator) representation.

2.1.2 The density matrix

Let us suppose that a quantum system is in one of a number of pure state
|ψi〉 with a certain probability pi associated to each one. The state of that
system now consists in a statistical ensemble of pure states {pi, |ψi〉} and
the density operator has the form

ρ =
∑

i

pi|ψi〉〈ψi|, (2.12)

with
∑

i pi = 1 (meaning tr[ρ] = 1). As ρ is a Hermitian matrix, it can
always be diagonalized such that 〈ψi|ψj〉 = δij . If the state is pure, there is
only one term in the summation so ρ2 = ρ and tr[ρ2] = 1. If there is more
than a single term in the above summation then we call the state mixed.
For a mixed state ρ2 6= ρ and tr[ρ2] =

∑

i p
2
i < 1.

Measurement in the density matrix representation can be understood
by looking back at expression (2.5) and using the fact that 〈ψi|An|ψi〉 =
tr[An|ψi〉〈ψi|] to obtain the average over the different pure states

p(an) = tr[Anρ]. (2.13)

The density operator after the above measurement then becomes

ρ
an→ AnρAn

tr[Anρ]
. (2.14)

It is also possible to obtain the evolution of a mixed state from the evolution
of each one of the possible pure states |ψi(t)〉 = U(t)|ψi(0)〉 such that

ρ(t) = U(t)ρ(0)U †(t). (2.15)

The density matrix is very useful when dealing with a composite system,
as one can define a reduced density matrix for each subsystem. For example
in the case of a bipartite system represented by ρAB we have

ρA = trB [ρAB ], (2.16)
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where trB is the partial trace over system B. This reduced density operator
provides us with the measurement statistics for subsystem A alone. As for
pure states, the ability to write the composite system density operator in the
form ρAB = ρA⊗ρB means that the two systems are separable. In that case
trB [ρAB ] = ρA simply, meaning that the measurement statistics of A and B
do not contain quantum correlations. However if we take an entangled state
of the form |ψ〉AB = c|0〉A|0〉B + d|1〉A|1〉B , tracing out system B leads to

ρA = trB [ρAB ] = trB [|ψ〉AB〈ψ|] = |c|2|0〉A〈0| + |d|2|1〉A〈1|. (2.17)

What we observe is that even though the two qubit state is pure, the reduced
states (in this case ρA = ρB) for each qubit are mixed: tr[ρA] = tr[ρB ] =
|c|4 + |d|4 < 1. That is we have full knowledge of the whole state but
somehow we do not have full knowledge of the subsystems. This is again
a striking feature of quantum mechanics and quantum correlations. For
|c|2 = |d|2 = 1/2 we have what is referred to as a maximally entangled state
of two qubits (such states were used by Bell in his work on non-locality and
hidden variables), at which point the quantum correlations are strongest
and at which point the reduced states of subsystems are maximally mixed.

Now that we have defined quantum systems, the measurement of observ-
ables and unitary evolution, we can move on to the basic concepts of QIP
in the circuit model.

2.1.3 The circuit model of quantum information processing

The Hilbert space of a quantum computer containing n qubits is spanned
by 2N vectors each holding a complex amplitude. For moderate n, following
all these amplitudes on a classical computer would not be conceivable. A
quantum computer holds all of them simultaneously because of the ability of
the qubits to be in coherent superpositions. However Alexander Holevo [38]
showed in the early days of quantum information theory that one cannot
extract more than n bits of information from n qubits. The result is known
as the Holevo bound. Given this fact, the challenge of quantum computation
is to extract useful information or global information, through interference
effects taking place at the level of the amplitudes.

The execution of an algorithm on a quantum computer in the circuit
model consists in three phases (see Fig. 2.1). In the first the qubits (the
input register) are initialized in a particular state. The second phase consists
in the execution of the algorithm which itself is a unitary operation over the
whole set of qubits. This unitarity requirement means that the computation
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has to be reversible. This is to be contrasted with classical computation in
which irreversible gates are used such as the AND gate, whose inputs cannot
be recovered given the output, meaning that information was lost. Another
distinguishing feature is the impossibility to perfectly clone an unknown
quantum state [39]. Finally the third phase is the measurement of the
resulting qubit states (the output register) in a chosen orthonormal basis
{|0〉, |1〉}, referred to as the computational basis.

The operation representing the algorithm may be decomposed into a set
of individual operations or gates acting on subsets of the qubits only. A
universal set of gates is a set to which any possible operation on a quantum
computer can be reduced, meaning any unitary operation can be expressed
as a finite sequence of gates from the set. There exists a variety of universal
gate sets, containing single and two qubit gates, and even three qubit gates
(see Fig. 2.1).

Single qubit operations are described by 2×2 unitary matrices, of which
the Pauli matrices

X =

(

0 1
1 0

)

, Y =

(

0 −i
i 0

)

, Z =

(

1 0
0 −1

)

, (2.18)

are particularly useful. The X operation can be assimilated to a bit flip
gate acting as X|j〉 = |j⊕ 1〉 (where j = 0, 1, and ⊕ represents the addition
modulo two), switching one basis state to another. However the Z operation
already has no classical analogue, flipping the sign of the basis states as
Z|j〉 = (−1)j |j〉, generating a relative phase between basis states. The Y
operation acts as a combination of the two Y = iXZ. Any unitary operation
on a qubit can be parametrized (up to a global phase) by a three dimensional
vector n = (nx, ny, nz) and an angle θ, leading to a decomposition into Pauli
matrices [40]

U(n, θ) = e−i
θ
2
(nxX+nyY+nzZ) = cos

θ

2
I − isin

θ

2
(nxX + nyY + nzZ), (2.19)

where we have used the fact that X2 = Y 2 = Z2 = I. Moreover any 2×2
unitary matrix is of the form eiγZeiβY eiαX up to a global irrelevant phase,
meaning the ability to set the system Hamiltonian to X, Y and Z for fixed
amounts of time enables one to implement arbitrary unitary operations on
the qubit. This then provides us with the first element in our universal
gate set. One of these gates which we will encounter corresponds to the
Hadamard transformation
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Figure 2.1: The three stages of a quantum computation in the circuit model.
First the qubits are initialized in a standard state such as |00...〉. The algo-
rithm, represented by a big unitary operation U over all qubits, is executed
through a set of single and two qubit gates from a universal gate set. We
have chosen here arbitrary single qubit operations and the two-qubit CNOT
gate, as defined in the text. The final stage is the readout of the qubits to
extract the classical information needed.
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H =
X + Z√

2
=

1√
2

(

1 1
1 −1

)

, (2.20)

mapping the computational basis states to H|j〉 = (|0〉+ (−1)j |1〉)/
√

2. We
will be referring to this basis as the |±〉 basis, with |±〉 = (|0〉 ± |1〉)/

√
2.

Now the CNOT gate acts on a pair qubits such that if the control qubit
(A) is in the |1〉 state, the target qubit (B) is flipped (the X operator is
applied to it)

c0|0〉A|0〉B + c1|0〉A|1〉B + c2|1〉A|0〉B + c3|1〉A|1〉B
CNOT→ c0|0〉A|0〉B + c1|0〉A|1〉B + c2|1〉A|1〉B + c3|1〉A|0〉B . (2.21)

The corresponding matrix representation of the CNOT operation is

CNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









. (2.22)

We can also use projectors and write CNOT = |0〉A〈0| ⊗ IB + |1〉A〈1| ⊗XB ,
allowing us to see that the gate is an instance of a more general conditional
unitary gate CU = |0〉A〈0| ⊗ IB + |1〉A〈1| ⊗ UB. Another useful instance is
the CZ gate in which U = Z which acts on a two-qubit state as

c0|0〉A|0〉B + c1|0〉A|1〉B + c2|1〉A|0〉B + c3|1〉A|1〉B
CZ→ c0|0〉A|0〉B + c1|0〉A|1〉B + c2|1〉A|0〉B − c3|1〉A|1〉B . (2.23)

Now we see that although this is a controlled unitary operation, there is no
control and target qubit, it is symmetrical. It is worth pointing out that the
CNOT gate is equivalent to the CZ gate up to Hadamard transformations
on the target qubit before and after the gate.

Having described a universal set of gates for the circuit model of quantum
computation, we will now move on to consider another very different model.

2.1.4 The cluster state model of quantum information pro-

cessing

The cluster state model for quantum computation was first proposed in 2001
by Raussendorf and Briegel in a much acclaimed paper [41]. They showed
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that a particular highly entangled multi-qubit state, the cluster state, com-
bined with single qubit operations, feed forward and measurements are suffi-
cient for universal quantum computation. A general graph state is prepared
by first initializing all the qubit in the |+〉 state and then proceeding to
apply CZ gates between pairs of neighboring qubits (see [42] for a detailed
review). Then any regular two-dimensional lattice is a cluster state whose
schematic representation is shown in Fig. 2.2. The quantum algorithm is
specified by the measurements themselves, that is the basis in which the
qubits are individually measured.

The input to the computation is represented by the qubits along one side
of the lattice and the output qubits will become the qubits on the opposing
side, once all the qubits in between have been measured out. The choice
of basis of each measurement depends on previous measurement outcomes.
Not all measurements can be made at once. To illustrate the basic workings
of cluster state computing, we will consider a couple of simple examples
simulating a quantum circuit. The first example will simulate a single qubit
rotation and requires a two-quit cluster state see (Fig. 2.2)

|C2〉 = CZ|+〉1|+〉2 =
1

2
(|0〉|0〉 + |0〉|1〉 + |1〉|0〉 − |1〉|1〉)

=
1√
2
(|0〉|+〉 + |1〉|−〉). (2.24)

The first qubit constitutes the input and the second the output. Now the
input is prepared by applying some U(n, θ)1 so that the above state becomes
(c0|0〉|+〉 + c1|1〉|−〉)/

√
2. This is equivalent to having prepared the input

qubit in the state |ψ〉1 = c0|0〉 + c1|1〉 before applying the CZ gate. Next
the input qubit is measured in the {(|0〉 ± e−iθ|1〉)/

√
2} basis, that is the

measurement operator is now given by M = |θ+〉〈θ+|−|θ−〉〈θ−| with |θ±〉 =
(|0〉 ± e−iθ|1〉)/

√
2. The resulting state after the measurement is given by

|θ±〉〈θ±| 1√
2
(c0|0〉|+〉 + c1|1〉|−〉)

= |θ±〉(c0|+〉 ± c1e
iθ|1〉. (2.25)

The output qubit is now in one of two states c0|+〉± c1eiθ|−〉 each occurring
with probability |c0 ± c1e

iθ|2/2 corresponding to the ±1 eigenvalues of the
measurement. Representing the measurement outcome as a binary m = 0, 1
where 0 and 1 correspond to +1 and -1 respectively, this output state can be
written as XmHRZ(θ)|ψ〉 where |ψ〉 was the input and RΣ(θ) = eiΣθ/2 for

23



Σ = X, Y and Z. In effect we have teleported the input state and applied
the operation RZ(θ) to it in the process. Repeating the procedure three
times on a linear cluster of four qubits, by choosing an orthogonal basis for
each measurement and remembering the measurement outcomes, enables
one to simulate an arbitrary unitary operations U = RX(θx)RY (θy)RZ(θz)
on the input qubit. For example the measurement basis corresponding to a
desired RX(θx) operation on the transmitted qubit will be {|+〉± e−iθz |−〉}.
Alternatively one can apply RX(θx) to the qubit before measuring it in the
computational basis.

The simplest example of an entangling gate using the cluster state model
is of course the CZ gate. In this case we encode the two input qubits on
the qubits forming a two-dimensional cluster state. However this isn’t very
insightful. The implementation of a CNOT gate, element of the universal
set discussed in the previous section, is a little more interesting and can be
done with a four-qubit cluster state (see Fig. 2.2) in the shape of star. It
turns out that this state is locally equivalent to the four qubit Greenberger-
Horne-Zeilinger (GHZ) state (|0000〉 + |1111〉)/

√
2 and as a matter of fact

all star shaped cluster states are locally equivalent to GHZ states (of the
form (|0..0〉 + |1..1〉)/

√
2). The control qubit (A) will not be measured and

teleported but the target qubit (B) will. The reason for this comes from
the equivalence between the CZ gate and the CNOT gate up to Hadamard
transformations on the target qubit before and after the gate (see Fig. 2.2).
We use here a convenient notation by Barrett and Kok [43] to express qubit
states after the application of a CZ gates. For example a CZ gate on a pair
of qubits C and D initially unentangled is written as

CZ(c0|0〉C+c1|1〉C)(d0|0〉D+d1|1〉D) = (c0|0〉C+c1|1〉CZD)(d0|0〉D+d1|1〉D).
(2.26)

Now the initial four-qubit cluster state of interest reads

(c0|0〉A+c1|1〉AZB2)(d0|0〉B1 +d1|1〉B1ZB2)(|0〉B2 + |1〉B2ZB3)|+〉B3, (2.27)

where B1 serves as the input for qubit B, corresponding to an two qubit
input

|ψ〉AB = c0d0|0〉A|0〉B + c0d1|0〉A|1〉B + c1d0|1〉A|1〉B + c1d1|1〉A|0〉B . (2.28)

Now in (2.26) a measurement of B1 in the |±〉 basis will leave us with a
combined state
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Figure 2.2: The two stages of a quantum computation in the measurement
based model. The initialization here consists both in the preparation of
the whole cluster state and the rotations on the input qubits, if necessary.
Each vertex corresponds to a qubit initially prepared in the |+〉 state and
each edge to the application of a CZ gate between the two adjacent vertices.
The execution and the readout merge into one phase as they both consist
in measurements. Each horizontal line can be assimilated to a single logical
qubit being teleported along the chain. Logical operations are imprinted
onto the logical qubits as they are teleported, through the adapted choice of
the measurement basis. Three measurements along the chain are sufficient
to implement an arbitrary single qubit operation. Vertical edges play the
role of entangling gates between logical qubits and the simulation of a CNOT
gate involves two measurements in the |±〉 basis on the target qubit as it
crosses a vertical link.
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(c0|0〉A+c1|1〉AZB2) (d0(|0〉B2 + |1〉B2ZB3) + (−1)m1d1(|0〉B2 − |1〉B2ZB3)) |+〉B3.
(2.29)

As before m1 represents the measurement outcome eigenvalue in binary
form. Expanding the above expression we have

c0|0〉A (d0(|0〉B2 + |1〉B2ZB3) + (−1)m1d1(|0〉B2 − |1〉B2ZB3)) |+〉B3

+c1|1〉A (d0(|0〉B2 − |1〉B2ZB3) + (−1)m1d1(|0〉B2 + |1〉B2ZB3)) |+〉B3.(2.30)

Then we measure B2 again in the |±〉 basis leaving us with the qubits A
and B3 in the state

c0|0〉A (d0(1 + (−1)m2ZB3) + (−1)m1d1(1 − (−1)m2ZB3)) |+〉B3

+c1|1〉A (d0(1 − (−1)m2ZB3) + (−1)m1(1 + (−1)m2ZB3)) |+〉B3. (2.31)

Replacing B for B3 and simplifying, we obtain

Xm2
B Zm1

B Zm1
A (c0d0|0〉A|0〉B + c0d1|0〉A|1〉B + c1d0|1〉A|1〉B + c1d1|1〉A|0〉B)

= Xm2
B Zm1

B Zm1
A CNOT|ψ〉AB . (2.32)

We have in effect simulated a CNOT gate on the two qubit input state,
through two measurements in the |±〉 basis. The first measurement served
to teleport the target qubit and simulate a Hadamard gate on it. Then the
CZ gate with the control was imprinted onto it, before it was teleported again
to the output qubit with a Hadamard transformation, exactly mimicking the
circuit version of the CNOT gate using a CZ gate.

Having seen how to simulate quantum circuits we now introduce a very
useful tool to further understand cluster states. They can also be character-
ized through the powerful stabilizer formalism developed by Gottesman [44].
In this framework, states are described by sets of operators which leave them
unchanged, enabling a more compact representation. That is, an operator
K is a stabilizer for |ϕ〉 if

K|ϕ〉 = |ϕ〉. (2.33)
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We see that in fact |ϕ〉 is an eigenstate of operator K with eigenvalue +1.
For example the four Bell states

|φ±〉 =
1√
2
(|0〉|0〉 ± |1〉|1〉),

|ψ±〉 =
1√
2
(|0〉|1〉 ± |1〉|0〉), (2.34)

can be entirely characterized by their stabilizers

{ZZ,±XX}φ±
{−ZZ,±XX}ψ± . (2.35)

Stabilizers have become the standard formalism to express quantum error
correction codes. The main issue is to find a set of stabilizers for which a
given state |ϕ〉 is the only eigenstate with eigenvalue +1, so that the stabi-
lizers uniquely define the state. We note here that not all quantum states
are stabilizer states, as is the case for the three-qubit state (|001〉 + |010〉 +
|100〉)/

√
3. This is the case because we are only focusing on qubit operators

within the Pauli group G1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}.
The product of two stabilizers yields another valid stabilizer, meaning

the set of stabilizers stabilizing a particular subspace have a group structure.
The group, which we will from now on call the stabilizer, can be compactly
expressed from the products of a set of generators. For cluster states, the
stabilizer generators are given by

Ki = Xi

∏

j∈Ni

Zj, (2.36)

one for each qubit i where all the qubits j share an edge with it in the graph-
ical representation (see Fig 2.2). In other words the cluster state of n qubits
is uniquely defined by as set of n generators, significantly more compact
than the 2n vector states required in the state notation. One advantage of
this notation is that it allows us to investigate the effects of measurements
on the cluster, in particular the measurement of Pauli operators. If the op-
erator being measured commutes with all the generators, then the state is
left unchanged. However if it anticommutes with one of the generators, that
particular generator is removed from the group. These simple guide lines
hold, up to -1 factors which can simply be taken into account or corrected
for [40]. To illustrate this let us consider an X measurement on a qubit em-
bedded in a linear cluster or chain (see Fig. 2.3). Given five qubits within
a chain, the stabilizer generators read
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Figure 2.3: The effect of Pauli X and Z measurements on qubits with a
cluster state. An X measurement removes the qubit from the cluster but
does not break up the chain. A dangling bond can be generated through
a Hadamard transformation on qubit 4. A Z measurement simply removes
the qubit and breaks up the chain.
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(2.37)

An X measurement on the center qubit corresponds to the measurement
of operator IIXII. As indicated above, all generators anticommuting with
the measured operator will be removed from the set. Those are the ones
with a Z on the third qubit, i.e. (2) and (4). Before removing them we
generate the commuting operator ZXIXZ by taking their product and we
also generate IZXIX by multiplying (3) with (5) (the latter can be done
after the removal). Proceeding with the removal we have
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(3)×(4)&(4)×(5)→















(1) X Z I I I
(2) Z X I X Z
(3) I Z I Z I
(4) I Z I I X















(2.39)

IIIHI→















(1) X Z I I I
(2) Z X I Z Z
(3) I Z I X I
(4) I Z I I X















. (2.40)

In the first step we remove the now irrelevant qubit which has been measured
by multiplying in the measured operator (if applying IIXII leaves the state
unchanged then the Xs on the third qubit can simply be replaced by Is).
At this point qubits 2 and 4 form an embedded Bell pair. In the second
step we apply a Hadamard transformation to the fourth qubit, affecting the
concerned operators asHXH = Z andHZH = X, and recover the modified
cluster state. We see that the measured qubit has been removed from the
cluster but the chain has not be broken up, instead it shrunk in length by
one qubit and now has a ‘dangling bond’, represented by the fourth qubit
which has only one connection to the chain. Following the same methods
it can easily be shown that a Z measurement on an embedded qubit will
remove it from the cluster along with all adjacent edges, breaking up the
chain.

The circuit and the measurement based models differ on several points.
The most obvious is the time at which entangling operations are performed.
In the circuit model they occur during the computation in an online fash-
ion. However in the cluster state approach all entangling operations are
performed before the computation (the measurements) begins, in an offline
fashion. This is a clear attribute when one considers applications in which
entangling operations only work with a certain heralded success probabil-
ity. For such applications the cluster state can be built efficiently before the
computation is undertaken deterministically through local measurements
and feed forward. This however comes at a price, that of resources, in terms
of qubit usage and time taken. Such issues are crucial to the feasibility of
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a useful measurement-based quantum computer, as the physical space con-
taining the devices and qubits, as well as the coherence time of the qubits
are finite. These vital issues will be discussed in chapter 4.

2.2 Quantum optics

Quantum optics is central to the work recounted in this thesis. In this
subsection we provide an introductory overview of the field which includes
relevant mathematical tools and concepts.

2.2.1 The quantized electromagnetic field

The standard starting point for the quantization the electromagnetic field
is Maxwell’s classical field equations [45]. The field in the vacuum, without
charges or currents obeys the free space equations

∇.E = 0, (2.41)

∇.B = 0, (2.42)

∇× E = −∂B
∂t
, (2.43)

∇× B = µ0ǫ0
∂B

∂t
, (2.44)

where µ0 and ǫ0 are the magnetic permeability and electric permittivity of
the vacuum. From the above equations it is easy to show that E (and B)
obeys the wave equation

∇2E = µ0ǫ0
∂2E

∂t
. (2.45)

The solution is a plane wave propagating at the speed of light c = 1/
√
µ0ǫ0.

It’s full form is given by [46]

E(r, t) = i
∑

k

(

~wk
2ǫ0

)1/2
[

akuk(r)e
−iwkt − a∗ku

∗
k(r)e

iwkt
]

, (2.46)

where ωk is the frequency of each mode k. The uk functions are plane
wave mode functions of the form uk(r) = V −1/2eλeik·r where eλ is the unit
polarization vector and λ = 1, 2 is the polarization index. The dimensionless
complex numbers ak and a∗k correspond to the amplitude of the classical
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field. Now the transition to a quantum representation of the field is made
by replacing these amplitudes with the operator âk and its adjoint â†k. They
obey the bosonic commutation relations

[

âk, â
†
k′

]

= δk,k′ . (2.47)

The energy of the electromagnetic field, initially given by the Hamiltonian

H =
1

2

∫

(ǫ0E
2 +

B2

µ0
)dr, (2.48)

can now be rewritten in terms of the âk and â† operators as

Ĥ =
∑

k

~ωk

(

â†kâk +
1

2

)

. (2.49)

Focusing on a single mode, if we denote by |n〉 the energy eigenstates of
the above Hamiltonian, the eigenvalue equation reads

~ω(â†â+
1

2
)|n〉 = En|n〉. (2.50)

One finds that the energy eigenvalues are given by En = ~ω(n+1/2), where
n is the number of photons in the mode. We naturally define the number
operator n̂ = â†â of which the |n〉 are also eigenstates. They are termed
number or Fock states and obey the eigenvalue equation n̂|n〉 = n|n〉. The
individual operators â and â† are the raising and lowering operators of the
harmonic oscillator eigenstates and their application leads to

â|n〉 =
√
n|n− 1〉, (2.51)

â†|n〉 =
√
n+ 1|n+ 1〉. (2.52)

In view of this they are referred to as the annihilation and creation operators
respectively. We see that the ground state of the oscillator is defined by
â|0〉 = 0. The corresponding energy (zero point energy) ~ω/2 represents the
vacuum energy fluctuations. Successive applications of the creation operator
on this vacuum state generates all higher energy number states

|n〉 =
(â†)n√
n!

|0〉. (2.53)

The number states are orthogonal and form a complete basis
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〈n|m〉 = δnm, (2.54)

∞
∑

n=0

|n〉〈n| = I, (2.55)

where I is the identity operator. The number state basis provides a rep-
resentation for all optical fields, from single photons to thermal fields. As
expected, superpositions of number states are of particular interest in quan-
tum information. One such superposition, which is of particular interest to
us, is the coherent state.

2.2.2 Coherent states

The coherent state |α〉 is defined as the eigenstate of the annihilation oper-
ator

â|α〉 = α|α〉. (2.56)

Expanding in the number state basis and solving the above eigenvalue equa-
tion leads to

|α〉 = e−|α|2/2
∞
∑

n=0

αn√
n!
|n〉. (2.57)

So the coherent state contains an indefinite number of photons averaging
at 〈α|n̂|α〉 = |α|2, giving it a well defined phase for large α, in contrast to
number states which have a perfectly well defined number of photons and in
consequence a random phase. This is due to an uncertainty relation between
the conjugate operators that are the number and phase operators, ∆n̂∆θ̂ ≥
1/2. However, as there is no well defined phase operator in quantum optics
[47], this is not a formal relation. We will see the same uncertainty relation
arise for the field quadratures in a formal way. The coherent state can also
be defined through the displacement operator D(α) acting on the vacuum
as

D(α)|0〉 = |α〉, (2.58)

with

D(α) = exp
[

αâ† − α∗â
]

. (2.59)
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The adjoint of the displacement operator is simply D†(α) = D(−α). Suc-
cessive displacements generate a geometrical phase which we will find to be
very useful

D(β)D(α) = eiIm[α∗β]D(α+ β). (2.60)

One important feature of coherent states comes from the fact that all their
number state components are non-zero, meaning that two coherent states
cannot be orthogonal

〈β|α〉 = exp

[

−1

2
(|α|2 + |β|2) + αβ∗

]

, (2.61)

|〈β|α〉|2 = exp
[

−|α− β|2
]

. (2.62)

However they can be made near orthogonal with a suitable choice of α and
β. Coherent states form an overcomplete set

∫

|α〉〈α|d2α = π, (2.63)

where the integral is taken over the real and imaginary components of α
(d2α = dIm[α]dRe[α]). To some degree, the coherent state has properties
which are relatively close to a classical state of the electromagnetic field.
With the exception of some superimposed quantum noise which is small for
large photon numbers, it resembles a classical oscillation of the electromag-
netic field.

Having defined the relevant optical states, we now look at how they
evolve through linear and nonlinear media.

2.2.3 Linear optics

Linear optical applications make use of passive optical elements such as
phase shifters and beam splitters which conserve photon number, to pre-
pare particular states through interference effects. In these elements, the
annihilation operators on different input modes are transformed to opera-
tors on output modes only linearly, that is [48–50]

âouti =
∑

j

Uij â
in
j , and â†outi =

∑

j

U∗
ij â

†in
j (2.64)
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where U is a unitary matrix. The phase shifter is based on a Hamiltonian
proportional to the number operator Hps = −~χâ†â and applies a number
dependent phase (time delay) on a particular mode

Ups|n〉 = e−iHpst/~|n〉 = eiφâ
†â|n〉 = einφ|n〉, (2.65)

with φ = χt. The action of a phase shifter on a coherent state is simply
given by eiφâ

†â|α〉 = |αeiφ〉. The other essential device for linear optics is
the beam splitter which in a general sense acts on the annihilation operators
of a pair of incoming modes as

(

aout1

aout2

)

= Ubs

(

ain1
ain2

)

. (2.66)

Ubs is again a unitary 2× 2 matrix and for an ideal phase-free beam splitter
we have

(

aout1

aout2

)

=

(

sinθ cosθ
cosθ −sinθ

)(

ain1
ain2

)

. (2.67)

It is worth noting here that there is another convention of the beam splitter
operation involving a different relative phase between transmission and re-
flection amplitudes [50]. The effect of the above transformation (2.67) is to
reflect or transmit an incoming photon with associated probability ampli-
tudes ±sinθ (reflectivity) and cosθ (transmittivity). Setting θ = π/4 leads
to the 50:50 beam splitter, which maps the incoming creation operators to

â†out1 → 1√
2

(

â†in1 + â†in2

)

, (2.68)

â†out2 → 1√
2

(

â†in1 − â†in2

)

, (2.69)

generating superpositions of number states. This particular transformation
leads to the striking photon bunching effect, in which the incoming pair
of modes each contain a single photon while the outgoing modes become
entangled, with either zero or two photons per mode

|1〉1|1〉2 → 1√
2

(|2〉1|0〉2 + |0〉1|2〉2) . (2.70)

As well as the path degree of freedom of photons, their polarization de-
gree of freedom is often used in linear optics. Two orthogonal polarizations
are contained in the solutions to the free space Maxwell equations and so
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individual photons can be horizontally polarized (|H〉) and vertically po-
larized (|V 〉). The circular polarization basis consists in the superpositions
(|H〉 ± |V 〉)/

√
2. A similar toolbox can be used in this setting, containing

polarizers (realizing arbitrary unitary operations on a single photon polar-
ization) and polarizing beam splitters which reflect a given polarization and
transmit the orthogonal polarization. We will be seeing how this toolbox
can be used to process quantum information in section 2.3.

2.2.4 The field quadratures and homodyne measurements

Coming back to the expression for the Hamiltonian of an single mode optical
field (2.49), one can reexpress it in terms of the Hermitian x̂ and p̂ quadrature
operators

Ĥ =
1

2

(

p̂2 + ω2x̂2
)

, (2.71)

with

x̂ =

√

~

2ω

(

â+ â†
)

, (2.72)

p̂ = −i
√

~

2ω

(

â− â†
)

. (2.73)

From these observables one defines the pair of dimensionless conjugate vari-
ables

X̂ =
1

2

(

â+ â†
)

, (2.74)

P̂ =
1

2i

(

â− â†
)

, (2.75)

obeying the commutation relation
[

X̂, P̂
]

= i/2. The generalized quadra-

ture operator can be written as

X̂(φ) =
âe−iφ + â†eiφ

2
, (2.76)

then we have X̂ = X̂(0) and P̂ = X̂(π/2). From the Heisenberg uncertainty
principle we have

〈(∆X̂)2〉〈(∆P̂ )2〉 ≥ 1

16
. (2.77)
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(a) (b)

Figure 2.4: (a) A schematic representation of a coherent state |α〉 in phase
space. The X and P quadratures represent the real and imaginary parts of
α. The uncertainty relation leads to a symmetrical phase space distribution
of width ∆X = ∆P = 1/2. (b) Two consecutive displacements in phase
space lead to a geometrical phase proportional to the area A traced out:
D(γ)D(β) = eiIm[β∗γ]D(β + γ) = eiAD(β + γ).

〈(∆Â)2〉 = 〈Â2〉 − 〈Â〉2 represents the variance of the operator Â and cal-
culating this variance for a coherent state (or the vacuum) |α〉 we find
〈(∆X̂)2〉α = 〈(∆P̂ )2〉α = 1/4. In other words the above expression be-
comes an equality and for this reason the coherent state is called a minimum
uncertainty state.

The phase space representation of optical states will be very useful to us
in this work. Due to the fact that the canonical variables X̂ and P̂ do not
commute, optical states do not have a well defined position in phase space.
In the case of a coherent state, the expectation values of X̂ and P̂ are

〈α|X̂ |α〉 =
1

2
(α+ α∗) = Re[α], (2.78)

〈α|P̂ |α〉 =
1

2
(α− α∗) = Im[α]. (2.79)

Thus in this case, the pictorial representation of a coherent state of ampli-
tude α = |α|eiθ in phase space becomes very intuitive, as illustrated in Fig.
2.4. The phase space distribution of a coherent state is a Gaussian distri-
bution, which we schematically represent in the plane by a disc with width
∆X̂ = ∆P̂ = 1/2, the center of the distribution at a distance |α| from the
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origin and forming an angle θ with the real axis. The corresponding repre-
sentation for the number state would be a circle around the origin, with a
perfectly well defined number of photons but a completely random phase.

Now we describe the setup for a homodyne measurement, which allows
us to detect a particular quadrature of a given mode. To do so, the mode
must be combined on a 50:50 beam splitter with a intense ‘local oscillator’
assumed to be in a coherent state |αLO〉 with large average photon number
(see Fig. 2.5). With the local oscillator in mode 1 and the signal state in
mode 2, the beam splitter output is

âout
1 =

1√
2
(âin

LO + âin
sig), âout

2 =
1√
2
(âin

LO − âin
sig). (2.80)

Assuming an intense local oscillator allows us to describe it classically through
the complex amplitude αLO instead of using the annihilation and creation
operators. A photodetector placed in each outgoing mode converts the pho-
tons into electrons, generating a measurable photocurrent î. This photocur-
rent is directly proportional to the number photons and so we can write
î = λn̂, where λ is a constant. Thus the photodectors in each mode will
measure photocurrents [48]

î1 = λâ†out
1 âout

1 =
λ

2
(α∗

LO + â†insig )(αLO + âin
sig), (2.81)

î2 = λâ†out
2 âout

2 =
λ

2
(α∗

LO − â†insig )(αLO − âin
sig), (2.82)

and the difference between the two yields

î = î1 − î2 = λ(α∗
LOâsig + αLOâ

†
sig). (2.83)

Writing the complex amplitude of the local oscillator as αLO = |αLO|eiφ we
obtain

îφ = λ|αLO|(e−iφâsig + eiφâ†sig)

= 2λ|αLO|X̂sig(φ), (2.84)

where clearly by setting φ = 0 and φ = π/2 we are in fact measuring the
canonical observables X̂ and P̂ respectively. The probability distribution
for the X̂ quadrature measurements of a coherent state is given by the
normalized position space wavefunction [51]
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Figure 2.5: The physical setup for a homodyne measurement of the sig-
nal input mode. After having been mixed on a 50:50 beam splitter with
a strong local oscillator, the two outgoing modes are absorbed in the pho-
todetectors in which their intensities are translated into photocurrents. The
quadrature measurement is then given by taking the difference between the
photocurrents.

〈x|α〉 =

(

2

π

)1/4

exp
[

− (Im[α])2 − (x− α)2
]

. (2.85)

By symmetry, the probability distribution for a P̂ quadrature measurement
can be obtained from the above expression with the coherent state |α〉 ro-
tated by an angle π/2 in phase space to |iα〉. When trying to distinguish
between two coherent states through a homodyne measurement, the error
in the measurement is given by the overlap of their respective measurement
probability distributions. This overlap diminishes exponentially with the
distance between the two states. This will become clearer when we discuss
measurements in the qubus scheme. Now we move on to consider the in-
teraction of a single mode field with a single two level atom. Such a fine
interaction can be obtained in an optical cavity and forms part of the field
of cavity quantum electrodynamics (CQED).

2.2.5 The Jaynes-Cummings model

Here we consider an atom with two energy levels corresponding to different
electronic configurations, the ground state |g〉 and the excited state |e〉 (see
Fig. 2.6). The difference in energy between the two we denote by ~ωA,
and fixing the zero point energy halfway between them, the free atomic
Hamiltonian reads
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A
F

Figure 2.6: Energy level diagram of the atom and single mode. The energy
difference between the ground (|g〉) and excited (|e〉) states of the atom
is given by ~ωA and the single mode energy by ~ωF . The detuning ∆
corresponds to ωA − ωF .

ĤA =
1

2
~ωAσ̂z, (2.86)

with σ̂z = |e〉〈e|− |g〉〈g| being the inversion operator. The free Hamiltonian
for a single mode of frequency ωF without the zero point energy is

ĤF =
1

2
~ωF â

†â. (2.87)

If we consider this mode evaluated at the position of the atom (set to the
origin), the solution to the Maxwell equations can be written as

Ê = ieλ
√

~ωF
2ǫ0V

(â+ â†). (2.88)

where the time dependence has been absorbed into the annihilation and cre-
ation operators (â(t) = â(0)eiωF t). The interaction between the field and
the atom is a dipole interaction with a corresponding interaction Hamilto-
nian [52]

Ĥint = −d̂ · Ê = d̂p(â+ â†), (2.89)

with

p = −i
√

~ωF
2ǫ0V

, and d̂ = d̂ · eλ. (2.90)
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d̂ is the operator corresponding to the classical dipole moment d = −er
(here e is the electron charge). Along with the atomic inversion operator
defined above, we introduce the transition operators

σ̂+ = |e〉〈g|, and σ̂− = |g〉〈e|. (2.91)

Similarly to the annihilation and creation operators, the transition operators
are rotating and evolve as σ̂±(t) = σ̂±(0)e±iωAt. The dipole operator d̂ is a
2× 2 matrix, however as the diagonal elements 〈e|d̂|e〉 = 〈g|d̂|g〉 = 0, it may
be written as

d̂ = d(σ̂+ + σ̂−), (2.92)

where d = 〈e|d̂|g〉 is assumed to be real. The total Hamiltonian then becomes

ĤT = ĤA + ĤF + Ĥint (2.93)

=
1

2
~ωAσ̂z +

1

2
~ωF â

†â+ ~g(âσ̂+ + â†σ̂−), (2.94)

with g = dp/~. This expression is known as the Jaynes-Cummings Hamilto-
nian [53]. To arrive at this result, the rotating wave approximation is used,
removing the terms σ̂−â and σ̂+â

† oscillating at large frequency ei(ωA+ωF )t

and keeping the terms σ̂+â and σ̂−â† oscillating at frequency ei(ωA−ωF )t.
One can understand the interaction part of the Jaynes-Cummings Hamilto-
nian as characterizing the absorption of a photon as the atom goes from the
ground state to the excited state and the emission of a photon as the atom
goes from the excited state to the ground state.

We now outline the procedure for obtain the dispersive limit of the
Jaynes-Cummings Hamiltonian [52,54]. Using expression (2.94), the Schrödinger
equation reads

i~
∂|ψ(t)〉
∂t

= (ĤA + ĤF + Ĥint)|ψ(t)〉. (2.95)

We now transform to the interaction picture via the operator U0 = ei(ĤA+ĤF )t/~,
in which the state vector becomes |ψ̃(t)〉 = U−1

0 |ψ(t)〉 (|ψ̃(0)〉 = |ψ(0)〉). The
corresponding Schrödinger equation is

i~
∂|ψ̃(t)〉
∂t

= ĤI(t)|ψ̃(t)〉, (2.96)

with
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ĤI(t) = U−1
0 ĤU0 − i~U−1

0

∂U0

∂t

= ~g(âσ̂+e
i∆t + â†σ̂−e−i∆t), (2.97)

where ∆ = ωA − ωF is the detuning which we will assume to be large. The
formal solution to (2.96) can be written

|ψ̃(t)〉 = T̂

[

exp

(

− i

~

∫ t

0
dt′ĤI(t

′)
)]

|ψ̃(0)〉, (2.98)

= T̂

[

1 − i

~

∫ t

0
dt′ĤI(t

′) − 1

2~2

∫ t

0
dt′

∫ t

0
dt′′ĤI(t

′)ĤI(t
′′) + ...

]

|ψ̃(0)〉

where T̂ is the time ordering operator, which insures that ĤI(t
′′) acts after

ĤI(t
′) for t′′ > t′. After time ordering and to second order in the expansion

we have

|ψ̃(t)〉 ∼=
[

1 − i

~

∫ t

0
dt′ĤI(t

′) − 1

~2

∫ t

0
dt′ĤI(t

′)
∫ t′

0
dt′′ĤI(t

′′)

]

|ψ̃(0)〉.

(2.99)
Assuming a large detuning and a reasonable number of photons n̄ (not too
large) in the cavity mode, that is g

√
n̄/∆ << 1, the second term in the

expansion can be neglected. After having integrated the third term and
applied the rotating wave approximation we obtain

|ψ̃(t)〉 ∼=
[

1 − iĤdispt/~
]

|ψ̃(0)〉, (2.100)

where the effective Hamiltonian is given by

Ĥdisp = ~χ(σ̂+σ̂− + â†âσ̂z), (2.101)

with χ = g2/∆. This is the dispersive limit of the interaction Hamiltonian
Ĥint in the interaction picture. In this limit the photon absorption is ne-
glected and instead a relative phase between the atomic states is produced.
This particular interaction will be relied on extensively in the rest of this
work, and so are the effects of dissipation, which we investigate next.
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2.2.6 Dissipation and the master equation

So far we have only considered closed quantum systems, be it fields or single
atoms. In reality such physical systems are continuously interacting with
an environment or ‘bath’. Entanglement occurs naturally between the two
and this leads to decoherence effects, causing initially pure states to become
mixed states. In turn this means that the evolution of these individual
systems is no longer unitary. In the case of optical fields, such effects can
consist in photon loss, or equivalently photon absorption of the environment.

The analysis of the evolution of an open system usually begins with a
Hamiltonian of the general form [46,55,56]

Ĥ = ĤS + ĤB + Ĥint, (2.102)

where ĤS and ĤB are the Hamiltonians of the system and the bath respec-
tively, and Ĥint represents the interaction Hamiltonian between the two.
For the damped harmonic oscillator which is our main concern here, they
are

ĤS = ~ωS â
†â,

ĤB = ~

∑

j

ωj b̂
†
j b̂j ,

Ĥint = ~

∑

j

(c∗j âb̂
†
j + cj â

†b̂j). (2.103)

The b̂j (b̂†j) are the annihilation (creation) operators acting on the bath
modes and the cj are coupling constants. Thus the bath is assumed to be
composed of harmonic oscillators and the interaction consists in exchanges
of single photons between them and the system. Note here that different
modes of the bath are not correlated (they do not interact with each other).

The starting point of most derivations of the master equation, governing
the non-unitary evolution of an open system is the Schrödinger equation of
motion in the interaction picture, reading

∂ν̃

∂t
= − i

~

[

H̃int, ν̃
]

, (2.104)

with Õ = ei(ĤS+ĤB)t/~Ôe−i(ĤS+ĤB)t/~. ν̃ is the density matrix for the sys-
tem and bath, which are initially uncorrelated, so we can write ν̃(0) =
ρ̃S(0) ⊗ ρ̃B(0). At later times, the system density matrix is obtained by
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tracing out the bath as ρ̃S(t) = trB [ν̃(t)] and as such through integration
we obtain the master equation

∂ρ̃S
∂t

= − 1

~2

∫ t

0
dt′trB

[

H̃int(t),
[

H̃int(t
′), ν̃(t′)

]]

. (2.105)

This expression is rather involved and can be simplified through the Born
and the Markov approximations consecutively. The Born approximation
relies on the weakness of the coupling between system and bath, enabling
us to neglect terms higher than second order in H̃int. This means ν̃(t′) is
replaced by ρ̃S(t′)⊗ ρ̃B(0) in the above expression. In the Markov approxi-
mation we assume that the state of the system at future times only depends
on its present state, further replacing ρ̃S(t′) with ρ̃S(t). These approxima-
tions being made, the master equation can be explicitly calculated for a
zero-temperature bath using the Hamiltonians (2.103), yielding

∂ρ

∂t
= − i

~

[

Ĥint, ρ
]

− γ(2âρâ† − â†âρ− ρâ†â), (2.106)

ρ being the system density matrix and γ the damping rate. There are
more complete expressions involving thermal baths (non-zero temperature)
or even squeezed baths, however the above expression is widely used in the
analysis of dissipative quantum optical systems. It provides a very good
approximation for fields with wavelengths bellow the micrometer range and
will suffice for the work presented in this thesis.

In this quantum optics section we have seen how quantum states of the
eletromagnetic field could be characterized and manipulated. We considered
the essential interaction of a single mode with a single atom, constituting
the Jaynes-Cummings model and saw how the evolution of an open system
could be approximated. In the next section we apply some of these concepts
to the encoding and processing of quantum information and give an overview
of known results.

2.3 Optical quantum computing

The physical realization of a quantum computer constitutes one of the main
research drives of the field of quantum information science. New propos-
als come to light in practically every issue of journals concerned with the
field. However there are some requirements which are independent of the
chosen physical support, and they have been condensed into a set of seven
fundamental criteria as enunciated by DiVincenzo [57]. The first five are
concerned with the requirements for a single localized processor:
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- Well characterized qubits.
- The ability to initialize the qubits in a standard state such as |00...0〉.
- Decoherence times much larger that gate operation times.
- A universal set of quantum gates.
- Single qubit measurement.

The last two criteria deal with the importance of communication and dis-
tributed applications:

- The ability to interconvert stationary and flying qubits.
- The faithful transmission of the flying qubits between chosen locations.

In this section we review some essential optical QIP proposals all the while
keeping in mind these criteria.

2.3.1 Single photons and nonlinearities

One of the earliest proposal for a physical implementation of QIP was to
use single photons. Without mentioning qubits, Milburn [58] proposed a
quantum optical Fredkin gate (controlled SWAP) to realize reversible logic,
without any energy dissipation. The gate acts on three bits encoded in
the positions of three single photons and the essential interaction the gate
relies on is a cross phase modulation occurring in a nonlinear optical Kerr
medium. The interaction Hamiltonian is written

HK = −~χâ†1â1â
†
2â2, (2.107)

where â†1 and â†2 are the creation operators acting on the two optical modes
propagating through the medium and χ is proportional to the third order
nonlinear susceptibility coefficient χ(3) of the medium. If each mode contains
one or no photons it is easy to see that the resulting unitary operation on
the two modes UK = exp[iχtâ†1â1â

†
2â2] will induce a conditional phase on

the state corresponding two one photon in each mode Uk|11〉 = exp[iχt]|11〉
while leaving all other states (|00〉, |01〉 and |10〉) unchanged.

In Milburn’s gate, the logical states correspond to the photon being in
either one of two modes, with associated states |10〉 and |01〉. This encoding
has come to be known as the dual-rail encoding for qubits and was used by
Chuang and Yamamoto [59] to describe a complete quantum computer based
on beam splitters, phase shifters and nonlinearities. Beam splitters and
phase shifters (as defined in the previous section) are sufficient to implement
arbitrary operations on a single qubit |ψ〉 = c0|01〉+ c1|10〉. The cross phase
modulation then enables us to directly implement entangling gates between
two qubits propagating in four different modes. The simplest example is
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that of a CZ gate; in this case one simply needs to have one mode from each
qubit going through the Kerr medium for a time t = π/χ. A similar setup
can be used with a polarization encoding of the qubits (|ψ〉 = c0|H〉+c1|V 〉),
noting that polarizing beam splitters enable us to go from one encoding to
the other.

All single photon proposals present several attributes, the main one being
the long coherence time of well defined photonic qubits, be it in polarization
or spatial encodings. This addresses directly the first three DiVincenzo
criteria. Also the single qubit operations rely only on passive linear optical
elements which are commonplace on standard optical tables and no interface
with communication systems is needed. However photons do not interact
easily and the strength of the nonlinearity required to induce a π phase
between two single photons is far out of reach of current technology.

A more recent proposal by Franson et al. [60] makes use of the Zeno
effect to implement entangling gates. The CZ gate here consists in a pair of
modes weakly coupled and doped with two-photon absorbing atoms. The
absorbers suppress the two photons per mode components through what is
called the Zeno effect. After a given interaction time (distance), a complete
swap of the two modes is achieved. At this point the two modes return to
regular optical fibers and are manually swapped back. The switching from
one mode into the other induces a π phase shift (similar to a single compo-
nent of a beam splitter operation), relative to the other two qubit states. For
a strong quantum Zeno effect the gate performs near deterministically, how-
ever again there is a significant gap with currently available technology and
in consequence, due to photon loss, the gate does fail. Recent encoding [61]
and distillation schemes [62] are helping to reduce this gap.

2.3.2 Measurement induced nonlinearities

The nonlinearities described above are not indispensable and it was shown
in a paper by Knill, Laflamme and Milburn (KLM) [34] that passive lin-
ear optical elements along with single ancillary photons and photon number
resolving detectors are sufficient for universal quantum computation. This
striking result has triggered considerable amounts of research in linear opti-
cal quantum computing (LOQC). For detailed reviews of the field we point
the interested reader to [49, 50] while a broad overview and perspective is
given in [63]. Due to the fact that single photons hardly interact, the CZ
gate unveiled in the KLM scheme is a probabilistic, heralded gate, whose
successful outcome depends on a set of measurements. The building block
of this gate is another gate, working on a smaller scale, the nonlinear sign
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Figure 2.7: Optical circuit representations of two fundamental KLM gates.
(a) The nonlinear sign gate, with an ancillary photon and three beam split-
ters. The reflectivities of the first and last beam splitters are the same
(θ1 = θ3). The gate succeeds when a single photon is detected in the top
ancillary mode. (b) Combining two NS gates and two 50:50 beam splitters
leads to a CZ gate on two incoming qubits |ψ1〉 and |ψ2〉 in the dual rail
encoding.

(NS) gate. It acts on a single optical mode as follows

NS(c0|0〉 + c1|1〉 + c2|2〉) = c0|0〉 + c1|1〉 − c2|2〉, (2.108)

applying a π phase shift on the two-photon component. The NS gate is illus-
trated in Fig. 2.7(a) and as we see it requires a single ancillary photon and
two photodetectors. Measuring a single photon in the top detector indicates
that the gate succeeded. This occurs with probability 1/4. Combining two
of these gates and the photon bunching effect observed in the previous sub-
section, a full CZ gate working with success probability 1/4× 1/4 = 1/16 is
devised (see Fig. 2.7(b)). Since the initial paper, simplifications have been
proposed, notably the NS gate of Ralph et al. [64], and an improvement on
the success probability of the CZ gate to 2/27 was found by Knill [65], in a
gate making use of two ancillary photons.

Entangled ancillary photons can further increase the success probability
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Figure 2.8: The CNOT gate designed by Pittmann et al. works with
polarization encoded qubits. The ancillary photons form a Bell state
|φ+〉 = (|HH〉 + |V V 〉)/

√
2. The gate succeeds when both the top and

bottom detectors detect a single photon. The parity checks work with prob-
ability 1/2 and thus the gate success probability is 1/4.

of a two-qubit entangling gate to 1/4, as illustrated by Pittmann et al. [66]
and Koashi et al. [67]. The Franson type CNOT gate shown in Fig. 2.8
functions in the polarization encoding and consists in two parity checks
(one on each input) with an ancillary Bell state of the form |φ+〉 = (|HH〉+
|V V 〉)/

√
2. A parity check or gate can be simply composed of a polarizing

beam splitter and a detector on one of the outgoing modes. It allows one to
verify whether or not the two incoming photons have the same polarization.

The KLM scheme is very attractive and seemingly simple, however the
probabilistic aspect of the two-qubit gates is problematic. The probability of
successfully implementing a quantum circuit containing n of these of these
gates will scale as pn, where p is the success probability of an individual
gate. That is on average we will have to attempt the circuit p−n times.
This number increases exponentially with the size of the circuit and becomes
intractable for small p, eliminating any improvement the quantum computer
may have had over its classical counterpart.

2.3.3 Gate teleportation and optical cluster states

The KLM approach potentially overcomes this obstacle of probabilistic gates
by pushing it into an off-line preparation scheme. What we mean by this
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is that the two-qubit gates are not used during the computation itself, but
in the preparation of a resource to be used during the computation. The
possibility to do so was first pointed out by Gottesman and Chuang [68] and
the process is now referred to as gate teleportation. The example they give
is that of a teleported CZ gate. A single qubit can be teleported by using
a Bell state as a resource. The standard protocol consists in performing a
joint measurement in the Bell basis of the input qubit and one half of the
Bell pair. This procedure maps the input qubit to the other half of the Bell
pair, up to a known unitary operation given by the measurement results. In
the case of gate teleportation, the two input qubits each have one half of
their own Bell pair ready for the teleportation, but before the measurements
are performed, a CZ gate is attempted between the two other halves of each
Bell state (the recipients of the teleportations). Due to the fact that the
CZ gate commutes with the possible single qubit corrections required, it is
imprinted onto the teleported qubits. Now all one needs is to be able to
reliably prepare and store this entangled two-Bell state resource and the
online implementation of the gate is assured to be deterministic.

Unfortunately the problem is not completely solved for LOQC appli-
cations, as the Bell basis measurements themselves only succeed with a
maximum probability of 1/2 [69]. Eisert [70] provided a method based on
semidefinite programming to find strict success probability upper bounds on
linear optical gates, verifying this Bell state measurement probability and
fixing the maximum success probability of an NS gate to 1/4 (no possible im-
provements over the initial gate). Thus given the resource state, the success
probability for the single gate teleportation remains limited to 1/4. The en-
tangled resources can be increased so as to increase the success probability of
the qubit teleportations themselves. With n ancillary photons in 2n modes
the resulting probability is n/(n+ 1), rapidly becoming near deterministic.
However the complete resource needed for the the near deterministic tele-
portation of a CZ gate is significant, estimated at 104 operations [71]. The
resource cost of a single gate now being fixed, one can argue that the KLM
scheme is scalable; the resources (modes, optical devices and detectors) scale
polynomially instead of exponentially, with the number of gates composing
a quantum circuit. However this approach cannot be scalable in a practical
sense.

Further improvements were found by turning to cluster states. The first
proposals in that direction was that of linked photon quantum computation
by Yoran and Reznik [72]. In this scheme both the path and polarization
degrees of freedom of each photon are used so as to enable a determinis-
tic teleportation as described by Popescu [73]. Then each logical qubit is
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represented by a chain of photons linked in path and polarization degrees
of freedom alternatingly. CZ gates applied between chains before the tele-
portation procedure begins are imprinted onto the logical qubits as they
are transmitted, through local measurements, as in the cluster state model.
This proposal came roughly at the same time as the conventional photonic
cluster state adaptation by Nielsen [74], reducing the number of operations
per logical gate to order 102. The CZ gate is not necessary for the genera-
tion of cluster states and so further simplifications were given by Browne and
Rudolph [75], based on a polarization entangled photon source, polarizing
beam splitters and redundant encoding. The entangling gates then simply
consist in a parity gate (type I fusion), used to grow linear chains, and an
incomplete Bell state measurement (type II fusion), used to link up chains
into a 2-dimensional lattice without breaking them up in case of failure. The
latter requires an X measurement prior to each fusion attempt, to create
a redundantly encoded qubit, very similar to the ‘dangling’ bond approach
proposed by Barrett and Kok [43]. This simplified method brings the aver-
age cost of an individual two-qubit gate down to 52 Bell pairs instead of 54
8-photon entangled states in Nielsen’s scheme.

Single photons seem to be good candidates for the realization of cluster
state quantum computing. On the few-photon scale, many experiments have
already been done, the most famous to date being the 4-photon cluster state
demonstrated by Walther et al. [76], now surpassed by the 6-photon cluster
state created by Lu et al. [77]. However as the cluster increases in size, the
complexity of the circuits and the optical switching required constitute a
tremendous technical challenge. A more intuitive way of viewing a cluster
state is as being composed of static qubits. This was the initial picture
Raussendorf and Briegel had in mind. LOQC provides the tools to do so as
we will see next.

2.3.4 Distributed approaches

The idea of entangling atoms in the same cavity via the ‘non-detection’
of emitted photons was first mentioned by Plenio et al. [78]. Later Duan
and Kimble proposed a scheme to entangle atoms in separate cavities [79],
through the detection of cavity decay with single photon detectors. Each
atom is driven by a classical laser pulse from their ground state to an excited
state before decaying into one of two logical states (corresponding to |0〉
and |1〉) through the emission of a horizontally or a vertically polarized
photon. The cavity outputs are mixed on a polarizing beam splitter to erase
the which path information before being measured. Conditional on the
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detection of a photon at each one of the beam splitter outputs, occurring
with probability 1/2, the atoms are projected to the maximally entangled
singlet state (|01〉 + |10〉)

√
2.

Even though efficient, this scheme is not a parity check because the atoms
are initialized in a known state. In order to be able to leave the coherence
of the atoms untouched, a different setup is needed. Such a modified setup
constitutes Barrett and Kok’s proposal [43], where they consider two opti-
cal cavities containing single atoms coupled to outgoing modes mixed on a
regular beam splitter this time. The individual atomic qubits comprise of
two low-lying (qubit basis) states and a single excited state with a selection
rule linking it to just one of the qubit states. Applying a π pulse leaves
one of the low lying states unchanged, while making the other move up to
the excited state. Decay leads to the emission of a single photon for this
amplitude. So if, after applying the π pulse to both qubits, a single photon
is detected after the beam splitter, the qubits are projected into the singlet
state. A double-heralding procedure is used to remove mixture, generated if
non-photon-number resolving detection is used. This method was combined
with another result obtained by Lim et al. [80], where the implementation
of a CZ gate is achieved through repeated measurements of the two atomic
qubits in a mutually unbiased basis. The combination of the two propos-
als [81] leads to some saving in qubit resources during the generation of the
cluster states. The scaling of these resources will be taken as a comparative
in chapter 4.

2.3.5 Detectors and sources

Linear optics based approaches constitute attractive physical realizations
indeed. The logical circuits are built up of passive linear optical elements
and as we mentioned earlier, for all optical setups the coherence times of
the qubits is not an obstacle. The experimental difficulty now lies in the
single photon (or entangled pair) generation and photon number resolving
detection. Increasing the efficiency of devices working in this regime consti-
tutes a significant technological challenge, which is being taken on by many
research groups worldwide. Such devices will not only serve LOQC but also
all photon level communication systems, quantum or classical.

Real photo-detectors are subject to two types of errors. The first is pho-
ton loss, exemplified when the device detects fewer photons than the signal
actually contained. The second is referred to as dark counts, when the device
detects too many photons. Current experiments in general use avalanche
photo-diodes which are commonly called bucket detectors, in that they are
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not photon-number resolving. The measurement only tells us if there were
photons in the signal mode, with a typical efficiency on the order of 80%.
Devices can be cooled down so as to reduce the dark counts and allow for
photon number resolution [82]. For example superconducting transition-
edge detectors operating at temperatures in the milli Kelvin range [83] work
with an efficiency of 88% at a wavelength of 1550nm. Quantum nondemoli-
tion measurements are also potential candidates [84] and we will see in the
next section how the qubus scheme provides a natural implementation [85]

Turning to the generation of single photons, a crude approach is to use
an attenuated laser source, producing weak coherent states containing only a
single photon with a high probability. However such a source is not heralded
and we never know with certainty whether or not the pulse contains 0, 1 or
even 2 photons. There are currently mainly two schemes for a more precise
generation, the first of which is conditional parametric down conversion, the
most commonly used in LOQC experiments. This method involves sending
photons with a fixed frequency ω0 through a nonlinear optical medium which
generates pairs of photons of frequency ω1 + ω2 = ω0. When one of these
two outgoing photons is detected, we know with certainty that there is
another single photon propagating, due to momentum conservation. Being
able to conditionally open or close a filter based on the measurement result
provides us with a heralded single photon source, but still not an on-demand
source. The second type of schemes, addressing this issue, are cavity based
and essentially rely on single photon emission of some matter qubit as it
spontaneously decays from an excited state to a lower lying state [86]. The
experiments are very complex and so far efficiencies remain on the order of
a few percent (see [87] for a review on potential technologies).

Experiments can still be undertaken with low efficiency devices as the
outcomes of interest are post-selected. But for scalable online quantum
computation, serious progress will have to be made, in single photon sources,
detectors and quantum memories, as emphasized in [63].

2.4 The Qubus Scheme

In the previous section we mentioned the concept of distributed QIP, in
which the logical qubits used in the computation do not interact directly.
Such an approach, combining stationary and flying [57] qubits presents many
advantages [88]. To begin with it allows us to overcome the difficulty of im-
plementing direct coherent interactions between logical qubits, thus enabling
well isolated, low decoherence qubits. Another obvious attribute is the ex-
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tendibility of the architecture, which constitutes a challenge for conventional
static qubit architectures. The ancillary system(s) used to mediate inter-
actions we will from now on refer to as quantum buses. These buses need
not however be the propagating systems. In CQED applications, the logical
qubits and the buses may be the photonic and the atomic qubits or vice
versa. The case we mentioned in the previous section was that of single
photons mediating interactions between atomic qubits. The other possibil-
ity is to use an atom to mediate the interaction between photonic qubits, as
was demonstrated early on by Turchette et al. [89]. In this experiment, a
conditional phase shift in polarization space was observed between pairs of
single photons as they pass through a cavity containing a single atom. The
effect is analogous to a cross-phase modulation obtained in a Kerr medium,
but here it is amplified by the strong coupling of photons with the atom,
due to the cavity.

A scalable setup was proposed by Duan and Kimble [79], in which single
photons successively bounce off a cavity containing a single atom, imple-
menting a conditional phase gate between the single photons. The atom-
photon interaction takes place in the dispersive regime (no absorption). This
interaction has also been achieved experimentally by Schuster et al. [90] for
a superconducting qubit coupled to photons in a microwave transmission
line. This same interaction also forms the basis of the ‘photonic module’
developed by Devitt et al. [91], which allows for the efficient generation of
large scale stabilizer states, an essential resource for quantum applications.
In this scheme the issue of storage is also potentially overcome through the
continuous measurement of a cluster state as it is being produced by the
modules.

As we saw in the previous section, the use of photonic qubits is confronted
with serious technological challenges, in the design of efficient single photon
sources and detectors. In the distributed setting, where the logical qubits are
static, the thought of using a more robust mediating bus naturally springs
to mind. The brings us to the idea of a continuous variable bus, which is
the topic of this section.

2.4.1 Hybrid quantum information processing

Most of the results in quantum information theory were developed by mak-
ing use of qubits or qudits. However even though single qubit operations are
not so much of an issue, the level of control required to physically implement
entangling gates between individual qubits and measure them within real-
istic coherence times is tremendous, limiting the experimental realizations.
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The initial theoretical proposals were rapidly adapted to a continuous vari-
able (CV) setting, where CV QIP was shown to be possible by Lloyd and
Braunstein [92]. A detailed review is given by Braunstein and van Loock
in [48]. Also recently the cluster state model was translated into a CV set-
ting [93]. CV implementations may be more accessible in some respects,
with simple measurements and entangling operations. Despite these advan-
tages, this framework is limited by the nonlinearity available experimentally,
making single system operations difficult, and the fact that even in theory,
protocols cannot work perfectly. Combining the exactness of discrete vari-
ables and the robustness of continuous variables is therefore a natural route
to take.

The term ‘hybrid’ was first coined by Lloyd [94] to describe quantum
information processes featuring both discrete and continuous variables. The
ability to switch on and off the set of interaction Hamiltonians of the type
{±ZqubitXosc, ±ZqubitPosc} (where the first Pauli operator acts on the qubit
and the second quadrature operator acts on the oscillator) enables one to
simulate single qubit operations and quantum logical gates on discrete sys-
tems. The reverse is also true, that is these Hamiltonians allow for arbitrary
logical gates on CV systems. Multi-qubit extensions were rapidly undertaken
in generalizations [95,96]. The initial observation made by Lloyd came at the
same time as Milburn’s proposal to simulate interactions between trapped
ions by coupling them to a common vibrational mode [97], constituting a
direct physical realization of a hybrid quantum computer. This approach
was used to entangle up to four ions experimentally [98]. A hybrid quan-
tum computer could potentially be more versatile than its strictly discrete
counterpart, providing simple algorithms to compute eigenvectors and eigen-
values [94] or implementing Grover’s search algorithm in a direct way [95].

2.4.2 Conditional rotations and displacements

In this thesis we will consider two types of interactions, coupling discrete
systems with CV systems. The first we refer to as the conditional rotation,
described by the effective interaction Hamiltonian

ĤR = −~χâ†âΛ̂ (2.109)

where â(â†) are the annihilation (creation) operators acting on the CV probe
mode and Λ̂ =

∑

n λn|n〉〈n|. In the case of a cross-Kerr interaction, Λ̂ = b̂†b̂
the number operator acting on the signal (subsystem) mode (Λ̂|n〉 = λn|n〉 =
n|n〉) and χ is proportional to the third order nonlinear susceptibility of the
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medium. In a CQED setting involving a two level atom interacting with
the cavity mode which is far detuned, we observe the effective Hamiltonian
seen earlier [52] in which Λ̂ = Z where Z is the Pauli operator acting on the
atomic qubit (Λ̂|n〉 = λn|n〉 = (−1)n|n〉) and χ is the atom-light coupling
strength. In both the cross phase and the CQED settings we have a hybrid
interaction between the continuous quadrature variables of the probe field
and the discrete degrees of freedom of the subsystem. Initiating the probe
in a coherent state |α〉 and applying the interaction for a time t yields

e−iĤRt/~
∑

n

cn|n〉|α〉 =
∑

n

cn|n〉|αeiλnχt〉. (2.110)

The probe mode is in effect being conditionally rotated in phase space by
an angle proportional (in the two cases we consider) to χt. We will denote
the conditional rotation by

R(θΛ̂) = eiθâ
†âΛ̂, (2.111)

with θ = χt.
The second interaction we consider is the conditional displacement. The

interaction Hamiltonian producing the interaction is

ĤD = −~χX̂(φ)Λ̂, (2.112)

where X̂(φ) = (âe−iφ + â†eiφ)/2, the generalized quadrature operator. The
resulting unitary operation after an interaction time t we refer to as a con-
ditional displacement

e−iĤDt/~ = e(βâ
†−β∗â)Λ̂

=
∑

n

|n〉〈n|e(βâ†−β∗â)λn

= D(βΛ̂) (2.113)

with β = iχteiφ/2. By changing the phase φ, the field or oscillator interact-
ing with the subsystem can be conditionally displaced in different directions
in phase space. In the present thesis we will only work with qubits as sub-
systems and thus mostly we will have Λ̂ = Z.

This particular interaction occurs in different physical setups. The first is
in superconducting qubits, more specifically superconducting charge qubits
coupled dispersively to an optical bus mode. This was realized experimen-
tally by Wallraff et al. [99,100] who realized a coherent coupling of the qubit
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with a microwave bus mode, enabling a dispersive readout of the qubit state
via a homodyne measurement on this bus mode. A superconducting charge
qubit essentially consists in a superconducting island connected to a large
superconducting reservoir through a Josephson junction [101]. The two log-
ical states correspond to the near degenerate quantum states with zero or
one excess Cooper pairs on the island. If a composite junction made up of
two parallel junctions is constructed, one can control the tunneling between
the island and the reservoir via a magnetic flux threading the junction itself.
Given such a setup a coupling of the form (2.112) naturally occurs between
the qubit and the electromagnetic field surrounding the junction [102,103].
Superconducting flux qubits also enable this type of coupling, implemented
experimentally by Chiorescu et al. [104].

It is also possible to realize the Hamiltonian (2.112) in an ion trap with
adapted driving fields [105,106]. In this case the ions are coupled to a com-
mon vibrational mode (phonon), acting as a CV bus. This single vibrational
mode approximation holds if the ions are well isolated from the environment,
avoiding thermalization, and if they are sufficiently cool, so as to make the
one dimensional harmonic approximation valid [40]. Once these criteria are
fulfilled, the entire linear chain of trapped ions moves as one body, and the
transition to the next higher energy state is made through the absorption
of a center of mass phonon.

At this point it is worth noticing some differences between conditional
rotations and displacements. First, conditional rotations commute with each
other, in contrast with conditional displacements. Second, conditional ro-
tations are energy conserving, while conditional displacements require an
external energy input or output. Each one of these interactions will allow
us to develop a distinct approach to qubus computation. The sole use of
conditional rotations without displacements will call for bus measurements
whereas the use of conditional displacements will enable measurement free
operations. We begin with the latter and the use of the geometric phases in
phase space.

2.4.3 Observing the geometric phase

Coming back to the geometric phase D(β)D(α) = eiIm[α∗β]D(α+ β) gener-
ated by a pair of displacements, an interesting sequence to consider is one in
which the oscillator returns to it’s initial state in phase space, for example

D(−β)D(−α)D(β)D(α) = e2iIm[α∗β]D(0). (2.114)
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The resulting state can be viewed as the same state up to a global phase.
Considering a general closed loop D	 in phase space, characterized by a
sequence of displacements of amplitudes {αj , j = 1, .., N} with

∑N
j=1 αj = 0,

then

D	 =

N
∏

j=1

D(αj) = eiΘ. (2.115)

Given the relation between the coherent state amplitude α and the quadra-
ture expectation values, Re[α] = 〈X̂〉 = x and Im[α] = 〈P̂ 〉 = p, the resulting
phase for an arbitrary loop which can be attained as N → ∞ becomes [107]

Θ =

∮

(xdp− pdx). (2.116)

This is nothing else but the area enclosed by the trajectory, independent of
it’s shape, size or of the speed at which it is completed. For these reasons it
can be called a geometric phase [96]. The direction of the trajectory gives
the sign of the phase, which is positive for anticlockwise loops.

In order to be able to observe this geometric phase, the displacements
need to be conditional on the quantum state of another system. Luis [107]
introduced this observation in the Schrödinger picture, here we will simply
give the equivalent observation in the Heisenberg picture. Let us take a qubit
which conditionally displaces a CV probe through the interaction D(βZ).
Then the X = |0〉〈1| + |1〉〈0| qubit observable evolves to

X → D(βZ)XD†(βZ) = D(βZ)XD(−βZ)

=

{

D(2β) +D(−2β)

2

}

X + i

{

D(2β) −D(−2β)

2

}

Y. (2.117)

At this point the qubit and probe are entangled, as indicated by the new
observables. Completing a conditional loop enclosing an area Θ in phase
space, noting that D†

	 = D∗
	, the final X observable is

X → eiΘZXe−iΘZ

= cos(2Θ)X − sin(2Θ)Y. (2.118)

Thus the geometrical phase can be observed through an X measurement on
a qubit initially in the |+〉 state as 〈+|cos(2Θ)X|+〉 − 〈+|sin(2Θ)Y |+〉 =
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cos(2Θ). This process can be used to implement arbitrary single qubit ro-
tations, as long as the qubit can induce conditional loops in phase space
resulting in both eiΘZ and eiΘX unitary operations. What can be done if
we consider different qubits interacting with the same oscillator?

2.4.4 Multi-qubit interactions

The sequence (2.114) can be generalized to the conditional case by inserting
a pair of commuting operators Â and B̂

D(−βB̂)D(−αÂ)D(βB̂)D(αÂ) = e2iΘÂB̂ , (2.119)

where Θ = Im[α∗β]. Here we have in effect simulated a Hamiltonian of the
form ÂB̂. Now if these two operators act on the same composite system,
one can simulate very useful Hamiltonians. For example if the composite
system is a set of N qubits, then setting Â = B̂ = Ĵz =

∑N
n=1 Zn enables

the simulation of the highly useful nonlinear Hamiltonian Ĵ2
z .

Another way for the Â and B̂ operators to commute, is if they act on
different subsystems. This leads us to the simulation of the essential two-
qubit Ising interaction, which leads directly to the two qubit (a and b)
conditional phase gate [97]

D(−βbZb)D(−βaZa)D(βbZb)D(βaZa) = e2iΘZbZa . (2.120)

Setting Θ = Im[β∗aβb] = π/8 yields a gate locally equivalent to the CZ gate
as defined in section (2.1.3)

CZ = ei
π
4
(1−Za)(1−Zb) = ei

π
4
ZaZbe−i

π
4
Zae−i

π
4
Zb , (2.121)

up to a global phase. This gate circuit is illustrated in Fig. 2.9 and the
phase space trajectories of the probe in Fig. 2.10, taking βa and βb pure
real and imaginary respectively. The sequence (2.119) is particularly rele-
vant to situations in which the qubits are in different locations and do not
interact simultaneously with the CV bus. Of course such a gate can also
be implemented in the case in which the two qubits interact simultaneously
with the bus, with Â = B̂ = Za + Zb.

A conditional rotation based CZ gate was proposed by Spiller et al. [108],

R(θZ1)D(−β)R(θZ2)D(−iβ)R(θZ1)D(β)R(θZ2)D(iβ) ≈ CZ, (2.122)
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Figure 2.9: The circuit representation of the CZ gate described in the text,
each rectangle is a conditional displacement, induced by the qubit onto the
probe initiated in the coherent state |α〉.
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RR R

Figure 2.10: The four trajectories in phase space of the CV bus, correspond-
ing to the four two-qubit states. Here we assume orthogonal displacements
by taking βa and βb real. The ‘R’ and ‘I’ exponents represent the real and
imaginary parts respectively.

setting the conditional two qubit phase |βθ|2 = π/4. However the bus
doesn’t fully disentangle from the qubits, leading to a systematic decoher-
ence effect on them. The error scales as |β|θ2 and can be made small in the
limit of large β and small θ. To obtain an exact conditional rotation based
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CZ gate, we must use an important property of rotation operations, that
is [109]

eθâ
†âf

(

â, â†
)

e−θâ
†â = f

(

âe−θ, â†eθ
)

, (2.123)

where f can be expanded in a power series. Then the conditional displace-
ment can be realized with the following sequence [110]

D(α cos θ)R(−θZ)D(−2α)R(θZ)D(α cos θ) = D (2iα sin θZ) , (2.124)

with α real. Based on these conditional displacements, an exact CZ gate
can be constructed. The gate itself can be simplified by using conditional
displacements of the form D(βeiθZ) obtained through the removal of the
first and last displacements in (2.124). The sequence becomes

D(−iβbeiθZb)D(−βaeiθZa)D(iβbe
iθZb)D(βae

iθZa) = e2iβaβbsin
2θZ1Z2 .

(2.125)
The size of the conditional phase is equal to the difference between the
area enclosed by the even (|00〉, |11〉) and odd (|01〉, |10〉) qubit states. The
areas are βaβb and βaβbcos2θ respectively, leading to a conditional phase
Θ = βaβb(1− cos2θ) = 2βaβbsin

2θ. The trajectories are shown in Fig. 2.10.
An interesting distinction can be made between gates which use trajectories
with opposite directions (e.g. (2.120)) and gates which use relative area
difference like the one above.

It can easily be seen that the product of displacements conditioned on
a set of qubits will ultimately lead to the simulation of at most two-body
Hamiltonians of the form

∑

i,j ZiZj. In order to directly simulate many-body
interactions, single qubit conditional displacements are no longer sufficient.
Then the conditional rotation allows us to overcome this issue and build
up conditional displacements containing several qubit operators. Let us for
example consider the three-qubit interaction ZaZbZc, to simulate it we need
a conditional displacement containing a product of operators, for example
D(µZaZc). This can be obtained through the sequence

R(θZc)D(νZa)R(−θZc) = D(νZae
iθZc) = D(νcosθZa + iνsinθZaZc).

(2.126)
Based on this, the three-qubit interaction can be directly simulated as [96]
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Figure 2.11: The four trajectories in phase space of the CV bus, for the
exact CZ gate based on conditional rotations (2.125). We can see that the
even and odd parities lead to different enclosed areas.

D(−βbZb)D(−βaZaeiθZc)D(βbZb)D(βaZae
iθZc) = e−iτZaZbsin(θZc+ϕ),

(2.127)
with τ = |βaβb| and ϕ = arg(βa) − arg(βb). By setting ϕ = 0, the Hamil-
tonian λZaZbZc is obtained, and based on a variant of this the three-qubit
Toffoli gate can be implemented. Wang and Zanardi extended this procedure
to more systems and also to gates on encoded qubits [96].

The use of conditional geometric phases in phase space is very attractive,
as the gates are implemented deterministically, without the need for post-
selection or feed-forward. However they require at least two interactions
per subsystem, one to couple the subsystem with the CV bus, generating a
geometric phase, the second to decouple the two. Depending on the physical
system envisaged, and in particular for distributed systems, this may be very
complex to implement. If we are dealing with qubits in different locations,
this means the CV bus will have to be dynamically switched and rerouted
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every time we wish to apply a gate between two different qubits. One
way of overcoming these issues is to design an adapted architecture, which
can be scaled up in a practical way. The other way is to introduce bus
measurements.

2.4.5 Qubus measurement-based gates

The simplest measurement one can think of is a single qubit measurement.
This can be achieved through the qubus scheme with the same interactions
utilized above, and is traditionally referred to in the quantum optics liter-
ature as a quantum non-demolition (QND) measurement [111, 112]. Let us
consider the measurement in the computational basis (Z basis) of a single
qubit initially in the state |ψ〉 = c0|0〉 + c1|1〉. This qubit can then either
conditionally displace or conditionally rotate a CV bus in state |α〉 as

D(βZ)|ψ〉|α〉 = c0|0〉|α + β〉 + c1|1〉|α − β〉,

R(θZ)|ψ〉|α〉 = c0|0〉|αeiθ〉 + c1|1〉|αe−iθ〉, (2.128)

where we have chosen α and β to be real for simplicity. Of course we
can also use a photonic qubit and the number operator n̂ instead of the
Pauli Z operator [113]. In any case, after the interaction, the probe state
lies in one of two positions in phase space as illustrated in Fig. 2.12 and
Fig. 2.13. Discriminating between them through a measurement will in
turn implement a Z measurement on the qubit. This can be done via a
homodyne detection, as described in section 2.2. In the first case, the two
positions lie along the X quadrature axis and thus a projection onto this
axis is optimal in discriminating the two. There is a measurement outcome
probability distribution associated with each position

|〈x|α± β〉|2 =

√

2

π
e−2(x−α∓β)2 . (2.129)

Now choosing all measurement outcomes larger than the midpoint between
the two distributions (α) to correspond to the qubit state |0〉 and all mea-
surement outcomes smaller than the midpoint to correspond to the qubit
state |1〉, the intrinsic error probability Ebeta of our qubit measurement be-
comes
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(a)
(b)

Figure 2.12: The displacement based single qubit measurement. (a) The cir-
cuit representation, in which the interaction is followed by an X quadrature
measurement. (b) The phase space representation of the probe mode states,
starting with an arbitrary α conditionally displaced by a real amount β.
The curves on the X quadrature axis represent the measurement outcome
probability distributions.

Eβ =
1

2

√

2

π

∫ 0

−∞
e−2(x−β)2dx+

1

2

√

2

π

∫ ∞

0
e−2(x+β)2dx

=
1√
π

∫ ∞

β/
√

2
e−x

2
dx

=
1

2
erfc

[

β√
2

]

. (2.130)

We have used the fact that this error is independent of the initial real ampli-
tude and set α = 0. In the case of the conditional rotation, for a small angle
θ it is optimal to perform a P quadrature measurement. The error prob-
ability can again be calculated through an |X〉〈X| projection after having
rotated the state in phase space through eiπ/2

Eθ =
1

2

∫ 0

−∞
|〈x|iαe−iθ〉|2dx+

1

2

∫ ∞

0
|〈x|iαeiθ〉|2dx

=
1

2
erfc

[

αsinθ√
2

]

. (2.131)
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Figure 2.13: The rotation based single qubit measurement. (a) This time
the interaction is followed by a P quadrature measurement. (b) In phase
space the initial real amplitude in rotated in one of two directions. Again
we observe measurement outcome probability distributions.

From these two results one can see that given one of two coherent states
at distance d from each other in phase space, the optimal discriminating
homodyne measurement will have an intrinsic error of erfc[d/2

√
2]/2. One

aspect of the conditional rotation is that even if the strength θ of the non-
linearity is small, these two states can be made as distinguishable as needed
by increasing the amplitude α of the probe. This is easy to see because
the projected distance between the two coherent states |αeiθ〉 and |αe−iθ〉
is 2αsinθ ≈ 2αθ for small θ. The small θ regime is referred to as the weak
nonlinearity regime.

We note here that if instead of measuring the bus we measure the qubit
in the |±〉 basis, we produce a coherent superposition of two coherent states:
a cat state. Using a conditional displacement on a vacuum bus, the state
after the interaction we saw is c0|0〉|β〉+c1|1〉|−β〉. The qubit measurement
will then project the bus to the state N (c0|β〉 ± c1| − β〉), where N =
1/(1+2e−2β2

Re[c∗0c1])
1/2 is a normalization factor. To some extent, the state

of the qubit is mapped onto the CV bus. This approximate bit teleportation
is used by Myers et al. [114] to implement quantum error correction within
the qubus setting.

Now letting the bus interact with two qubits consecutively, supposing
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they are initiated in the |+〉 state

D(βZb)D(βZa)| + +〉|α〉 =
1√
2
|ψ+〉|α〉 +

1

2
|00〉|α + 2β〉 +

1

2
|11〉|α − 2β〉,

R(θZb)D(θZa)| + +〉|α〉 =
1√
2
|ψ+〉|α〉 +

1

2
|00〉|αe2iθ〉 +

1

2
|11〉|αe−2iθ〉,

(2.132)

where |ψ+〉 = (|01〉 + |10〉)/
√

2 as defined in section (2.1.3). Thus the bus
is left in three possible states as show in Fig. 2.14, one of which (|α〉)
corresponds to an entangled state (|ψ+〉) of the two qubits. Being able to
discriminate the state |α〉 from the other possibilities will in effect implement
a parity gate with success probability 1/2. One option is to use homodyne
detection, in which case it is reasonable to group the measurement outcomes
into three bins, corresponding to the three possible states. In the conditional
displacement case, the three bins will be

x(|α − 2β〉) = [−∞, α− β[,

x(|α〉) = [α− β, α + β],

x(|α + 2β) =]α+ β,∞], (2.133)

meaning the intrinsic error probability when post-selecting the |α〉 measure-
ment outcome becomes

Eβ =
1

4

∫ β

−β
e−2(x+2β)2dx+

1

4

∫ β

−β
e−2(x−2β)2dx

=
1

2

∫ β

−β
e−2(x+2β)2dx. (2.134)

This error can be made small by increasing β, we already have Eβ ∼ 7×10−4

for β = 3. A similar analysis can be made for the conditional rotation based
parity gate illustrated in Fig. 2.14, where now the distance β is simply
replaced by αsin2θ/2 with a P quadrature measurement.

Another possibility for the discrimination of the bus states is to resort to
photon number detection. In this case the probe has to be unconditionally
displaced by an amount −α, prior to the measurement. Or equivalently the
probe can be initiated in the vacuum state. For an ideal projection |n〉〈n|
onto the number basis, the state of the two qubits becomes
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Figure 2.14: The conditional rotation based parity gate. (a) Both qubits a
and b, initially prepared in |+〉 states, interact consecutively with the bus,
before it undergoes homodyne detection. (b) The probe can end in one
of three positions in phase space. The |α〉 position now corresponds to an
odd parity of the qubits. Post-selecting this state through a P quadrature
measurement projects the qubits the odd parity Bell state

|ϕf 〉 = (|01〉 + |10〉)/
√

2 for n = 0,

|ϕf 〉 = (|00〉 + (−1)n|11〉)/
√

2 for n > 0. (2.135)

Each outcome will occur with the same probability, though there is an in-
trinsic error of e−4β2

in the measurement due to the overlap between any
coherent state with the vacuum state. This error can be made very small
for suitable β.
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Yet another option illustrates one potential advantage of using condi-
tional rotations. The final states of the bus in (2.132) are |α〉, |αe2iθ〉 and
|αe−2iθ〉. Now because these three coherent states differ only in phase we can
distinguish the inner state (|α〉) from the two outer states (|αe2iθ〉,|αe−2iθ〉)
without further knowledge on which one of these two outer states. This
can be achieved through an X quadrature measurement, and in effect re-
alizes a complete parity measurement on the qubits, as the state prior to
measurement can be written

|ϕ〉 =
1√
2
〈x|α〉|ψ+〉 +

1

2
〈x|αcos2θ〉(eiφ(x)|00〉 + e−iφ(x)|11〉), (2.136)

with φ(x) = exp[2xαsin2θ − α2sin4θ]. We now have two distinct prob-
ability distributions each corresponding to a certain parity. Similarly to
the single qubit measurement, we attribute all measurements to the left of
the midpoint (x = α(1 − cos2θ)/2) to the even parity state ((eiφ(x)|00〉 +
e−iφ(x)|11〉)/

√
2) and all those to the right we attribute to the odd parity

(|ψ+〉). Each one will occur with equal probability, however the error now
becomes Eθ = erfc[αsin2θ/

√
2], which is significantly larger than the error

occurring in a post-selected P quadrature measurement. In the weak non-
linearity regime, this error is of the order 10−5 for αθ2 > 9, thus again it
can be made small by increasing the probe amplitude α.

Based on this near deterministic parity check, Nemoto and Munro de-
vised a Franson type CNOT gate [115] by using an ancillary qubit. In this
gate, both the signal and target qubits go through such a parity gate with
the same ancillary qubit, but in different bases. Three feed-forward steps
are needed, one for each parity gate and one after the measurement of the
ancillary qubit, guaranteeing the simulation of a unitary gate on the two
inputs. A particularly well suited candidate system for measurement-based
qubus schemes would be Nitrogen vacancy centers in diamond [116] within
individual cavities. They could operate at optical wavelengths, insuring ef-
ficient homodyne measurements, and have exhibited coherence times of up
to several microseconds at room temperature.

Different variants of the parity gate can be found in [108], where condi-
tional rotations and displacements are used, so as to increase the separation
of the probe states in phase space and enable gates functioning with a smaller
intrinsic error. However, in view of a full analysis of the gate, one must also
factor in the number of interactions and thus the time taken. The crucial
effects of dissipation in the bus are the topic of the next chapter.
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Chapter 3

Loss in hybrid qubit-bus

couplings and gates

One attribute of distributed approaches to quantum computing, as men-
tioned earlier, is the potential for low decoherence and extendible storage
regions for qubits. Now assuming such a high quality storage is achieved,
the most important source of noise to consider lies in the bus itself. As it
interacts and travels between qubits, decoherence effects acting upon the
bus will be transmitted to all the qubits which are coupled to it. Thus it
becomes crucial to understand and characterize this indirect source of deco-
herence, before envisaging any strategies to suppress it or protect against it.
In this chapter we investigate the effects of what is one of the major sources
of decoherence in the qubus scheme; bus dissipation.

As pointed out in the previous chapter, the physical circumstances in
which one can envisage a hybrid coupling between a CV and discrete vari-
able system have been extensively investigated. Possible realizations for the
qubus scheme include that of atomic qubits interacting dispersively with a
cavity mode (optical or vibrational in the case of trapped ions), supercon-
ducting charge qubits coupled to a microwave bus mode and single photons
interacting with a strong probe in a Kerr medium.

Decoherence effects during such interactions have been explored in the
past, for example in the case of a two-level atom interacting dispersively
with an optical mode in a dissipative cavity [117–120]. This dispersive type
of interaction forms the basis for most qubus schemes and dissipation ef-
fects during the interaction on an entangling gate between two qubits can
potentially be overcome through an iterative procedure, as shown by Bar-
rett and Milburn [121]. A symmetrization technique to develop resilience
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to both dissipation and thermal fluctuations was also proposed by Cen and
Zanardi in an ion trap setting [122]. There the authors took advantage of
the invariance under time reversal of the action of the gate, noticing that
the combination of an interaction sequence with its time reversed version
canceled out, to some extent, the effects of dissipation. Even though they
are effective, these methods focus on a pair of qubits within the same cav-
ity or trap and decoherence due to inter-cavity communication remains to
be addressed. In addition to this they propose interaction sequences which
have to be iterated many times before any significant improvement in gate
fidelity can be appreciated. In the context of cross phase modulation, Jeong
approximated the effects of decoherence along with their impact on optical
quantum information processing using weak nonlinearities [123, 124]. He
showed that dissipation effects in a two-qubit parity gate can be minimized
if one can implement a photon number measurement on the bus. In the ab-
sence of such a technology, the exact effect on the photonic qubits remains
to be evaluated and possibly overcome.

The chapter is structured as follows. In the first section we focus on loss
during interactions, extending Jeong’s results by considering an arbitrary
input in what we call the sliced approximation, for which interaction and
dissipation are successively applied and summed over. We then proceed
to solving exactly the master equation during the interaction for both the
dispersive cavity QED and the all optical cross phase situations and apply
the results to different probe states. After this we follow the entanglement
and coherence dynamics of a qubit and the CV as they interact with each
other. A trade off between the entanglement generated and the required
precision in interaction time is observed.

In section 2 we carry our attention over to loss in between interactions,
distinguishing at first the effects of loss on conditional rotation and con-
ditional displacement entangled qubit-bus states. Then we give a simple
scheme for the purification of a particular type of mixed qubit-bus state,
using only a two-qubit gate, a beam splitter and non-photon resolving de-
tectors. At the end of the section we discuss the effects of transmission loss
on a parity gate.

Finally in section 3 we move our attention to hybrid gates themselves
starting with the simulated conditional displacement gate followed by the
CZ gate. By adding dissipation between interactions we obtain the quantum
operations undergone by the qubits and discuss gate fidelity. We provide a
simple iteration scheme to simplify the operation down to a perfect CZ gate
followed by independent single qubit dephasing. At last we investigate one
approach to probe state engineering in order to overcome dissipation effects.
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3.1 Loss during interactions

In this section we consider the effects of loss in the bus during a dispersive
interaction represented by the conditional rotation operation R(θΛ̂), as de-
fined in the previous chapter. The process is pictorially represented in Fig.
3.1. We first extend previous work approximating the process in discrete
time steps. It is a very intuitive approach, which converges numerically as
the time steps become smaller. We then verify the validity of the approach
by solving the dynamics in continuous time via the master equation.

e
i

Ö

Time

Figure 3.1: Loss in the probe mode during the coupling between the discreet
system |ψ〉 and the CV prepared in the coherent state |α〉.

3.1.1 The sliced approximation

Here we focus on the all optical situation encountered by Jeong [123, 124],
but this time taking a signal mode of arbitrary dimension interacting with
a probe mode in a Kerr medium. The two-level input can easily be mapped
to the CQED setting. If we only recognize loss in the probe beam |α〉 during
the interaction, then a possible approach to expressing the effect of loss is to
let the interaction R(θΛ̂) and the linear loss occur at different times. That
is one may assume that the interaction occurs for a short time ∆t, then the
loss takes place, and they keep taking turns in the nonlinear medium. For
small ∆t this turns out to be a very good approximation as we will see later.

The most common way of introducing linear loss in an optical mode is
to insert a beam splitter with a vacuum input and then trace out the loss
mode. Thus let us begin with the first level of approximation, that of a
single interaction followed by a beam splitter (see Fig. 3.2(a)). The input
state reads
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Figure 3.2: Schematic representation of the sliced approximation. (a) the
first level of approximation, in which the signal and probe interact once,
before the probe undergoes loss in the form of a beam splitter, whose out-
put loss mode is traced out. (b) The nth level of approximation, with n
interactions and beam splitters.

|ψi〉 =
∑

n

cn|n〉S ⊗ |α〉P ⊗ |0〉L, (3.1)

where the initial states of the signal, probe and loss modes are
∑

n cn|n〉S,
|α〉P and |0〉L respectively. The combined state then evolves to

|ψf 〉 =
∑

n

cn|n〉S ⊗ |αcosφeinθ〉P ⊗ |αsinφeinθ〉L, (3.2)

where cosφ represents the transmittivity of the beam splitter. The reduced
state of the signal-probe system is then obtained by tracing out the loss
mode as

ρ
(1)
SP = TrL [|ψf 〉〈ψf |] (3.3)

=
∑

n,m

cnm|n〉〈m| ⊗ |αcosφeinθ〉〈αcosφeimθ| × IL, (3.4)

with cnm = cnc
∗
m and
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IL =
1

π

∫

dβ〈β|αsinφeinθ〉〈αsinφeimθ|β〉 (3.5)

= e−α
2sin2φ(1−ei(n−m)θ). (3.6)

The next level of approximation consists in two interactions of strength θ/2
and two identical beam splitters with reflectivity sinφ with associated loss
modes L1 and L2, leading to a final signal-probe state

ρ
(2)
SP = TrL1,L2 [|ψf 〉〈ψf |] (3.7)

=
∑

n,m

cnm|n〉〈m| ⊗ |αcos2φeinθ〉〈αcos2φeimθ| × IL1IL2 , (3.8)

with

IL1IL2 =
1

π

∫

dβ〈β|αsinφeinθ/2〉〈αsinφeimθ/2|β〉 (3.9)

× 1

π

∫

dβ〈β|αcosφsinφeinθ〉〈αcosφsinφeimθ|β〉 (3.10)

= e−α
2sin2φ(1−ei(n−m)θ/2+cos2φ(1−ei(n−m)θ)). (3.11)

Iterating this procedure N times (see Fig. 3.2(a)) we obtain

ρ
(N)
SP =

∑

n,m

cnm|n〉〈m| ⊗ |αcosNφeinθ〉〈αcosNφeimθ| × IT (3.12)

with

IT =

N
∏

k=1

ILk
= exp

[

−α2sin2φ

N
∑

k=1

cos2(k−1)φ(1 − eik(n−m)θ/N )

]

. (3.13)

The individual transmission coefficient cosφ is matched to the total expected
transmission cosφtot, in function of the number of iterations, i.e. we fix
cosφ = cos1/Nφtot. As can be observed in Fig. 3.3(a), this approximation
tends rapidly to the continuous solution derived next.
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3.1.2 Solving the master equation

Starting from the interaction Hamiltonian Hint = −~χâ†âΛ̂ previously de-
fined, we can evaluate the effects of dissipation in the probe mode during the
interaction continuously by solving the optical Linblad master equation [51]

∂ρ(t)

∂t
= − i

~
[Hint, ρ(t)] + γ(2âρ(t)â† − â†âρ(t) − ρ(t)â†â) (3.14)

where we have assumed a zero temperature bath (a good approximation in
the visible light regime). The damping factor γ quantifies the dissipation
in the probe mode as mentioned in the background chapter. If we consider
a general input density matrix element |n〉〈m| ⊗ |α〉〈α| in which the probe
and the signal are disentangled, we can find the equation of motion for this
particular element by looking at the operator ρnm(t) = 〈n|ρ(t)|m〉. Due to
the disentangled form of the initial state we have ρnm(0) = |α〉〈α| for all n
and m. The equation of motion for each element is given by

∂ρnm(t)

∂t
= iχλnâ

†âρnm(t) + −iχλmρnm(t)â†â

+γ(2âρnm(t)â† − â†âρnm(t) − ρnm(t)â†â). (3.15)

As before, λn represent the eigenvalues of the qudit operator Λ̂|n〉 = λn|n〉.
Following the method used in [117], we use the super-operators M(·) =
â†â(·), P(·) = (·)â†â and J (·) = â(·)â† to rewrite the above equation as

∂ρnm(t)

∂t
= {iχ(λnM− λmP) + γ(2J −M−P)} ρnm(t)

≡ Lnmρnm(t), (3.16)

The formal solution to (3.16) is then ρnm(t) = eLnmtρnm(0). The super-
operators realize an algebra obeying the commutation relations [J ,M] =
[J ,P] = J for which decomposition theorems have been derived [125] (see
Appendix A), leading to

exp[Lnmt] = exp

[

2γ(e(2γ−i(λn−λm)χ)t − 1)

2γ − (λn − λm)χ
J

]

× exp [(iλnχ− γ)Mt]

× exp [(−iλmχ− γ)Pt] . (3.17)

Now applying this result to our initial element ρnm(0) = |α〉〈α| we obtain:

ρnm(t) = ζnm|αe(−γ+iλnχ)t〉〈αe(−γ+iλmχ)t| (3.18)
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with

ζnm = exp

[

−|α|2
{

1 − e−2γt − 1 − e(−2γ+i(λn−λm)χ)t

1 − i(λn − λm)χ/2γ

}]

. (3.19)
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Figure 3.3: (a) Plots of the real part of the coherence parameter |ζ| = |ζ01|
for different N in the sliced approximation, with α = 100,γ = 4 and χ = 0.1.
Starting from the bottom curve, we have N = 10, 20, 50, 100 and 200 in
blue. The top black curve corresponds to the closed form. We see that
the approximation rapidly converges, for reasonable N . In comparing the
curves, we equated t = N∆t and cosφ = e−γt/N . (b) Time evolution of |ζ|
with fixed α = 100 and χ/γ = 0.025. From top to bottom, γ = 1, 2, 4 and 8.
We see that all the curves tend to the same limit and as expected the larger
γ is, the quicker |ζ| tends to that limit.

The coefficient derived above is the closed expression for the parameter
IT obtained in the previous section as the number of iterations N tends
to infinity. We can see from Fig. 3.3(a) that the sliced approximation in
fact rapidly converges to the exact solution. We have ζnm = ζ∗mn and so
|ζnm| = |ζmn| as well as ζnn = 1. We also quickly notice from (3.19) that
this coherence parameter does not tend to 0 as t tends to infinity for a fixed
α. We have

|ζnm|t→∞ = exp

[

−|α|2 (λn − λm)2

4(γ/χ)2 + (λn − λm)2

]

. (3.20)
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This is illustrated in Fig. 3.3(b) for ζ01 with Λ̂ = n̂. One way of under-
standing this is that the probe undergoes loss as it couples to the signal,
thus reducing the coherence in the signal. But eventually the probe returns
to the vacuum state (the time it takes depends on the initial amplitude and
the damping factor), disentangling itself and leaving some coherence in the
signal. However the larger the amplitude, the larger the effective interaction
time, the less coherence remains in the signal.

In the CQED setting, it will not be possible to observe this limiting
behavior in cavities with very high quality factors, as the atomic decay rate
far exceeds the cavity decay rate γ. However the aim of the qubus scheme
is to entangle qubits in separate cavities via shared optical modes. Thus the
regime of moderate coupling is appropriate, in which g ∼ γ, where g is the
Rabi frequency of the atom. A particularly promising system is Nitrogen-
vacancy (NV) centers embedded in a photonic crystal such as diamond. For
this system, the parameters are of the order of g ∼ 104 MHz and γ ∼ 103

MHz, meaning an interaction time on the scale of nanoseconds, while the
typical atomic decay time lies in the hundreds of nanoseconds [91,126]. As
we are working in the dispersive limit, we require a small absorption rate
quantified by α2g2/∆2 ∼ 10−2, where ∆ is the detuning between the atomic
transition and cavity mode frequencies. With χ ∼ g2/∆, these parameters
yield a ratio γ/χ ∼ 102, leading to a limiting coherence parameter |ζ01|∞ ∼
0.37 with a probe amplitude α = 100.

As time progresses, the process can be viewed as a unitary operation
between the signal and the damped probe in addition to a dephasing effect
on the signal. To view this more clearly, let us write the output density
matrix using Λ̂ = Z, θ = χt and defining zn ≡ (−1)n,

ρ(t) =
∑

n,m=0,1

cnmζnm|n〉〈m| ⊗ |αe−γt+iznθ〉〈αe−γt+izmθ|. (3.21)

Writing ζnm = efnm , we can separate the exponent into it’s real and imagi-
nary parts Re[fnm] + iIm[fnm]. The real part reads

eRe[fnm] = exp[− |α|2
2(γ2 + χ2)

(χ2(1 − e−2γt)

− 2γ2e−2γtsin2χt− χγe−2γtsin2χt)

× (1 − znzm)], (3.22)

representing the decay of the off-diagonal components of the density matrix.
It takes the form e−ǫ(1−znzm) and applying this type of operation to a qubit
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density matrix ρ =
∑

n,m=0,1 cnm|n〉〈m| yields directly the phase flip channel
[40]

eRe[fnm]ρ = e−ǫ(1−znzm)ρ

= e−ǫ(coshǫ+ znzmsinhǫ)ρ

=
1 + e−2ǫ

2
ρ+

1 − e−2ǫ

2
ZρZ. (3.23)

In the limit of large interaction times (3.23) leads to a fixed dephasing effect

e
Re[fnm]
t→∞ = exp

[

− |α|2
2(1 + (γ/χ)2)

(1 − znzm)

]

, (3.24)

which can be recovered from (3.20). The imaginary part of the exponent is

eIm[f ] = exp

[

iγ|α|2
2(γ2 + χ2)

(χ(1 − e−2γtcos2χt) − γsin2χt)(zn − zm)

]

, (3.25)

corresponding to a single qubit phase acquired in the process. It is known
and can be corrected for if needed; it is not an intrinsic source of noise. How-
ever the level of precision required to undo this phase, which can be affected
by fluctuations in the coupling and damping parameters, in particular for
large α, represents a significant challenge.

3.1.3 Different probe states

So far we have considered arbitrary states of the signal and a coherent state
of the probe mode. This coherent state has the property that it does not
decohere into a mixture in the presence of loss. However other probe inputs
that do decohere in the presence of dissipation, can easily be investigated
using the same techniques. Here we apply the results obtained above on
states of interest to illustrate their usefulness.

To begin with we can consider a probe having been prepared in a nor-
malized superposition of coherent states (cat states)

∑

k dk|αk〉. If the sub-
system and probe mode begin disentangled, our initial density matrix reads

ρcat(0) =
∑

n,m

cnm|n〉〈m|S ⊗
∑

k,l

dkl|αk〉〈αl|P. (3.26)

Solving the equations of motion for each element ρnm(0) =
∑

k,l dkl|αk〉〈αl|
we obtain
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ρcat(t) =
∑

n,m

cnm|n〉〈m| ⊗
∑

k,l

dklζ
kl
nm|αke(−γ+iλnχ)t〉〈αle(−γ+iλmχ)t|, (3.27)

with

ζklnm = exp

[

−
( |αk|2 + |αl|2

2

)

(1 − e−2γt) − αkα
∗
l (1 − e(−2γ+i(λn−λm)χ)t)

1 − i(λn − λm)χ/2γ

]

.

(3.28)
Here, in addition to the dephasing process, we observe the decoherence of
the cat state itself, as it interacts with the signal. Unlike in the case of a
single coherent state input, which stays pure under dissipation, here loss
changes the shape of the probe mode state, which will eventually become a
statistical mixture, before returning to the vacuum state.

Another probe input could be a pure entangled state
∑

n cn|n〉|αn〉, one
which may be produced by a perfect interaction or some purification. In
a manner very similar to the previous example, our output density matrix
after time t becomes:

ρent(t) =
∑

n,m

cnmζ
nm
nm |n〉〈m| ⊗ |αne−(γ+inχ)t〉〈αme−(γ+imχ)t|, (3.29)

where n and m (the subscripts for the initial coherent states) simply replace
k and l in (3.27). We will stop here with the consideration of other probe
states, but the results of the previous section can be applied to any probe
state, provided it can be conveniently expressed in the coherent state basis.
Now we return to the simple coherent state probe and look at the behavior
of entanglement.

3.1.4 Entanglement and coherence dynamics

One expects the issue of coherence to be intimately linked to the entangle-
ment shared between the signal and the probe systems. In order to observe
the dynamics of this entanglement we restrict the signal to being a qubit and
will continue to use Λ̂ = Z. Equation (3.18) provides us with a time depen-
dent density matrix and having our input signal in the state (|0〉+ |1〉)/

√
2,

it reads

ρ(t) =
1

2
{|0〉〈0| ⊗ |α0〉〈α0| + ζ01|0〉〈1| ⊗ |α0〉〈α1|

+ ζ10|1〉〈0| ⊗ |α1〉〈α0| + |1〉〈1| ⊗ |α1〉〈α1|}, (3.30)
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with α0 = αe(−γ+iχ)t and α1 = αe(−γ−iχ)t. The entanglement being invari-
ant under local unitary operations we allow ourselves for simplicity to apply
the conditional phase |0〉〈0|+eiIm[α0α∗

1]|1〉〈1| on the qubit. Then we redefine
the bus probe states as |α0〉 and |α′

1〉 = eiIm[α0α∗
1]|α1〉 so that the overlap

between the two is real: 〈α0|α′
1〉 = |〈α0|α1〉|. This allows us to express them

in an orthogonal basis {|x〉, |y〉} as [127]

|α0〉 = a|x〉 + b|y〉,
|α′

1〉 = a|x〉 − b|y〉. (3.31)

Taking a and b real without loss of generality, normalization leads to

a =

√

1 + δ

2
, b =

√

1 − δ

2
, (3.32)

with δ = e−α
2e−2γt(1−cos(2χt)). At this point we can write our locally equiva-

lent density matrix in the orthonormal basis {|0〉|x〉, |0〉|y〉, |1〉|x〉, |1〉|y〉} as
follows

ρ(t) =
1

2









a2 ab ζ01a
2 −ζ01ab

ab b2 ζ01ab −ζ01b2
ζ10a

2 ζ10ab a2 −ab
−ζ10ab −ζ10b2 −ab b2









. (3.33)

We have now managed to express the qubit and CV composite state in the
form of a two qubit state. Given the resulting two-qubit density matrix,
there are several entanglement measures to choose from, including the loga-
rithmic negativity and the relative entropy of entanglement [128]. Here we
will work with the concurrence as defined by Wooters [129,130] which can be
computed easily. To do so we first need to calculate ρ̄(t), the corresponding
density matrix having undergone complex conjugation in the ‘magic basis’
as

ρ̄ = (Y ⊗ Y )ρ∗(Y ⊗ Y ). (3.34)

Each Pauli Y operator acts on one of the two qubits forming the state ρ.
Then the concurrence

C(ρ(t)) = max{0, λ1 − λ2 − λ3 − λ4}, (3.35)

where the λis are the eigenvalues, in decreasing order, of the Hermitian ma-

trix R ≡
√

√

ρ(t)ρ̄(t)
√

ρ(t). We then plot the concurrence as a function of

the scaled time χt for particular choices of parameters α and γ/χ (Fig. 3.4).
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As the qubit and the field initially start in a product state, and eventually
for large times should return to a product state when the probe field doesn’t
contain anymore photons, we would expect the entanglement to peak at
some point in time.

1

0.8

0.6

0.4

0.2

0

(a) (b)

0
0.05 0.1 0.070 0.03

1

0.8

0.6

0.4

0.2

0

Figure 3.4: Plots of the concurrence C(ρ) (solid) and the von Neumann en-
tropy S(ρ) = −tr(ρlogρ) (dashed) of the combined state of the CV mode and
qubit as a function of the scaled time χt. (a) From left to right α=200,100
and 50 with a fixed ratio of damping rate to nonlinearity γ/χ = 1. (b)
The amplitude α is fixed to 100 and from highest to lowest peaking curves
γ/χ=1, 7 and 21.

This is verified in the plots of Fig. 3.4. In Fig. 3.4(a) we can observe
how the amplitude of the field α affects the behavior of entanglement in
time. The larger α is, the larger the maximum entanglement. This may be
explained by the fact that the separation between the possible states of the
field in phase space increases with α as 2αsinχt, thus making them more
distinguishable. For large α the maximum concurrence tends naturally to
1, however the peaking of the entanglement also becomes sharper. It is
quickly generated, but also quickly destroyed. This is illustrated by the von
Neumann entropy S(ρ) characterizing the decoherence. Fig. 3.4(b) shows
us how the maximum achievable entanglement depends on the ratio γ/χ, as
did the limit of the coherence parameter in the previous section. The larger
the relative damping γ, the lower and the quicker the entanglement peaks in
time. In both plots S(ρ) tends to 1, meaning the qubit is left in a maximally
mixed state, disentangled from the probe. However this is not always the
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case and in general the larger the ratio γ/χ is, the smaller the amount of
entanglement generated, the lower the final entropy of the qubit becomes.
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Figure 3.5: (a) The maximum concurrence as a function of the amplitude
α of the probe with γ/χ = 1, 3, 5, 10 and 15 from top to bottom. (b) The
von Neumann entropy of the combined state at the entanglement peaking
time with the same values for γ/χ in decreasing order from top to bottom.

In view of a QND measurement on a single qubit [111, 112], only the
entanglement with the probe needs to be taken into account, as decoherence
in the process will not affect the measurement statistics. However, when
the application becomes cat state generation or multiqubit gates [123,124],
decoherence becomes a crucial issue which has to be weighted against the
entanglement. In such applications one wishes to produce coherent super-
positions of single or multiple quantum systems. Thus it is important to
view the behavior of the entropy of the combined state at the time at which
the entanglement is maximized. This behavior is illustrated in Fig. 3.5(a),
showing the expected limiting behavior of the maximum entanglement as α
increases. In Fig. 3.5(b) the corresponding entropy of the combined outgo-
ing state is seen to decrease asymptotically for all choices of the parameter
γ/χ. In consequence one can simply reduce the amount of decoherence by
increasing the strength of the probe. This is in part due to the fact that the
interaction time becomes shorter, reducing the effective decoherence time.

The success of such an approach to minimize the decoherence will then
depend on the loss incurred in between interactions. The reason being that
the larger the amplitude α is, the larger the amount of dephasing incured
by the qubits coupled to the probe mode during these time intervals will
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be. This will become clear in the next section. In consequence we observe
a similar trade-off of as that encountered in schemes such as the hybrid
quantum repeater proposed in [120]. If the transit time and conditions are
appropriate, the approach is indeed effective. For example taking γ/χ = 5
and a moderate amplitude α = 104 we obtain a maximum concurrence of
0.998 for a von Neumann entropy of 10−2.

So the higher the entanglement we want to measure or couple out of
the cavity if we are dealing with cavity QED systems, the larger the probe
amplitude and the more precise the timing of the interaction will have to be.
Clearly, these issues of coherence and entanglement will have to be combined
in order to optimize quantum gates in which different qubits interact with
the same probe mode.

3.2 Loss between interactions

In this section we look at dissipation in the bus mode after it has interacted
with a subsystem. This will allow us to see a potential advantage in using
conditional displacements instead of conditional rotations. Then we look at
a simple purification scheme for a particular entangled qubit-bus state and
finally see the effects of loss in transmission on a parity gate.

3.2.1 Distinguishing rotations from displacements

Without any ongoing interaction, dissipation in the probe can be estimated
by solving the optical master equation

∂ρ(t)

∂t
= γ(2âρ(t)â† − â†âρ(t) − ρ(t)â†â) ≡ Lρ(t), (3.36)

where L is the corresponding Liouvillian and γ is the damping constant.
Following the same notation as in the previous section [117], we have

L = γ(2J −M−P), (3.37)

The formal solution again can be written ρ(t) = eLtρ(0). Using a similar
decomposition as before, the effect of this linear loss on a matrix element
|α〉〈β| is given by

eLt|α〉〈β| = e−(1−e−2γt)(|α|2/2+|β|2/2−αβ∗)|αe−γt〉〈βe−γt|. (3.38)

This result was initially derived by Walls and Milburn [131] using time
ordering techniques. One can identify the expression for the overlap between
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the coherent states 〈β|α〉 in the coefficient and thus the result can be written
as

eLt|α〉〈β| = 〈β|α〉η |αe−γt〉〈βe−γt|, (3.39)

with η = 1− e−2γt. As we can see, the smaller the overlap is, the larger the
decoherence effect.

Now let us assume an ideal qubit-bus entangled state generated through
a conditional rotation

ρi =
∑

n,m=0,1

cnm|n〉〈m| ⊗ |αeiθzn〉〈αeiθzm |. (3.40)

Dissipation in the bus will lead to a combined state

Lρi =
∑

n,m=0,1

cnmξnm|n〉〈m| ⊗ |αe−γt+iθzn〉〈αe−γt+iθzm | (3.41)

with

ξnm = 〈αeiθzm |αeiθzn〉η (3.42)

= e−ηα
2sin2θ(1−znzm)eiηα

2sin2θ(zn−zm)/2. (3.43)

As before, the first term represents phase flip channel and the second a single
qubit phase. This phase can be problematic to undo or keep track of, as
α and θ need to be large enough so as to allow any useful measurements.
Now this phase only vanishes for θ = 0 or π, in which case the bus and
qubit are not entangled, or for θ = ±π/2. In the latter case, the probe is
in one of two diametrically opposed states. Interestingly it is at this point
that the entanglement between the qubit and bus is maximized. However
the larger the separation between the two coherent states, the stronger the
effect of the phase flip channel. Thus both for technological reasons and for
qubit coherence preservation, θ will have to be reasonably small (the trade-
off is investigated in detail by Ladd et al. [120]), and this phase linked to
dissipation will have to be controlled, which represents a serious challenge.

If on the other hand we are using weak conditional displacements, this
phase problem can suppressed, as long as we have sufficient control of the di-
rection of the displacements. For example taking the same real initial probe
amplitude α, an entangled qubit-bus state generated through a conditional
displacement of real amplitude β will evolve to
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Lρi =
∑

n,m=0,1

cnmξnm|n〉〈m| ⊗ |(α+ βzn)e
−γt〉〈(α + βzm)e−γt|, (3.44)

with

ξnm = 〈α+ βzm|α+ βzn〉η (3.45)

= e−ηβ
2(1−znzm). (3.46)

No phase accompanies the phase flip channel. This is an important distinc-
tion between conditional rotations and displacements, showing a potential
advantage in using the latter.

One interesting question which follows from this is: how can we purify
such a noisy qubit-bus state? A particular case is discussed in the next
section.

3.2.2 Purifying a qubit-bus state

Protocols for the purification of entangled states have been studied exten-
sively since Bennett et al. [132] pointed out the possibility of purifying (in-
creasing the entanglement content) of two-qubit entangled states. In an
optical setting, the purification of entangled cat states has been investigated
by Jeong and Kim [133]. However the natural question of whether one
can purify a noisy qubit-bus entangled state, pointed to in [127], remains
unaddressed. Such an approach may present advantages in entanglement
distribution via the qubus parity gate. Instead of purifying the resulting
two-qubit states, it may be more efficient to first purify the pair of qubit-
bus states, and then let the resulting bus interact with a new qubit. This
could potentially reduce the qubit resources from four to three, for a single
purification round.

Assuming arbitrary operations on both sides of the pairs, purification
can be achieved for general states by combining the standard methods in
[132,133]. However here we choose a particular type of state which does not
require any nonlinearities on the side of the bus and in that sense is similar
to the example given in [133]. This allows us to give a first explicit hybrid
qubit-bus purification scheme. The state is

ρ = F |φ+〉〈φ+| + (1 − F )|ψ+〉〈ψ+|, (3.47)

with
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|φ+〉 =
1√
2
(|0, α〉 + |1,−α〉), (3.48)

|ψ+〉 =
1√
2
(|0,−α〉 + |1,+α〉). (3.49)

The target state here being |φ+〉, the fidelity F of the given noisy state is
then F = 〈φ+|ρ|φ+〉. We also notice that |ψ+〉 = X|φ+〉, so the noisy state
corresponds to the target state whose qubit has undergone a bit flip channel,
applying an X error with a certain probability. This is a key feature of the
state which will allow us to perform the purification without resorting to
nonlinearities on the buses.

This particular state is all the more interesting to us because it is, up to
local operations on the qubits, the state obtained through applying linear
loss to the bus. Recall (3.23) that dissipation in the bus affects an initial
hybrid state ρ as ρ → λρ + (1 − λ)ZρZ, equivalent to the qubit having
undergone a phase-flip channel. Thus we can either follow the qubit in the
|±〉 basis or apply Hadamard transformations on the qubit before and after
dissipation in the bus takes place, yielding exactly the state (3.47), with an
initial pure qubit-bus state |φ+〉.

Now we assume we are given two such noisy qubit-bus states

ρ = ρ1 ⊗ ρ2

= F 2|φ+〉〈φ+|1 ⊗ |φ+〉〈φ+|2 + (1 − F )2|ψ+〉〈ψ+|1 ⊗ |ψ+〉〈ψ+|2
+ F (1 − F )

{

|φ+〉〈φ+|1 ⊗ |ψ+〉〈ψ+|2 + |ψ+〉〈ψ+|1 ⊗ |φ+〉〈φ+|2
}

.

(3.50)

The protocol, illustrated in Fig. 3.6 then goes as follows. On one side a
CNOT gate is applied to the qubits, with qubit 1 as control and on the
other the buses are mixed on a 50:50 beam splitter whose outputs we write
as

|α〉1|α〉2 → |
√

2α〉1|vac〉2, (3.51)

|α〉1| − α〉2 → |vac〉1|
√

2α〉2, (3.52)

| − α〉1|α〉2 → |vac〉1| −
√

2α〉2, (3.53)

| − α〉1| − α〉2 → | −
√

2α〉1|vac〉2, (3.54)
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Figure 3.6: Schematic representation of the purification scheme described
in the text. The two states ρ1 and ρ2 are composed of a qubit propagating
to the left and a mode propagating to the right. A CNOT gate is applied
to the two qubits, with qubit 1 as control and the two modes go through a
50:50 beam splitter. Upon the measurement results |0〉 on qubit 2 and |vac〉
on mode 2, qubit 1 and mode 1 are left in a state with increased fidelity.

where |vac〉 stands for the vacuum state, to avoid confusion with the logical
qubit states. This maps the possible states as follows

|φ+〉1|φ+〉2 → 1√
2
|φ+′〉1|0, vac〉2 +

1

2
|0, vac〉1|1, α′〉2 +

1

2
|1, vac〉1|1,−α′〉2,

|ψ+〉1|ψ+〉2 → 1√
2
|ψ+′〉1|0, vac〉2 +

1

2
|0, vac〉1|1,−α′〉2 +

1

2
|1, vac〉1|1, α′〉2,

|φ+〉1|ψ+〉2 → 1√
2
|φ+′〉1|1, vac〉2 +

1

2
|0, vac〉1|0, α′〉2 +

1

2
|1, vac〉1|0,−α′〉2,

|ψ+〉1|φ+〉2 → 1√
2
|ψ+′〉1|1, vac〉2 +

1

2
|0, vac〉1|0,−α′〉2 +

1

2
|1, vac〉1|0, α′〉2,

(3.55)

with |φ+′〉 = ((|0, α′〉 + |1,−α′〉)/
√

2 (similarly for |ψ+′〉) and α′ =
√

2α.
Now measuring qubit 2 in the computational basis and applying a bucket
detector to mode 2 will, conditional on the measurement result |0, vac〉2,
result in the new state

ρ′1 = F ′|φ+′〉〈φ+′ |1 + (1 − F ′)|ψ+′〉〈ψ+′ |1, (3.56)

with
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F ′ =
F 2

F 2 + (1 − F )2
. (3.57)

The intrinsic error in the bucket measurement is of order e−α
2/2 and can be

neglected for suitable α. Now we notice that F ′ > F for F > 1/2, meaning
that the fidelity has been increased, probabilistically. One also notices the
increase in amplitude of the bus mode, which can be seen both as a nuisance
and an advantage. In one way it makes the coherence qubit-bus pair more
sensitive to dissipation effects on the bus, and in the other it further increases
the net entanglement between the two.

A more general mixed qubit-bus state would require random bilateral
rotations, meaning bus operations of the form |α〉 → N (|α〉+ | −α〉), which
in turn rely on nonlinearities possibly implemented through a further in-
teraction of the buses with ancillary qubits [133]. However as explained
previously, this example suffices to show that noisy qubit-bus pairs caused
by bus loss can indeed be purified without further nonlinearities on the bus.
This is an important new result.

On the topic of qubit-bus pairs we will stop here, nonetheless this con-
stitutes an interesting area of research in its own right. Chen et al. looked
at the nonlocality of such hybrid entangled states states and showed that
although they can contain exactly one ebit of entanglement, they cannot be
maximally entangled [134]. There remains a lot to be understood about this
type of discrete-continuous variable entanglement and its quantification in
general cases (mixed states for example) is still an open question.

3.2.3 Effects in the two-qubit parity gate

Returning to dissipation in the probe mode, a first step to take in under-
standing its effects on qubus gates is to consider the parity gate. For this
we come back to (3.58), set α = 0 and add a second qubit (b), which then
conditionally displaces the damped probe by a complementary amplitude
βe−γt to that of the first qubit (a), leading to

ρf =
1

2

∑

a,a′,b,b′=0,1

ξaa′ |ab〉〈a′b′| ⊗ |βe−γt(za + zb)〉〈βe−γt(za′ + zb′)|, (3.58)

where both qubits were initiated in the |+〉 state. For clarity we rewrite this
state as

ρf = Ftrans|ϕ〉〈ϕ| + (1 − Ftrans)Za|ϕ〉〈ϕ|Za, (3.59)
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where Ftrans = (1 + e−2ηβ)/2 and

|ϕ〉 =
1√
2
|ψ+〉|0〉 +

1

2
|00〉|2βe−γt〉 +

1

2
|11〉| − 2βe−γt〉. (3.60)

At this point we perform a P quadrature measurement so as to project the
qubits to the entangled state |ψ+〉 = (|01〉 + |10〉)/

√
2. As we know from

the previous section, we post-select measurements close to P = 0, with an
associated fidelity

Fmeast = 1 − Eβe−γt = 1 − 1

4
erf

[

βe−γt√
2
,
3βe−γt√

2

]

. (3.61)

So the final, post-selected fidelity of the entangled state becomes

Ffin = FtransFmeast. (3.62)

One important point to note here is that Ftrans is given by the distance and
the type of medium the bus travels through to get from the first to the second
qubit and in practice cannot be reduced. However Fmeast can be increased
to some extent, by choosing the size of the acceptable measurement window,
to the expense of the success probability of the entangling gate. As the bin
size around the value P = 0 diminishes, the output fidelity increases and
the success probability decreases. The ability to tune these parameters is
crucial attribute of the qubus scheme, in particular for quantum repeater
applications [119].

From the results of this section, one sees that loss in the transmission
can be quantified through the overlaps of probe states, and we now extend
this method to a two-qubit measurement free gate.

3.3 Loss in the measurement-free CZ gate

The present section is divided into three parts. We first investigate dis-
sipation effects in simulating the building block interaction which is the
conditional displacement, through conditional rotations. After this we pro-
ceed with the full CZ gate and in the last part we attempt to engineer the
probe so as to increase the performance of the gate.

3.3.1 The conditional displacement

We begin by reminding ourselves of the conditional displacement sequence
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D(αcosθ)R(−θZ)D(−2α)R(θZ)D(αcosθ) = D(2iαsinθZ), (3.63)

with α real (see Fig. 3.7), and reminding ourselves of the phases induced
by consecutive displacements D(β)D(α) = eiIm(α∗β)D(α + β) and conse-
quently D†(α)D†(β) = e−iIm(α∗β)D†(α + β) as D†(δ) = D(−δ). Displace-
ments and rotations acting on the density matrix we will denote by D(α)ρ =
D(α)ρD†(α) and R(θ)ρ = R(θ)ρR†(θ).

X

P

(i)
(1)

(2)

(2)

(3)

(3)

(4)

(4)

(5)

(5)

Time

(1) (2) (3) (4) (5)

I

I

R

I

(a)

(b)

Figure 3.7: (a) The interaction sequence for the the simulation of the con-
ditional displacement gate. (b) The two possible trajectories of the probe in
phase space, the upper and lower paths corresponding to the qubit states |0〉
and |1〉 respectively. Here as in the text, we assume α to be real. The ‘R’ and
‘I’ exponents denote the real and imaginary parts of the probe amplitude
δ at each time step. As we can see, the two possible final positions of the
probe in phase space correspond to an effective conditional displacement.

In order to characterize loss in an interaction sequence, we will simply in-
troduce dissipation in the probe mode between and during each interaction.
Dissipation during the interactions is due to loss in the nonlinear material
or cavity system used to to mediate the interaction, whereas dissipation in
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between each interaction is due to fiber loss, mode mismatch and other ef-
fects. As mentioned earlier, the qubus scheme calls for cavities operating in
the moderate coupling regime, such that the bus mode can rapidly couple in
to the cavity, pick up the phase shift and couple out back into a waveguide
for example. Most of the loss occurs at these coupling stages and can be
quantified by the collection efficiency of the cavity, that is the amount of
photons which exit the cavity in the correct mode. Consequently different
loss parameters should arise. However, all types of loss result in a dephasing
of the qubit(s) and their effects can thus be combined into a single effective
loss parameter.

We will also assume the effective amount of loss is the same in each
segment. We will use the notation L|α〉〈β| → 〈β|α〉η |α̇〉〈β̇| with η = 1 −
e−2γt. The fixed amount of loss between each interaction is l = γt and we
represent the attenuated coherent state by α̇ ≡ αe−l such that the number
of dots will determine the number of attenuations i.e. α̈ ≡ αe−2l. The
quantum operations on the qubits will be obtained by calculating these
state-dependent overlaps.

Now let us consider the effects of dissipation in the whole interaction
sequence (3.63). For generality we will keep the amplitudes of the three
displacements as free real variables α1, α2 and α3. The first step in the
sequence is a displacement so taking our probe initially in the vacuum state
we have

D(α1)ρ =
∑

a,a′=0,1

caa′ |a〉〈a′| ⊗D(α1)|0〉〈0|D†(α1)

=
∑

a,a′=0,1

caa′ |a〉〈a′| ⊗ |α1〉〈α1|, (3.64)

where {|a〉, a = 0, 1} represents the basis states of the qubit and the state
of the probe mode is kept to the right. Loss in the probe mode at this point
will decrease the amplitude of the coherent state to |α̇1〉, without affecting
the qubit. Proceeding to the second step which is a conditional rotation we
have

R(θZ)LD(α1)ρ =
∑

a,a′=0,1

caa′ |a〉〈a′| ⊗ |α̇1e
iθza〉〈α̇1e

iθza′ |. (3.65)

Now we introduce loss in the probe mode, leading to

LR(θZ)D(α1)ρ =
∑

a,a′=0,1

caa′ |a〉〈a′| ⊗ |α̈1e
iθza〉〈α̈1e

iθza′ |

× 〈α̇1e
iθza′ |α̇1e

iθza〉η. (3.66)
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Continuing in this fashion and completing the sequence

D(α3)LR(−θZ)LD(α2)LR(θZ)LD(α1)ρ

=
∑

a,a′=0,1

caa′ |a〉〈a′| ⊗ |....α 1 + α̈2e
−iθza + α3〉〈za → za′ |

×exp[isinθ(α̈2α3 − α̈1α2)(za − za′)] × (ξ1ξ2ξ3)
η, (3.67)

with the ξ’s representing the three loss terms (overlaps). The notation za →
za′ means the contents of the bra are the same as in the previous ket replacing
za with za′ . In order to simulate a conditional displacement (with dephasing
on the qubit), we require the state of the probe mode to be of the form
|γza〉〈γza′ |. This is achieved by setting

....
α 1 + α̈2cosθ + α3 = 0. Combining

the loss terms we obtain

ξ1ξ2ξ3 = exp[−S(1 − zaza′)] × exp[iT (za − za′)], (3.68)

withT = sinθ(α̈1α2 +
...
α1α̇2 + (α̇2

1 + α̈2
1 + α̇2

2)cosθ) and S = sin2θ(α̇2
1 +

α̈2
1 + α̇2

2). Here as in the evaluation of the coherence parameter (3.19) in
section 3.1.2, the exponent can be separated into real and imaginary parts.
The former is characterized by S, representing the amount of dephasing
incurred by the qubit, which can be decomposed into a bit-flip channel as in
(3.23). The latter constitutes the known phase acquired by the qubit in the
process, characterized by T . Interestingly, this overall conditional phase can
be tuned at will by adapting the amplitudes of the displacements, leading to
the exact simulation of a conditional displacement. In other words, in this
sequence we can limit the effects of dissipation to a dephasing on the qubit,
producing nonetheless the correct combined output state. Previously also,
loss during the interaction had led to single qubit dephasing effects which
can be factored in here. We now move on to examine a two qubit gate in
the presence of probe loss.

3.3.2 The CZ gate

Based on four of these conditional displacements induced by a pair of qubits
on the same probe mode, a gate locally equivalent to the CZ gate can be
built. An interaction sequence leading to this unitary operation is Û =
D(−βbZb)D(−βaZa)D(βbZb)D(βaZa) = e2iIm{β∗

aβb}ZaZb with β∗aβb = iπ/8
where Za and Zb act on qubits a and b respectively. Here we use the same
method as before, introducing dissipation between each interaction, as illus-
trated in Fig. 5.8. We will assume the probe starts off in the vacuum state,
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but the same result is obtained if we initialize it in any coherent state (this
will become clear in the next subsection). The initial density matrix reads

ρ =
∑

a,a′,b,b′=0,1

caa′bb′ |ab〉〈a′b′| ⊗ |0〉〈0|. (3.69)

At this point it is worth noting that even though the probe undergoes ampli-
tude damping, it can nonetheless be perfectly disentangled from the qubits
coupled to it whatever the amplitude of the coherent state it starts off in
(it may not be the case for other optical states). This is done by tuning
the second (opposite) conditional displacement, in function of the known
loss parameter l into which loss during the interaction has also been fac-
tored. Thus the amplitude of the second conditional displacement will be
reduced by a factor of e−2l, the damping undergone by the probe since the
last coupling. Resolving the whole gate sequence (see Fig. 3.8 and 3.9) and
choosing βa and βb to be real we obtain

a a b b b ba a

a

b

(1)
(2)

(3)
(4)

(5)
(6)

(7)
(i) (f)

Time

.. ..

Figure 3.8: The interaction sequence for the CZ gate with loss. Between
each one of the four conditional displacements (1,3,5,7) the probe undergoes
dissipation (2,4,6).

D(−iβ̈bZb)LD(−β̈aZa)LD(iβbZb)LD(βaZa)ρ =

∑

a,a′,b,b′=0,1

caa′bb′ |ab〉〈a′b′| ⊗ |0〉〈0| × (ξ1ξ2ξ3)
η

×exp[i(β̇aβb + β̈aβ̇b)(zazb − za′zb′)]. (3.70)

First we notice the geometrical phase represented by the last term. This is
precisely the form of a two-qubit conditional phase having been applied to
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the density matrix. Ignoring the other terms, if we can set β̇aβb + β̈aβ̇b =
π/4 then we have simulated a CZ gate. However the dephasing effects are
included in the three ξ overlaps. The first and third lead to single qubit
dephasing

ξ1 = 〈βaza′ |βaza〉 = exp[−β2
a(1 − zaza′)],

ξ3 = 〈iβ̇bzb′ |iβ̇bzb〉 = exp[−β̇2
b (1 − zbzb′)], (3.71)

while the second overlap corresponds to loss in the probe mode when it holds
information on both qubits

ξ2 = 〈β̇aza′ + iβbzb′ |β̇aza + iβbzb〉
= exp[−(β̇2

a + β2
b ) + (β̇aza + iβbzb)(β̇aza′ − iβbzb′)].

(3.72)

In order to be able to express the resulting quantum operation in a closed
form, we first arrange the terms in the exponential such that when writing
the expansion we obtain an accessible closed algebra. Symmetrizing the
terms we have

ξη2 = exp[−x0 + x1zaza′ + x2zbzb′ + x3(za + izb)(za′ − izb′)], (3.73)

with x0 = η(β̇2
a + β2

b ), x1 = ηβ̇a(β̇a − βb), x2 = ηβb(βb − β̇a) and x3 =
ηβ̇aβb. Focusing first on the x3 term, we can write out the expansion of that
particular exponential acting on the density matrix as

∞
∑

n=0

(x3)
n(Za + iZb)

nρ(Za − iZb)
n

n!
. (3.74)

Now we define the two-qubit operators

J = Za + iZb,

K = ZaZb. (3.75)

Then grouping the terms in the expansion we obtain the following unnor-
malized operation

ex3(za+izb)(za′−izb′)ρ = c+ρ+ c−KρK + s−JρJ† + s+J
†ρJ, (3.76)
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Figure 3.9: The trajectories of the probe state in phase space. All four paths
start and end at the same amplitudes α and

...
α respectively, insuring that

the probe disentangles from the qubits.

with

c± = (cosh2x3 ± cos2x3)/2,

s± = (sinh2x3 ± sin2x3)/4. (3.77)

Now we have to factor in the other terms x0, x1 and x2 of ξη2 . Further
identifying

e0 = coshx1coshx2, e1 = coshx1sinhx2,

e2 = sinhx1coshx2, e3 = sinhx1sinhx2, (3.78)

and K ′ = i+K we obtain the final normalized operation

ξη2ρ = e−x0{(c+e0 + c−e3)ρ+ (c+e2 + c−e1)ZaρZa
+ (c+e1 + c−e2)ZbρZb + (c+e3 + c−e0)KρK

+ (s+e1 + s−e2)K
′ρK ′† + (s+e2 + s−e1)K

′†ρK ′

+ (s+e3 + s−e0)JρJ
† + (s+e0 + s−e3)J

†ρJ}, (3.79)
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on the two-qubit state. Setting βb = β̇a = β removes the single qubit terms
Za and Zb and also the K ′ terms, yielding the operation

ξη2ρ = e−2ηβ2
(c+ρ+ c−KρK + s−JρJ

† + s+J
†ρJ) (3.80)

with x3 = ηβ2. Focusing on the low loss regime, we can assume a small η
between each interaction. Truncating to second order in η the expansion
(3.74) leading to the above operation we have

ρ → ρ+ ηβ2(Za + iZb)ρ(Za − iZb)

= ρ+ ηβ2ZaρZa + ηβ2ZbρZb

+ iηβ2(ZbρZa − ZaρZb). (3.81)

Let us assume we are in a quantum error correction (QEC) setting where
ancilla qubits are being used. Once the ancilla systems have undergone
projective measurements, syndromes are extracted for each logical qubit,
indicating whether or not it has been subject to a Z error. The last two
terms however will lead to cross terms of syndrome states which cannot be
observed in the measurement process and thus they are removed from the
resulting density matrix [135]. That is the measurement of the syndrome
projects the system to one of two known states, one with a Z error which
can be corrected for, and one withtout any error. This leaves us with single
qubit errors on a and b with equal probability. So for small loss we are only
observing single qubit errors throughout the gate (at each one of the three
dissipation stages) which can be corrected for via QEC.

Correlated errors represented by the operator K appearing in higher
order terms are quantified by the coefficient c− in the normalized operation
(3.79). In Fig. 3.10(a) we can see how this part scales with loss in comparison
to uncorrelated errors. The general quantum operations we have obtained
are of great importance for error correction. They provide us with the
error syndromes and their associated probabilities which in turn can be
directly fed into fault tolerance calculations. This will ultimately allow us to
compare the qubus scheme with other proposed implementations of quantum
information processing.

To appreciate the effect of loss on the whole gate we look at the fidelity
of the output state with regards to the ideal output, for a two qubit input
state |+〉|+〉. Such an equally weighted superposition input state provides a
good general indication as to the gates performance in addition to the fact
that the ideal output is a useful resource, locally equivalent to a Bell state or
two-qubit cluster state. A plot of the fidelity against the relative intensity
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Figure 3.10: (a) The scaling of the normalized correlated (c−) and uncorre-
lated errors (s+ + s−) against the loss ltot as defined in the text. Dissipation
occurs three times, once between each interaction, in equal amounts. (b)
The fidelity (dashed) F (|φ〉, ρ) = 〈φ|ρ|φ〉 of the two qubit output state,
where |φ〉 = eiπZ1Z2/4|+〉1|+〉2 constitutes the ideal output state and the
concurrence (solid), both for the single (black) and the iterated sequences
(light). We observe the same fidelity for both of them while the outputted
concurrence is lower for the iterated sequence.

decrease of the probe through dissipation defined as ltot = 1 − (exp[−3l])2

is shown in Fig. 3.10(b). This can be understood in that if the probe is
initiated in a coherent state with amplitude α, then at the end of the gate
it disentangles from the qubits and is left with an amplitude αe−3l. In
computing the fidelity we use

βa = βb =
1

2

√

π

e−l + e−3l
(3.82)

so as to make the phase represented by the last term in (3.70) that of an ideal
CZ gate. We find that even for an intensity decrease of up to 80% in the
probe mode (corresponding to 8 dB loss in total), the output fidelity remains
above 0.5, allowing for purification. In the moderate loss regime, both the
fidelity and the entanglement remain high; for example taking ltot = 0.05
corresponding to a decrease of 5% in probe intensity (0.22 dB loss) results
in an output with F ∼ 0.97 and a concurrence of ∼ 0.95.

Finally we now show how a simple repetition scheme can significantly
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simplify full gate operation. The first point to notice is similar in spirit to
the observation made in [122] that the ideal (loss-free) operation is invariant
under time reversal. That is if we reverse the order of the interactions,
we obtain the same conditional geometric phase. However in the case of
separate cavities, a time reversed iteration does not help fight decoherence
for a coherent state probe. The reason for this is that the single qubit error
linked to the transfer between each cavity scales in the same way as the
geometrical phase (of order 2β2). The observation we make here is that the
gate is also invariant under a swapping of the displacement directions. That
is the same geometrical phase is obtained, again in the loss free case, if now
qubit a conditionally displaces the probe in the imaginary direction in 3.70)
and qubit b displaces it in the real direction. Let us denote the two different
sequences, this time in a dissipative setting as

S = D(−iβ̈bZb).L.D(−β̈aZa).L.D(iβbZb).L.D(βaZa)

S̃ = D(−β̈bZb).L.D(−iβ̈aZa).L.D(βbZb).L.D(iβaZa).

(3.83)

We have

S = eiκ(zazb−za′zb′)(ξ1ξ2ξ3)
ηD(0)

S̃ = eiκ(zazb−za′zb′)(ξ1ξ̃2ξ3)
ηD(0), (3.84)

with κ = β̇aβb + β̈aβ̇b. Now we notice that the effects of the two sequences
differ only in the central overlap terms ξ2 and ξ̃2 which contain the correlated
errors. It is straightforward to see that their combined effect yields

ξ̃2ξ2 = 〈iβ̇aza′ + βbzb′ |iβ̇aza + βbzb〉〈β̇aza′ + iβbzb′ |β̇aza + iβbzb〉
= e−2β2

b (1−zbzb′ )e−2β̇2
a(1−zaza′), (3.85)

which are just single qubit phase flip channels. Thus the combination of the
two sequences gives the operation

S̃S = e2iκ(zazb−za′zb′)

× e−2η(β2
b +β̇2

b )(1−zbzb′ )e−2η(β2
a+β̇2

a)(1−zaza′)

× D(0), (3.86)
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where the first term is the unitary conditional two-qubit phase and the
next two are single qubit dephasing terms. The corresponding operation
undergone by the qubits, omitting the conditional phase is

S̃Sρ = (1 − pa)(1 − pb)ρ+ pa(1 − pb)ZaρZa

+ (1 − pa)pbZbρZb + papbZaZbρZbZa, (3.87)

where

pν =
1 − e−4η(β2

ν+β̇2
ν)

2
, (3.88)

the probability that each qubit incured a Z error, with ν = a, b. Clearly
these dephasing processes are independent, leading to a very simple opera-
tion, in contrast with the partial operations (3.79) or even (3.80) obtained
in the single interaction sequence. Due to the fact that the geometrical
phase and the qubit dephasing both double for a single iteration of the gate,
there is no advantage to further reducing the sizes of the displacements and
increasing the number of iterations.

The output state fidelity and entanglement of this sequence are plotted
in Fig. 3.10(b), setting βa = βb =

√

π/8(e−l + e−3l). The fidelity is very
similar while the concurrence is slightly reduced, compared to the single
sequence. So for entanglement distribution in view of communication ap-
plications, which only follow the purification of an entangled state up to an
acceptable level, the iterated scheme is penalizing, as it requires twice the
amount of time and reduces the entanglement. But in view of full blown
quantum computation with quantum error correction, the iterated scheme
may present a serious advantage, simplifying errors at the gate level.

At this point we would like to note that the method used throughout this
section is very broad and could be applied to general bus mediated quantum
information processing schemes. Loss of coherence in the bus will automat-
ically result in dephasing on the qubits coupled to it at that time. If several
qubits are simultaneously coupled then correlated errors will arise. These
will have to be minimized in order to efficiently correct for errors. However
the peculiarity of the qubus scheme is that we are using non-orthogonal
states of the bus to encode information held by the subsystems. Surpris-
ingly, in the absence of loss, perfect multiqubit gates can be implemented
this way. In a dissipative setting, this non-orthogonality leads to overlap
calculations which are very likely to arise in general non-orthogonal bus
schemes.
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Following the above results, there are two main directions for additional
work. The first is to find a way of dealing with the single qubit phases
accumulated throughout qubus gates. Simply undoing them would require
considerable precision and this may not be a realistic option. The second
is to investigate possible schemes to reduce dephasing effects, possibly by
engineering the probe itself. An attempt at doing so is outlined in the next
subsection.

3.3.3 An attempt at probe engineering

According to the previous section, qubit dephasing is related to the overlap
(at least in terms of coherent states) between intermediary states of the
bus. Thus one way of approaching the problem would be to make these
overlaps as large as possible, reducing the distinguishability of bus states
and in turn reducing qubit dephasing. The possibility of such an approach
is due to the fact that the geometrical phase is built up from the conditional
displacements, independently of the actual state of the bus. So for example,
using a mixed probe or a thermal state still allows for the building up of
conditional geometrical phases. Interestingly enough, preparing the probe in
a mixed state of the form 1

N

∑N
i=1 |αi〉〈αi| does not worsen the performance

of the gate, compared to the use of a pure state |α〉〈α|. This means that to
some degree we need coherent superposition to increase the overlaps.

The operation that we want to be able to hide in some sense into the
bus, is a conditional displacement. The first state of the bus one might
think of is a squeezed state, squeezed in the direction of the displacement.
However we need to keep in mind the fact that we will want to protect both
qubits, while each one displaces the bus in a different direction, so as to
generate phases. In that case, a squeezed probe may to some extent protect
one qubit, but it will penalize the other. The candidate states we consider
here are cat states. To appreciate the potential effect of this approach, let
us begin with a cat state of real amplitudes

|Cd〉 =
1

N
d−1
∑

n=0

|2nβ〉, (3.89)

with the normalization

N 2 =

d−1
∑

n,m=0

e−2β2(n−m)2 . (3.90)

The combined state of the probe and qubit we write as
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ρ =
∑

a,a′=0,1

caa′ |a〉〈a′| ⊗







1

N 2

d−1
∑

n,m=0

|2nβ〉〈2mβ|







. (3.91)

A good indicator of the protective action of the bus is to let it interact
through a conditional displacement with the qubit and then trace it out

ρ′ = Trbus [D(βZ)ρ]

= Trbus





∑

a,a′=0,1

caa′ |a〉〈a′| ⊗







1

N 2

d−1
∑

n,m=0

|(2n + za)β〉〈(2m + za′)β|











=
∑

a,a′=0,1

caa′ |a〉〈a′|







1

N 2

d−1
∑

n,m=0

〈(2m + za′)β|(2n + za)β〉







. (3.92)

Resolving the sum of overlaps we obtain

ρ′ =
∑

a,a′=0,1

caa′ξaa′ |a〉〈a′|, (3.93)

with

ξaa′ = e−β
2(1−zaza′)

d+ 2
∑d−1

n=1(d− n)e−2n2β2
cosh(2nβ2(za − za′))

d+ 2
∑d−1

n=1(d− n)e−2n2β2
. (3.94)

One recognizes the first term as the usual overlap obtained if the probe
was initiated in a simple coherent state. We see ξaa′ = 1 for a = a′ as
required. The second term contributes to increasing the overlap and this
can be appreciated by taking the limit of large β for which

ξa6=a′ →
d− 1

d
as β → ∞. (3.95)

Increasing d reduces the effect of tracing out the probe, as could have been
expected. Thus we are really only concerned here with the overlap between
a particular cat state and it’s displaced version and the above result is quite
intuitive. The overlap in the above case is plotted for different values of d
in Fig. 3.11(a).

As we pointed to before, the bus will be displaced in two different direc-
tions, dependent on each qubit. We will choose these to be orthogonal, and
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Figure 3.11: (a) Plots of the overlaps between a linear cluster |Cd〉 and
its displaced version, for d = 1, .., 5 from top to bottom. (b) The overlap
between |ϕ〉 = 1

N (|0〉+ |α〉) and its displaced version as a function of α, with

β = 1. The horizontal line corresponds to the overlap |〈α|D(iβ)|α〉| = e−β
2/2

for a simple coherent state.

so a linear cat state will most certainly only protect one qubit. To overcome
this we propose the use of a cat state in the form of a square grid or lattice,
as illustrated in Fig. 3.12. We refer to this type of state as a grid state
which takes the form

|Gd〉 =
1

N
d−1
∑

n,m=0

|(n+ im)β〉, (3.96)

with

|N |2 =

d−1
∑

n,m,p,q=0

e−β
2(n2+m2+p2+q2−2(n+im)(p−iq)). (3.97)

The overlap between the grid state and its displaced version is equal to
〈Gd|D(β)|Gd〉. The full expression is rather complicated, but taking the
limit of large β again, we have

|〈Gd|D(β)|Gd〉| →
d− 1

d
as β → ∞. (3.98)

The result can be understood geometrically as a proportional area overlap,
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Figure 3.12: Phase space picture of the regular grid state |Gd〉.

in number of coherent states in phase space. Thus we see that the overlap
is increased through increasing d, and this time the same result holds for
an orthogonal displacement, i.e. |〈Gd|D(iβ)|Gd〉| → d−1

d in the limit of large
β. We note here that if we wanted to look at the overlap between the two
possible grid states after a conditional displacement D(βZ) we would have
to insert a factor of two in the amplitudes, as in the linear cat state example.
For the time being we are only verifying if such a state would be of any use
and so we are not concerned with its preparation.

Before we start looking at the full gate, it is worth mentioning a po-
tentially damaging feature of cat states. To illustrate the observation, let
us take a typical cat state |ϕ〉 = (|0〉 + |α〉)/N with α real. The overlap
between the original state and a version displaced by iβ is then

|〈ϕ|D(iβ)|ϕ〉| =
e−β

2/2(2 + 4e−α
2
+ 2cos2αβ + 8e−α

2/2cosαβ)1/2

2 + 2e−α2/2
. (3.99)

This oscillating function is plotted in Fig. 3.11(b), and as we can see there,
the two states (original and displaced) can be perfectly orthogonal for some
values of α and β. This could potentially exacerbate the dephasing incured
by qubits having conditionally displaced the probe by these amounts and
will probably play a role in the viability of the cat state probe approach.

100



Now let us move to the dissipative CZ gate and write our initial two-qubit
and probe state as

ρi =
∑

a,a′,b,b′=0,1

caa′bb′ |ab〉〈a′b′| ⊗
1

N
∑

i,j

|αi〉〈αj |. (3.100)

Applying the same sequence as in the previous section, with βa = βb = β
for simplicity, we obtain

ρf =
∑

a,a′,b,b′=0,1

caa′bb′ |ab〉〈a′b′|ei(β̇β+β̈β̇)(za+zb−za′zb′ ) (3.101)

⊗ 1

N
∑

i,j

|...α i〉〈...α j |P ija P ijb (ξij1 ξ
ij
2 ξ

ij
3 )η, (3.102)

where we have extra single qubit phases

P ija = exp
[

iβ(e−4l − 1)(Im[αi]za − Im[αj ]za′)
]

, (3.103)

P ijb = exp
[

iβ(e−5l − e−l)(Re[αi]zb − Re[αj ]zb′)
]

, (3.104)

and the three overlaps per probe matrix element

ξij1 = 〈αj + βza′ |αi + βza〉, (3.105)

ξij2 = 〈α̇j + β̇za′ + iβzb′ |α̇i + β̇za + iβzb〉, (3.106)

ξij3 = 〈α̈j + iβ̇zb′ |α̈i + iβ̇zb〉. (3.107)

We note that even though we have compensated the displacements, the
probe and qubits remain entangled, as indicated by these extra phases which
cancel out for αi = αj . The impact of a grid state probe on the gate
performance is evaluated by looking at the fidelity 〈φ|ρab|φ〉 (with |φ〉 =
(|0〉|+〉 + |1〉|−〉)/

√
2) of the reduced two-qubit state

ρab = Trbus[ρf ] (3.108)

=
1

4

∑

a,a′,b,b′=0,1

|ab〉〈a′b′|ei(β̇β+β̈β̇)(za+zb−za′zb′) (3.109)

× 1

N
∑

i,j

〈...α j |
...
α i〉P ija P ijb (ξij1 ξ

ij
2 ξ

ij
3 )η , (3.110)
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obtained with a pure input |+〉a|+〉b. For the numerical analysis, we define
a new variable r which allows us to modulate the spacing of the input grid
state, i.e. |Gd〉 = 1

N
∑d−1

n,m=0 |r(n + im)β〉, so as to be able to search for an
optimal spacing, given a particular inter-coupling loss coefficient l which we
set to 0.1 in the calculations. The results are displayed in Fig. 3.13.
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Figure 3.13: (a) The fidelity of the two-qubit output state F (|φ〉, ρab) =
〈φ|ρab|φ〉, as a function of the lattice spacing r. The loss l is fixed to 0.1
between each interaction and the top horizontal line represents the fidelity
achieved using a simple coherent state. Then from the highest peaking
curve to the lowest we have d = 2, 3 and 4. (b) The entanglement generated
between the two qubits, in the form of the concurrence, as a function of r
with l = 0.1. The horizontal line again represents the concurrence achieved
with a coherent state. From top to bottom we have d = 2, 3, 4 and 5.

In Fig. 3.13(a) we have plotted the fidelity of the output state as a
function of the spacing between coherent states in the lattice. We observe
significant variations as r changes however the standard fidelity is never ex-
ceeded and it would seem that increasing d worsens the overall performance
of the gate. Plots of the concurrence, shown in Fig 3.13(b) confirm the
observation. It seems like after all, the entire process is dominated by the
mixing of the probe state, which is transmitted to the pair of qubits. The
increased overlap is not sufficient in this case to protect the coherence of the
qubits.

As the probe and qubits are still entangled at the end of the gate, one
may suggest that tracing out the probe is the principal source of decoherence.
To verify this we applied a time reversal to the sequence in order to decouple
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the probe as much as possible from the qubits. This does slightly increase
the performance of the gate but it remains bellow the results obtained in
the single coherent state case, in all the range of l, r and d explored.

At this point one can really begin to appreciate the particularity of the
coherent state and its usefulness in the qubus scheme. As it undergoes linear
loss it remains pure and so it can always be perfectly decoupled from the
qubits. Whether or not there exists a quantum state which can outperform
the coherent state in such applications is still an open and interesting ques-
tion. If there is not, then the last option that might be explored is to find
optimal displacement sequences and paths in phase space, generating the
required geometric phase and reducing the dephasing incured by the qubits.
Attempts have so far been unsuccessful.

If we restrict ourselves to simple parity gates with small dissipation, the
qubus scheme can be used directly to build cluster states in a distributed
fashion. This constitutes the topic of the next chapter.
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Chapter 4

The probabilistic generation

of cluster states

As explained in the introduction, measurement-based quantum computing
is a very promising alternative to the circuit model of quantum comput-
ing. It only requires the preparation of a highly entangled multi-qubit state,
the cluster state, alongside arbitrary single qubit measurements and feed-
forward. The efficient generation of the cluster state is crucial to the viabil-
ity of measurement-based quantum computing. In the first section of this
chapter we propose a truly scalable approach to building cluster states of
matter qubits in a distributed fashion, using the qubus scheme. The key
advantage being an increase in probability of success of the entangling oper-
ation, these results call for the quantification of the performance of different
growth strategies over a complete range of success probabilities. Novel ap-
proaches to treating this issue and finding optimal strategies are proposed
in the second section of the chapter.

4.1 The efficiencies generation of cluster states via

the qubus scheme

The cluster state approach was quickly applied [72,74,75,136,137] to linear
optics quantum computing [34] and was experimentally demonstrated on the
scale of several qubits (see the review [50] for a full set of references). This
scenario as we saw contains a significant scaling problem in practice, due
to the probabilistic nature of the logical gates. However, the cluster state
method enables this problem to be pushed into the off-line preparation of
the cluster [72, 74, 75], at a lower cost in resources than gate teleportation

104



methods. Many different schemes have been proposed to efficiently generate
the photonic cluster states, because of the simplicity of the interactions and
the appealing coherence time of the photons. Photon loss can be treated
efficiently through ‘indirect measurements’ and a more elaborate preparation
of the cluster [138] but at a significant cost in terms of the qubit dephasing
[139]. There remains an issue concerning storage though. Initially, each
photon will be flying down an optical fibre (or two [72]), meaning there is a
need for an adaptive quantum memory. Reliable and efficient single photon
sources and detectors are a further issue for single photon approaches as we
saw earlier.

The qubus scheme [85, 115, 140–144] was developed in an attempt to
overcome the scaling properties of linear optics QIP. This scheme is non-
destructive and not limited by the beam-splitters’ optimal success probabil-
ity of 1/2. Already at this point, one can notice the usefulness of the parity
gate discussed at the end of chapter 2 for photonic cluster state approaches.
A near deterministic entangler is all that is required to grow cluster states
efficiently, be it in Browne and Rudolph’s [75] or in Yoran and Reznik’s
model [72]. The effective CZ gates can be obtained through entanglement
and local operations alone. However, as pointed out before, choosing pho-
tons as a support for one-way quantum computing may not be the best op-
tion. Solid state or matter systems may be more compact and easy to deal
with in this application and constituted the initial proposed system, when
cluster states were first developed [41]. In many of the solid state qubit sys-
tems proposed to date, the multi-qubit gates arise from direct interactions
between the qubits. Adding extra qubits to a computation therefore leads to
changes in the required control fields and to the Hamiltonian of the whole
system. As a consequence, the required setup becomes increasingly more
complicated as the number of qubits in the computational system increases.
A further issue is that in order for some solid state qubits to interact directly,
they may need to be in such close proximity that application of individual
control fields and measurements becomes infeasible.

Distributed QIP potentially overcomes these problems. Many propos-
als make use of single photons to effectively mediate interactions between
matter qubits [79,145–149]. Having interacted with matter qubits, the pho-
tons then interact with each other in a linear optical setup before being
measured, thus projecting the matter qubits into the required state without
them having interacted directly. It has been shown that entanglement and
logical operations can be generated in this way. However, once again there
are probabilistic limits in these approaches due to the fact that simple linear
optics is inherently non-deterministic.
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The next step was to use these probabilistic entangling schemes to pre-
pare cluster states of matter qubits [43, 80, 81, 150, 151]. Barrett and Kok
looked at this problem [43] and proposed the use of a double-heralding prob-
abilistic entangling procedure in order to build cluster states. This method
has been further developed in a second paper, using a repeat until success
method proposed by Lim et al. [80], where implementation of a conditional
phase gate is proposed, using a mutually unbiased basis [81]. This enables
some saving of qubit resources during the generation of the graph or cluster
states. However, a further very interesting aspect of this proposal is that
there are now three possible outcomes to the measurement. Along with the
usual success and failure outcomes, there is an insurance outcome, in which
the qubits are left in a known product state, up to local operations. This
means that, following the insurance outcome, a new attempt to implement
the gate is possible. The corresponding scaling properties of the average
number of required entangling operations follow from the various outcome
probabilities for the entangling operation.

This entangling operation requires a rather elaborate measurement scheme,
which may be tough to implement experimentally. Furthermore, as the
scheme involves the detection of two photons, the success probability has
a quadratic dependence on the detector efficiency. Therefore on top of the
inherently probabilistic aspect of linear optics, the detector efficiencies dra-
matically affect the scaling of the resources (even for the highest reported
efficiencies). It should be noted that the scheme is robust against photon
loss due to the fact that this is a heralded source of error 1, so the fidelity
of successful operation doesn’t suffer. Nevertheless, the reduction in success
probability of the gate requires a significant increase in resource overhead,
which in turn increases the weight of unheralded errors in the cluster state
itself. So single photon measurement has its limits in realizing entangling op-
erations on matter qubits. However, homodyne measurements on coherent
light fields can be made much more efficient than photon detection. In this
section we will show how this and other factors make continuous variables
a very powerful tool for growing cluster states.

4.1.1 The three-qubit entangling gate

There are quite a number of well studied systems where one has a natural
interaction between a matter qubit and the electromagnetic field. These

1This of course assumes no dark counts in the detection process. Dark counts are

generally an unheralded error and unfortunately tend to be larger in the higher efficiency

detectors.
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include atoms (real and artifical) in cavity QED (both at the optical and
telecom wavelengths) [152], NV-centers in diamond [153], quantum dots with
a single excess electron [154], trapped ions [30] and SQUIDs [101] to name
only a few. All these systems are likely to be suitable candidates for the two
qubit gate explained in chapter 2.

We saw previously how a simple two-qubit gate could be built with a
pair of controlled bus rotation and a subsequent measurement of the probe.
If we are in the optical wavelength range, this measurement works with an
efficiency of at over 99% [155]. For cluster state generation the simplest
option is an efficient momentum (P = X(π/2)) quadrature homodyne mea-
surement (given the probe starts off in a coherent state |α〉 of real amplitude,
which will be the case in the rest of this chapter), yielding a success prob-
ability close to 1/2. We will note here that this is the most accessible and
robust qubus scheme so far proposed, using a single interaction per qubit.
Would it be possible to further improve the success probability all the while
maintaining a highly efficient measurement?

Within the same framework of conditional rotations, one can envisage
three qubits interacting with a single probe beam initially in the coherent
state |α〉. If we limit ourselves again to efficient P quadrature measurements
(which scale as αθ), we could consider the generation of three qubit states.
GHZ states are for instance one particularly useful state [75]. One way
of projecting the qubits onto GHZ-type states is to vary the strength of
the interactions between the qubits and the probe beam. Let us as before
represent a rotation of the coherent probe beam by R(θ) = exp(iθâ†â). Now
no R(±θZ1)R(±θZ2)R(±θZ3)|α〉 combination will lead to the required GHZ
end states in the case that we implement a P quadrature measurement.
However having one of the qubits interact twice as much with the probe
beam will yield the correct paths in phase space. Consider the sequence
R(θZ1)R(θZ2)R(−2θZ3)|α〉 which we depict in Fig. 4.1. The peak centered
on the origin will then correspond to the GHZ state (|000〉+ |111〉)

√
2 (after

being detected). This will happen with a probability of 1/4. Next the two
peaks having been rotated through ±2θ will correspond to the qubit states
(|01〉1,2 + |10〉1,2)|1〉3/

√
2 and (|01〉1,2 + |10〉1,2)|0〉3/

√
2 respectively. Now in

both of these possible outcomes we obtain the same Bell state on qubits 1
and 2, disentangled with qubit 3. So overall we obtain a GHZ state with
probability of 1/4 and a Bell state with probability of 1/2 (on two qubits
of our choice), heralded by the probe beam P quadrature measurement
outcome. The other two outcomes project the qubits to two different known
product states |001〉 or |110〉. Consequently, if all we want to do is entangle
a pair of qubits, we can now do this with probability of 3/4.
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Figure 4.1: Schematic diagram (a) of a three qubit entangling operation. In
(b) the possible probe trajectories caused by the three conditional rotations.
There are five different end-states. Upon measurement, three of these will
project the qubits to entangled states of interest.

It may seem like increasing the number of qubits taking part will fur-
ther raise the success probability. This claim turns out to be valid if we
allow for more and more interactions as we add extra qubits. Consider-
ing for example the 4 qubit case. The optimal combination then becomes
R(θZ1)R(θZ2)R(2θZ3)R(−4θZ4)|α〉. We now have 16 possible paths in
phase space with 9 different end states. All of these apart from two, under
detection, will project the qubits to Bell states and GHZ states. Focusing
solely on qubits 1 and 2 (these can be any two qubits which we choose to
have interact only once with the probe beam), they will be entangled with
probability p = 7/8. Following this method for larger numbers of qubits,
R(θZ1)R(θZ2)R(2θZ3)R(4θZ4)...R(−2n−2θZn)|α〉 the success probability in
entangling a specific pair of qubits (here 1 and 2) scales as p = 1−21−n. We
don’t necessarily have to view these extra n−2 qubits as ancillas. They can
become (if they aren’t already) useful elements (‘dangling bonds’) for future
operations when we consider the generation of 2D cluster states. However
there are drawbacks to using this generalization. The setup and measure-
ment process will become increasingly complicated. The probe beam will
have to travel and interact a lot more, rapidly accentuating the errors that
we could have had initially. Another essential point to note, is that the
gate operation time will grow exponentially with the number of qubits we
are willing to use. If we only have access to a fixed interaction strength θ,
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the gate operation time will double every time we add an extra qubit. So
depending on the situation we are in, a compromise will have to be made
between the time we are willing to take and the success probability we want
to achieve. The 3-qubit gate minimizes the ratio of operation time over
probability and we shall use this 3/4 probability in the remainder of the
paper.

4.1.2 Scaling

We now consider how this entangling scheme may be used for generating
cluster states of matter qubits. The usual cluster state is a rectangular 2D
lattice of qubits. Building chains is a possible basis for generating cluster
states. If the chains are efficiently generated, then simple schemes can be
developed to combine them to form a 2D cluster, required for quantum
computing [74,75,156]. Given a parity check operation, the simplest growing
technique involves taking one qubit (prepared in a superposition state (|0〉+
|1〉)/

√
2) at a time and linking it on the end of the chain. Once this is done,

a Hadamard transform is performed on this new end qubit, before the next
one is added. In case of failure, the initial end qubit is left in an unknown
state. Thus it needs to be measured and adaptive feed forward on its nearest
neighbour then enables recovery of the cluster state. So the chain shrinks
by one qubit in this case. This constitutes the basic sequential approach
to building chains. Clearly for success probabilities smaller than 1/2, the
chain will shrink on average; for a success probability of exactly 1/2, it will
remain the same length.

We can immediately appreciate benefits from the relatively high prob-
abilities achieved in our two entangling procedures. The first two-qubit
procedure already constitutes the limit of simple linear optics approaches.
The second one, involving a 3 qubit interaction, can already be used in a
sequential fashion, ensuring fast average growth and thus limited resource
consumption.

In the case of lower probabilities, small chains are to be built inefficiently
before joining them to the main chain. The process of linking chains with an
entangling operation is described in Fig. 4.2, using the stabilizer notation.
We can see that even though we are not obliged to measure out one qubit,
the actual length of the resulting chain is the sum of the two initial ones
minus one qubit. A convenient way of representing this operation with
states is used in [43]. And in Fig. 4.3, we can see how the three qubit gate
allows us to directly join three chains into a ‘T’ piece, as well as joining two
chains together. In case of failure, the end qubits need to be measured out
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Figure 4.2: Applying a parity check projects the two involved qubits to
a state stabilized by the operator Z3Z4, removing all the operators anti-
commuting with it. Here we apply a Hadamard transform on qubit 4 after
the operation, thus producing a dangling bond.

3-qubit parity check

p=1/2

p=1/4

p=1/2

p=1/4

Figure 4.3: Using the 3-qubit gate, we can first attempt to join a pair of
chains. This will work 3/4 of the time, producing one or two dangling bonds
centred on the same qubit, allowing for repeated trials at linking chains to
form two dimensional clusters. Three chains can also been linked up in a
similar fashion to produce a ‘T’ shape.

and each chain shrinks by one element. Then the procedure is repeated.
Supposing we start off with two chains of equal length L (following previous
analysis [156], L is defined as the number of qubits constituting the linear
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cluster), then the average size of the resulting chain is:

Lf =
L

∑

i=0

2(L− 1/2 − i)p(1 − p)i ≈ 2L− 1 − 2(1 − p)/p , (4.1)

p being the success probability of the entangling operation. This approxima-
tion isn’t meaningful for small chains as we will see in the following section.
But nonetheless we use it here for the sake of direct comparison with previ-
ous work. We can immediately identify a critical length, above which there
is growth:

L > Lc = 1 + 2(1 − p)/p . (4.2)

This critical length varies between different entangling operations. If an
actual logical gate can be immediately implemented, then Lc = 2(1 − p)/p
for example. Or if this logical gate requires the qubits from the cluster to
interact directly (non-distributive approach) then Lc = 4(1− p)/p [156]. So
our minimal size chain, ensuring growth is L0 and L0 > Lc (the next integer
greater than Lc).

Following strategies previously developped, these minimal chains are
grown in a divide and conquer fashion (in parallel, without recycling) start-
ing from individual qubits before being merged together. This yields scaling
relations for the average time taken T [L] and the average number of entan-
gling operations N [L] to grow a chain of length L:

T [L] = t

log2(L0−1)+1
∑

i=1

(1/p)i + (t/p) log2

(

L− Lc
L0 − Lc

)

(4.3)

N [L] =

(

1/2
∑log2(L0−1)+1

i=1 (2/p)i + 1/p
)

(L− Lc)

L0 − Lc
− 1

p
(4.4)

where t denotes the time taken per entangling operation.
For our first entangling procedure (2-qubit gate) p = 1/2, Lc = 3 and

thus L0 = 4. Growing this 4-chain will require 14 entangling operations on
average leading to N [L] = 16L−50. This is already the theoretical limit for
simple single photon applications. In the repeat until success method [81],
for a failure probability of 0.6 (and equal success and insurance probabilities,
on all results), the scaling is N [L] = 185L−1115 and for a failure probability
of 0.4 it becomes N [L] ≃ 16.6L−47.7. Now if we switch to our 3 qubit gate,
then L0 = 2. We will notice that Lc = 5/3 meaning the L0 − Lc factor will
contribute more than before, because we chose this difference to be unity
(also note that here this difference tends to unity as the success probability
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increases). The average number of entangling operations required then sim-
ply becomes N0 = 1/p = 4/3, giving us a scaling N [L] = 8L− 44/3. This is
a vast improvement over previous proposals.

We shall extend this scaling comparison to the generation of 2D cluster
states. Using the redundant encoding method described in [75], we can give
the average number of qubits consumed in the creation of a vertical link.
Each trial to establish this link costs two qubits (per chain), because we first
need to create dangling bonds. If we succeed in linking the two dangling
bonds, we need to measure the first dangling qubit in order to establish the
CZ gate then measure the next one, to have a direct link between the two
chains. The fact that we can only implement a simple entangling operation
and not the logical gate means we lose an additional qubit, which may
be used later for additional vertical links or error correction. But if we
concentrate on the task of making a single vertical link, the number of
qubits consumed is:

V = 2(1/p + 1) . (4.5)

We can see that this converges to 4 as p tends to unity (this corresponds
to the qubit cost of a single trial). Then the average number of entangling
operations required to make the vertical bond is given by:

NV = 2N [V ] + 1/p . (4.6)

Using the linear optics scheme proposed in [81], for failure probabilities of
0.6, 0.4 and 0.2 respectively, NV = 3334, 191.2 and 32.5. The latter failure
probability would however be very difficult to implement physically. With
our two and three qubit entangling procedures we obtain NV = 70 and 46.7
respectively. We can see that the efficiency of these schemes generalizes to
the creation of 2D cluster states in a straightforward manner. Our gates can
also be used to build cluster states in a ‘tree’ like fashion, as proposed by
Bodiya and Duan in [157]. The method relies on the observation that GHZ-
type states are locally equivalent to star shaped cluster states. A parity
check is all that is needed here.

We now turn back to the time scaling. Solving T for p = 1/2 we end up
with:

T [L] = 14 + 2 log2(L− 3) . (4.7)

Of course this is only valid for L ≥ 4 = Lc. The above result is obtained
with a T0 = 14 corresponding to the average time needed to build a 5-qubit
chain without recycling (this is due to the form of the sum). It is pretty clear
that if we allow for entangling operations to be made in parallel, alongside
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additional resources, this T0 can be minimized. For p > 1/2 we have L0 = 2,
meaning we only keep the first term in the sum for T0. This results in a
general closed expression for T :

T [L] = (t/p)

(

1 + log2

(

L− Lc
L0 − Lc

))

. (4.8)

We can compare this with the time taken by a sequential adding and build-
ing, as we now have access to probabilities higher than 1/2. Adding one
qubit at a time, via an entangling procedure, gives the recursion rela-
tion Lk+1 = Lk + 2p − 1 for the length, leading to the number of rounds
k = (L−1)/(2p−1). So for our 3 qubit gate, on average the chain grows by
one unit every two trials. The time being sequential too, TL+1 = TL + t/p,
the general form for T becomes:

T [L] = (L− 1)t/p . (4.9)

Thus time now scales linearly with the length of the chain in contrast with
the logarithmic dependence we had above.

4.1.3 Optimizing time and resources

For the two-qubit entangling gate, we essentially stand at the same point as
the photonic cluster state approaches. Optimizing the resources boils down
to finding the optimal strategies in combining elements of cluster states.
Though this is a classical analysis, relying on probabilistic gates, it is a very
complex task. Obtaining bounds or comparing different strategies requires
computing assistance. In their recent paper, Kieling, Gross, and Eisert
[158,159] investigate these issues in significant detail. They analyse essential
methods and derive bounds for the globally optimal strategy, based on an
entangling operation working with probability 1/2.

For higher probabilities however, the critical length insuring average
growth simply doesn’t exist anymore and additional truly scalable approaches
are at hand. We shall go over the obvious ones. From previous works on
generating cluster states [43, 156], we know that the simplest way to grow
short chains with probabilistic gates is through a ‘divide and conquer’ ap-
proach. It also turns out to be much quicker than a sequential adding, as
we allow for many gates to operate in parallel. As described earlier on, this
technique attempts to link up chains of equal length on each round, and
discards the chains which failed to do so.
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This approach can be extended to growing large chains in the aim of
saving time. In this context we can work out some important average quan-
tities, starting off with the time taken:

T [L] = 1 + log2(L− 1) = k . (4.10)

Here k represents the number of rounds and can easily be worked out, as
we saw above, from the given chain length. Thus we will only use k in the
following expressions. Next we can give the number of chains, at a particular
round k (L = 1 for k = 0), having started off with n qubits:

C[k] = n(p/2)k . (4.11)

Then the number of remaining qubits on that round is given by:

Q[k] = C[k] × L = n(p/2)k(2k−1 + 1) . (4.12)

Following this we can work out the number of wasted qubits W [k] = n −
Q[k]. Finally, when discussing the necessary resources we need the overall
cumulative number of entangling operations:

G[k] =
k−1
∑

j=1

C[j,m]

2
=
n

2

(

1 − (p/2)k−1

2/p − 1

)

. (4.13)

In order to have a first comparison with the method described in the
previous section, we can set the value of C[k] to unity. Or alternatively, we
can use the ratio Ndc[k] = G[k]/C[k] which will give the average number of
entangling operations required to produce a single chain:

Ndc[k] =

∑k−1
j=1 C[j]

2C[k]
. (4.14)

Expressing this ratio in function of L = 2k−1 + 1 we obtain:

Ndc[L] =
(2/p)log2(L−1) − 1

2 − p
. (4.15)

From the initial strategy, with m ≥ 2 we reached a value linear in L:

N [L] =

(

2

p

)

L− 1 − 2(1 − p)/p

1 − 2(1 − p)/p
− 1

p
. (4.16)

Obviously this will scale better with L, but surprisingly enough, the thresh-
old above which it becomes more advantageous is very high. As observed in
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Figure 4.4: Comparison of entangling operation requirements for chain pro-
duction, using our 3-qubit gate. Clearly for chains smaller than 250 qubits
the full divide and conquer approach is more advantageous than the linear
scaling obtained through the initial merging technique. The savings in the
number of entangling operations are most significant around lengths of 100
to 120 qubits. However, the sequential adding scheme is significantly more
efficient still, as expected. With this we achieve much lower scalings in com-
parison with those obtained through the repeat until success (RUS) scheme,
Pf representing the failure probability. The ‘linear optics’ curve corresponds
to a success probability of 1/2 using the divide and conquer strategies [156].
This is the theoretical limit of conventional linear optical schemes, ignoring
all detector and source inefficiencies.

Fig. 4.4 (for our 3 qubit gate), up till lengths of 250 qubits, the full divide
and conquer approach requires less entangling operations. This is due to
the fact that the probabilities we are dealing with are significantly higher
than in previous schemes, which were undertaken in two steps, the building
of minimal elements L0 and then their merging, in order to be scalable.

We can compare this with the sequential adding method for which we
have:

Nseq[L] = (L− 1)/(2p − 1) . (4.17)

Obviously this represents a considerable saving, as can be verified in Fig.
4.4. Overall we find that the three-qubit gate allows for a far more efficient
cluster state generation that linear optics based proposals.
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Figure 4.5: Comparison of time requirements for chain production, for var-
ious strategies, as a function of the chain length. The divide and conquer
approach, as expected, saves significant amounts of time. The linear time
dependence of sequential adding does not compare, for long chains. However
we can see the difference in work required if we only allow one entangling
operation at a time. Again we can observe the theoretical limit for linear
optics.

We can also compare the time scaling of these various strategies, in units
of time t corresponding to a single measurement. For the complete divide
and conquer scheme we simply have:

Tdc[L] = t (1 + log2(L− 1)) . (4.18)

and for the initial scheme:

T [L] =
t

p

(

1 + log2

(

L− Lc
L0 − Lc

))

. (4.19)

For the sequential adding, the cumulative time obeys TL+1 = TL+ t/p, and
the general form for T becomes:

Tseq[L] = t(L− 1)/p . (4.20)

Thus time now scales linearly with the length of the chain, in contrast with
the logarithmic dependence we had above.

116



The first two approaches have a logarithmic dependence on the length
L, however Tdc is significantly lower as might have been expected (see Fig.
4.5). Overall we see that there is a clear advantage to divide the task up and
to run parallel entangling operations. The decrease in generation time over
the single photon linear optics proposals is not as striking as the savings in
entangling resources, however it remains considerable. We can appreciate
the drastic impact of a heightened success probability on the scalability
of cluster state generation. This provides a significant incentive to pursue
the weak nonlinearity schemes even though at the present time they are
much harder to implement experimentally that single photon linear optical
schemes.

We note that the resources in qubits become quite large, in the absence
of recycling. The amount of wasted qubits for the full divide and conquer
approach grows very quickly as can be seen from the expression for W [k].
One could envisage in this case a form of partial recycling, to save on the
qubit resources whilst still retaining the time speed up. Then we would allow
for two or three trials before discarding the chains (the initial scheme set
no limit on the number of trials). However the protocol now becomes more
elaborate unless we are willing to wait between each round (of discarding)
because some chains will link on the first trial while others will link on the
second (supposing we allow two trials). So it seems like savings in time could
be made if we are able to manage and organize chains of different lengths.

The linear time scaling for the sequential method is due to the fact
that operations cannot be undertaken in parallel during its growth. If we
didn’t have access to simultaneous entangling operations, the time scaling
for the divide and conquer methods would be equivalent to Ndc[L] which
is sub-exponential. One needs to keep in mind that by adopting a sequen-
tial method, the whole procedure is simplified considerably and would be
more accessible to physical implementations. Divide and conquer methods
require a lot of work in parallel and should in practice involve the moving
about and reordering of qubits or even small cluster states. Unless the ac-
tual edges linking up the vertices in the graph states can be displaced via
entanglement swapping strategies, we will most probably have to physically
move some vertices in order to implement additional entangling operations.
Adding qubits sequentially should solve some architectural problems which
may arise. For example, the qubits could be perfectly static and the measur-
ing system (including the ancillary qubit which can be reused) would travel
along the chain ‘zipping’ it up. Of course the measuring system would go
back and forth, with a frequency related to the success probability of a single
operation. But essentially the qubits constituting the chain wouldn’t have
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to move. This seems significantly more practical than moving the qubits
and chains around or having to change the measuring setup every time so
as to implement the operation between qubits in various places. However
many of these problems may be solved by more advanced protocols making
use of percolation phenomena as developed in [160].

All this brings us to view the cluster state as having active regions in
which it is being built or measured in the computation (both can be under-
taken simultaneously) and regions in which the qubits are simply waiting.
Now this waiting can be minimized in the building itself, through the appro-
priate protocols, and in the measurement process. That is, the cluster can be
built only a few layers in advance, so that the qubits have less waiting to do,
between the building and the actual measurement. In any case, there will
be some waiting. Therefore the lowest decoherence support would be pre-
ferred, but it may not be the easiest to manipulate. Thus we may envisage
having two different physical realizations constituting the cluster state. For
example, we could use single electron spins initially in building the cluster.
Once the links are made between one site and its nearest neighbours, the
qubit could be switched into a nuclear spin state which has a significantly
longer coherence time, via a swap operation or some other coherent write
and read actions. Most of the waiting would be done in the long-lived state,
before being swapped again for the readout [33,119]. This follows the same
scenario as using a second physical system to mediate the interaction and
make the measurements, in distributed quantum computing.

In the present proposal, we use a continuous variable bus and homodyne
measurements to generate the links. This physical system shows itself to be
very efficient in this application. Then, for example, electron spins or super-
conducting charge qubits could then be the matter realization interacting
with the bus and serving for the final readout. These systems provide the
useful static aspect required, they interact well with the mediating bus and
ensure good single qubit measurements. Finally a low decoherence realiza-
tion such as nuclear spin could be envisaged, mainly as a storage medium.
The swapping or write and read procedure should have a high fidelity for
this storage to be beneficial. On the whole, we see that optimization will
depend directly on the physical realization(s) we have chosen to work with.
For systems with long dephasing times we would give priority to sequential
adding approaches, as we have some freedom in the time scaling and thus
we can make significant savings in resources. But for realizations with short
dephasing times, we would probably want to divide the task up and run
operations in parallel, in order to accelerate the fabrication of the cluster
state, at the expense of extra resources.
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4.1.4 The measurement-free approach

Looking at our entangling gates, we have seen that if we utilize four non-
linear interactions and three qubits the success probability is dramatically
increased. Within the framework of four non-linear interactions, another
option presents itself to us [108]. In the spirit of the initial proposal of
Wang and Zanardi [96] this can easily be extended to the simulation of
many-body interactions. The interactions required to build a cluster state
are pairwise thus conditional displacements are sufficient.

By having the probe interact with more qubits and adapting the direction
of the displacements, we can pick out the qubits we want to couple through
the state-dependent geometrical phases. In that way one could start from a
general sequence of the form:

N
∏

n=1

D(−βnZn)
N
∏

n=1

D(βnZn) = exp



2iIm







N−1
∑

n=1



β∗nZn
N

∑

p=n+1

βpZp













 .

(4.21)
But here we are simulating interactions between all qubits and from this
sequence one cannot directly generate linear or grid-like cluster states. That
is we need to adjust the βn so as to choose which qubits we want to interact.
We can use such a sequence to directly generate useful graph states such as
star shaped graphs (locally equivalent to GHZ states). For example, taking
β real and the displacement from qubit 1 orthogonal to all the others we
have

N
∏

n=2

D(−βZn)D(−iβZ1)

N
∏

n=2

D(βZn)D(iβZ1) = exp

[

−2iβ2Z1

{

N
∑

n=2

Zn

}]

.

(4.22)
Clearly if we set β =

√

π/8 we will obtain a star shaped graph of our N
qubits, centered on qubit 1 (Fig. 4.6(a)). We note that from this condi-
tion on β and the conditional displacement simulation sequence (3.63), the
scaling and magnitude requirements for αθ here are comparable to those of
the measurement-induced entangling schemes. To generate a linear cluster
we need to switch to another interaction sequence. We need to disentangle
the probe with the qubits as the sequence evolves so as not to create extra
links. Coming back to our conditional phase operation Û we notice that
after the third interaction the probe becomes disentangled from qubit 1.
Furthermore by setting β1 = iβ2 the entirety of the geometric phase is al-

119



ready acquired (by the corresponding two-qubit state) at this point. Along
with this observation and a correct ordering of the displacements we can
propose a sequence of the form

D(−βZN )D(−iβZN−1)...D(βZ4)D(−βZ2)D(iβZ3)D(−iβZ1)D(βZ2)D(iβZ1)

= exp

[

2iβ2
N−1
∑

n=1

(−1)nZnZn+1

]

(4.23)

Again setting β =
√

π/8 all the couplings are locally equivalent to condi-
tional phase gates, yielding a linear cluster state (see Fig. 4.6(b)). We can
view the probe as creating the links as it travels along the chain.

The main advantage with these generalizations is the reduced number
of interactions per qubit. If we were to use the simple conditional phase
sequence Û then the number of interactions per qubit would be 2d where d
is the degree of the qubit in the graph state. In other words, to build a N
qubit star shaped graph, the center qubit would have to interact 2(N − 1)
times at most, or with local operations to swap the center qubit as the star is
being generated we could bring this down to four interactions per qubit. As
we see from our generalized sequence each qubit would only need to interact
twice with the probe mode. Now if we think of a grid-like structure, the
qubits inside the graph will have d = 4, thus using Û would mean we require
8 interactions for each of these qubits. But here again if we switch to the
linear cluster sequence each one of these qubits would interact 4 times only,
twice in each of the two chains that go through it.

These multi-qubit approaches could be envisaged in different contexts.
For example we may view it as an expensive resource (be it in time or work)
alongside a cheaper one such as probabilistic two qubit parity gates. Many
schemes make use of a basic building block such as star shaped graphs. For
instance this approach could be used to directly generate the building blocks
needed in the percolation techniques derived in [160], then easier measure-
ment based gates would take on from there, following the same methods.
When we begin to think of loss in the probe mode however, this star shaped
graph sequence is a lot less robust than the linear graph sequence. The
reason being that halfway through the interactions the probe holds informa-
tion about all qubits, meaning that correlated errors will be quite significant.
Whereas in the linear graph sequence, the probe holds information about at
most two elements because it is constantly disentangling from the previous
ones. Meaning that the correlated errors will be limited to pairs of qubits.
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(a)

(b)

Figure 4.6: Schematic representation of two different interaction sequences
derived in the text. The gray and the white qubits lead to a pure imaginary
and pure real conditional displacement of the probe mode α. The first and
second interaction, for each qubit, are in opposite directions in phase space.
In (a) we have the sequence leading to a star shape while in (b) the one
leading to a linear graph, both on 5 qubits. For larger numbers of qubits we
have the same patterns.

In that sense the simplest and apparently most robust procedure for build-
ing a grid like structure is to generate chains that would then overlap at the
intersections. In any case we can compensate for the loss in the probe and
make sure it disentangles from the qubits. This will leave us with weighted
graphs and some dephasing on the qubits. We can then resort to purification
protocols such as those proposed in [161].

The important aspect of this measurement free approach is that it is
significantly quicker. Also it does precisely simulate the two qubit gates
required for generating the cluster state, unlike the measurement based gates
which are simple parity checks. This means that no feed-forward or local
operations are required. But this comes to a price. The constraints for
the strength of the interactions are greater, that is they are now fixed, in
contrast with our parity gates for which there simply was a lower bound
needed for the distinguishability of the measurement outcomes.

Now given these near deterministic operations, the number of interac-
tions required to build a certain cluster state becomes fixed. The question
of time then simply reduces to the number of gates we can implement in
parallel. Looking at the process in a dynamical way, we can see now that
the size of the cluster state at a certain time during the computation is
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significantly reduced. This ‘buffer’ region of the cluster state may still be
a couple of layers, but the off-line part of the cluster, which isn’t attached
yet, can be made very small. Previously, the size of the buffer that is yet
to be linked up was dictated by the success probabilities of the entangling
operations [43]. The bigger this off-line prepared buffer is, the more time it
takes to build it and the more time it takes to attach it. In other words the
more errors it contains. Now depending on the amount of near deterministic
gates we can implement in parallel, this off-line buffer only needs to consist
in a couple of layers, freshly built, purified and attached. As a matter of fact
we may not even need this off-line aspect anymore. The individual qubits
could be added directly to the existing cluster as it is being measured. This
represents huge savings in the number of qubits we are dealing with and
minimizes the error they may have picked up, as they spend a minimal time
inside a cluster state. The issues raised at the end of the last section are still
of concern here. There always will be some waiting, between the building
and the readout, so change in support during that time, from electron spin
to nuclear spin for example, in order to minimize the dephasing, is still an
important idea.

In this section we have considered the efficiencies of the qubus scheme
for the generation of matter qubit cluster states, enabling us to work in the
success probability regime of p ≥ 1/2. Being able to overcome the critical
probability of 1/2 opens up a whole range of different possibilities which
previous results in the field do not account for. The probability of 3/4
obtained in our three qubit gate drastically reduces the cost in resources,
providing a significant improvement over single photon proposals. Practical
effects such as mismatched coupling rates and bus loss were investigated
in [162]. The two-qubit parity gate was shown to be quite resilient against
mismatched coupling rates (up to a bias in the projection), however the
overall requirements are demanding, calling for further work to overcome
these issues.

We also examined different growth strategies and noticed the impact
they had on resource usage. Developing efficient strategies then becomes
essential to the viability of measurement-based computation. In particular
we need to be able to characterize the performance of different strategies
over the whole range of success probabilities, as we have now been able to
overcome the p = 1/2 limit. The topic of the next section is to try to look at
the exact average growth or rate of production yielded by different strategies
within different resource settings, with the aim of finding optimal strategies.
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4.2 Two regimes in probabilistic cluster state growth

The analysis of the probabilistic growth of cluster states does not involve any
quantum elements. The process at hand is a simple stochastic process, how-
ever evaluating the exact resource requirements is very challenging. Even
more challenging is to define and find the optimal strategy. In trying to
answer such questions, one can identify two main routes taken in previous
work. The first is the use of computer simulations such as Monte Carlo
simulations, to evaluate the performance of different strategies [163]. The
strategy in this case consists in a set of rules, applied to a population at each
time step. The simulations are interesting and are certainly a requirement in
such studies, however they need to be completed by some form of analytical
approximation, so that one can gain an intuitive understanding of what is
observed.

The second route is that of analytical results [43, 134, 156] in which a
strategy is not population dependent. The average performance is calcu-
lated directly through crude approximations such as Eq. 4.1 and many
resources are discarded. For example the divide and conquer strategy dis-
cards all chains which fail to fuse, independent of their length, so as to ease
calculations. Another issue with this approach is that many operations are
run in parallel, meaning that in the end one is necessarily presented with a
trade-off between time and work, which makes it hard to compare different
strategies. One attribute of the comparative simulations in [163] is that they
only allow for one entangling operation per time step. This simplification
we will make in the second part of this section.

A thorough study involving both approaches was undertaken by Gross et
al. [159]. In their setting, one starts with a finite pool of minimal elements
(entangled pairs) and then tries to maximize the expected length of the
final chain. This work is by far the most complete in understanding the re-
source requirements and limits of cluster state generation with probabilistic
gates. However in this section we look at the issue of cluster state generation
through another perspective, that of maximizing the production rate, given
on demand resources. Such a setting may be conceived of in a large scale
quantum computer. It makes the problem more tractable analytically and
may be very much related to the approach taken in [159].

In the first part of this section we investigate the large scale generation
of cluster states, assuming large populations and entangling resources. We
then apply this method to vast purification schemes, illustrating another
one of its application. In the third part we come back to the individual
chain picture and introduce absorbing Markov chains as a valuable tool for
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growth analysis. We note here that we will focus on the production of
linear cluster states only, as they form the basis for most 2D generation
strategies [134,156,159].

4.2.1 Steady state generation of cluster states

In order to investigate the large scale production of linear clusters we will
adopt a model somewhat similar to previous work relying on computer sim-
ulations [163]. In this model we assume that at any given time step we have
a pool of chains of various lengths, all arranged into bins corresponding to
a particular length. By fixing a maximum length L we can represent the
population distribution through the population vector

n = (n1, n2, .., nL)T , (4.24)

where ni represents the qubit content of the ith bin. The qubit content of
the entire distribution is then given by

L
∑

i=1

ni = N. (4.25)

The first assumption we will make is that of large N , sufficiently large for
us to ignore issues of parity, allowing us to take arbitrary fractions of the ni.
Such an approximation is sometimes made in queuing theory, and is known
as the fluid approximation [164]. We now define the normalized population
vector as

n̄ = (n̄1, n̄2, .., n̄L)T ≡ limN→∞
1

N
n, (4.26)

with

L
∑

i=1

n̄i = 1. (4.27)

Secondly we assume an on demand supply of fresh qubits. The result is
equivalent to assuming infinite population in the length 1 bin, as is the case
in [163]. In this context, a strategy defines how one should pair up all the
elements (chains of different lengths) of the population distribution. As we
also allow for large parallel entangling resources, a strategy arranges all the
elements into pairs and attempts to fuse them all in parallel, at each time
step. In contrast to the definition used in [159], here a strategy is a fixed
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pairing which is repeatedly applied to the population and thus time ordering
is no longer necessary.

Within this framework, we define the output of the system as the num-
ber of chains produced per time step which exceed the maximum length
L, normalized over their qubit content. To be able to tract the dynamics
analytically and for this output to be constant, we require the strategies
to lead to steady state behavior. That is the population vector n̄ should
remain constant. For this to hold, we automatically inject the qubit content
of the outputed chains into the single qubit bin. Also whenever there is a
failure outcome, the free qubits generated are transfered to the length one
bin. This in effect closes the system, even though we have a constant input
of qubits and a constant output of chains exceeding length L.

As the process at hand is a fusion process, we need introduce a new
object, which we will refer to as the pairing matrix Q, fully defining a
strategy. This pairing matrix tells us in which proportions chains of different
lengths are to be paired up, under the constraint that this repeated pairing
leads to steady state dynamics. It is worth emphasizing here how useful an
attribute it is for a strategy to yield a constant output. The pairing matrix
is a square L× L matrix

Q =











Q11 Q12 · · · Q1L

Q21 Q22 · · · Q2L
...

...
. . .

...
QL1 QL2 · · · QLL











, (4.28)

where the element Qij represents the (normalized) number of pairs of chains
of length i and j involved in the parallel fusion process. Clearly we have
Qij = Qji, so Q is a symmetric matrix and thus there are only N(N + 1)/2
different variables, the contents of a triangular matrix. For convenience we
define

Q̃ =











2Q11 Q12 · · · Q1L

Q21 2Q22 · · · Q2L
...

...
. . .

...
QL1 QL2 · · · 2QLL











, (4.29)

and

R =











1 0 · · · 0
0 2 · · · 0
...

...
. . .

...
0 0 · · · L











. (4.30)
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This allows us to relate the population vector and pairing matrix as

T [Q] = RQ̃ e = n̄, (4.31)

where eT = (1, .., 1) is the unit vector of length L. The normalization
constraint on the pairing matrix itself can simply be written as

Tr
[

RQ̃ e
]

= 1. (4.32)

For simplicity we will use the conventional CZ gate as our entangling gate,
such that if we try joining two chains of length l1 and l2, we will obtain with
probability p (the success probability of the gate) a single chain of length
l1 + l2, and with probability 1 − p the two chains having shrunk by one
qubit l1 − 1 and l2 − 1 (for l1, l2 > 1). This configuration would occur in a
distributive CZ gate, where in case of failure, the affected qubits are left in an
unknown state and have to be measured out in order to retrieve the cluster
state on the rest of the chain. We can now visualize the effect of the fusion
processes in terms of the pairing matrix elements. For successful fusions,
the map S maps the paring matrix to another pairing matrix S : Q → Q(s)

according to

Qi,j →











1
2Q

(s)
i+j,i+j if i+ j ≤ L,

i+j
2 Q

(s)
1,1 if i+ j > L,

(4.33)

where we have added commas in the subscripts for clarity. The first situation
corresponds to the standard successful fusion of two chains. Note here that
we have some freedom in how we choose to express these transitions because
we are requiring steady state behavior, i.e. conditioning on the population
vector itself. Thus we are free to write the transitions as we wish to, mak-
ing sure that normalization in conserved and the corresponding population
vector remains constant. Here the successful fusion leads to ‘half a pair’

Q
(s)
i+j,i+j. The second situation corresponds to a chain being outputted and

its qubit content being reinjected into the first bin. In case of failure the
map F : Q → Q(f) is applied, acting as
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Qi,j →















































Q
(f)
i−1,j−1 +Q

(f)
1,1 if i, j > 1,

Q
(f)
i,j−1 + 1

2Q
(f)
1,1 if i = 1, j > 1,

Q
(f)
i−1,j + 1

2Q
(f)
1,1 if i > 1, j = 1,

Q
(f)
1,1 if i = j = 1.

(4.34)

The outgoing elements are again chosen so as to conserve qubit number.
Given the two possible transitions, the steady state condition can be written
as

T [Q] = T [pQ(s) + (1 − p)Q(f)]. (4.35)

This leads to a set of linear equations relating the elements Qi,j. At this
point we can write the output per cycle as

Out[Q] = p

N
∑

j=1

j
∑

i=1

Qi,j(i+ j) with i+ j > N. (4.36)

Now to clarify the process again in words; to each pairing matrix (strategy),
is associated a single normalized population vector. This pairing matrix
is applied repeatedly, producing an average output per cycle. The whole
problem of finding the optimal strategy Qo (and consequently its associated
optimal population vector n̄o), can then be stated as follows:

Find Qo such that

Out[Qo] = max Out[Q], (4.37)

subject to
T [Qo] = T [pQ(s)

o + (1 − p)Q(f)
o ], (4.38)

and
Tr

[

RQ̃o e
]

= 1. (4.39)

Let us consider the simplest case of two bins, the first one containing single
qubits and the second containing entangled pairs. The pairing matrix in
this case is
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Q =

(

Q1,1 Q1,2

Q2,1 Q2,2

)

, (4.40)

with the associated population vector given by

n̄ =

(

2Q1,1 +Q1,2

4Q2,2 + 2Q1,2

)

, (4.41)

and the output by

Out[Q] = p(3Q1,2 + 4Q2,2). (4.42)

There are only three parameters to optimize over, as Q1,2 = Q2,1. Maxi-
mizing the output yields a strategy in which we we do not pair chains of
length 2 (i.e. Q(o)2,2 = 0). Now of course if we were only quantifying
the output through the number of chains leaving the system, then intu-
itively the optimal approach would be to produce the shortest length. This
would in turn mean that in this example, it would be a waste of resources
to produce chains of length 4. But it is important to stress at this point
that producing larger chains is valued because we quantify the output in
terms of numbers of qubits. So in this sense it is not entirely obvious what
the optimal strategy is. As we said previously, the proportions are fixed
by the success probability and the steady-state conditions, in this case we
obtain simply Q(o)1,2 = pQ(o)1,1. The normalization condition then yields
Q(o)1,1 = 1/(2 + 3p). There are no other steady state strategies in which
Q2,2 = 0 (i.e. different proportions). The output for the optimal strategy is
3p2/(2 + 3p). We can compare this output with another obvious strategy,
that of pairing within each bin only; Q1,2 = 0. Then we obtain a steady
output of 2p2/(2 + 2p), which is lower for all 0 ≤ p ≤ 1.

Applying this method to larger numbers of bins yields interesting re-
sults. The first observation we make is that for a given number of bins,
the vanishing elements of the optimal strategy seem to be independent of
p. However the values of the non-vanishing elements have to be functions
of p as they are related to the population vector. The second observation is
that even though we normalize the output in terms of qubits, the optimal
strategies always produce the shortest length. That is if we have L bins, the
optimal strategy will always output chains of length L+ 1 only. So making
the produced chains as small as possible insures a maximum qubit output.
Also in general there is a branching out of the pairing when the chains to
be paired approach L/2. What we mean by this is that there are several
pairings which produce this target length of L+ 1. In Fig. 4.7 is displayed
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how this branching evolves with the number of bins, in a rather irregular
fashion. Given this number which remains relatively low with the size of
the system, we see that the optimal strategies keep large numbers of bins
empty, a little less than L/2 of them.

10 20 30 40 500
0

2

4

6

8

L

# outputting

pairs in Q0

Figure 4.7: This plot follows the number of different parings (non-zero el-
ements in the paring matrix) which contribute to the output. That is the
number of different non-zero elements Qi,j for which i + j > L. We can
see this number has a complicated evolution with L, but there are a few
observations to be made. Comparatively, odd numbers of bins tend to have
a larger number of outputting pairs, within small differences in number of
bins. Also the outputting number of pairs for odd L seems to at least stag-
nate or increase, whereas for some even L, there is a decrease. Overall, the
average evolution of this outputting number is not linear with the number
of bins.

One aspect of optimal strategies which is interesting to keep track of is
the pairing within bins, that is the terms of the form Qi,i. As we look at the
optimal strategies for increasing L, one easily notices how for small bin num-
bers at least, it becomes optimal to pair elements of same length. There are
two possible ways of viewing this. The first way is to simply record whether
particular Qi,i terms are part of the optimal strategy. This is illustrated
in Fig. 4.8(a) and clearly shows how these terms become predominant in
low bin numbers. The second, more precise way, is to record whether for
a particular length, the optimal strategy only pairs elements of this same
length together. That is one keeps track of the non-zero Q(o)i,i terms with
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Figure 4.8: These graphs shows with the use of points, whether a particular
Qi,i (denoted by (i, i) along the vertical axis) term is present in the optimal
strategy, for a given number of bins L. In (a) one can see whether or not
such a pairing is part of the strategy at all. In (b) is shown the presence of
exclusive pairing Qi,i, as defined in the text.

Q(o)i,j = Q(o)j,i = 0 for all j. We refer to this as exclusive pairing, illus-
trated in Fig. 4.8(b). And again, a similar but stronger observation can be
made; it is advantageous to pair elements of the same length only, within
this lower set of bins. This result is interesting, as it was observed in the
simulations run in [163], that the strategy pairing chains of the same length
outperformed other proposed strategies.

The fact that the strategy is directly associated with a population dis-
tribution poses an initial question: is it always possible to reach the optimal
steady state population? If one allows for a selective pairing, in which chains
can be put aside and not be involved in fusion attempts, then it is obviously
the case that the optimal population distribution can be attained in time.
One way of proceeding may be to first populate the upper most bin L as
much as possible and then populate lower bins by breaking up these large
chains through Z measurements, as explained in chapter 2, until the right
proportions are obtained. This of course means that the entangling resources
will not be used at their full capacity, but this is simply a proof of principle.
A more interesting result would be to develop an extended framework in
which a strategy is not only defined for the optimal steady state population,
but also for a whole set of transient populations. Then the optimal strategy
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would become the strategy which converges fastest to the optimal steady
state, starting with a population vector n̄ = (1, 0, .., 0). We have not yet
been able to define and find converging strategies which use all the entan-
gling resources available at each time step. However we have used a step
by step optimization and found convergence for small L. In that case the
problem can be stated at each time step as:

Find Qt such that

D[T [Q′
t], n̄o] = min D[T [Q′], n̄o], (4.43)

over all Q for which T [Q] = n̄in, with Q′ = pQ(s) + (1− p)Q(f). Here n̄in is
the population vector at that particular time step and D is some distance
measure. This step by step optimization is very demanding numerically and
the convergence for L = 4 is illustrated in Fig. 4.9. In this case we used
D[a,b] = Tr|a − b| and it is clear that the population rapidly converges,
within 10 time steps. Numerical extension to larger L has so far failed, but
this example provides a positive expectation of convergence in general.

4 6 8 102
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0.8

1

D[T[Q�t], no]
_

t

Figure 4.9: Plot of the distance between the population distribution at time
step t and the optimal distribution n̄o (for L = 4), with an initial distribution
(1, 0, 0, 0).

4.2.2 Steady state purification protocols

Now we will quickly discuss the application of a similar model to vast pu-
rification protocols [165]. In such systems the quality (the quantity whose
evolution is followed) is no longer the length of the cluster state, but the
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fidelity of an entangled state. By combining pairs of different fidelities, one
can probabilistically produce pairs of higher fidelities [129], via entangling
gates and parity measurements. Thus two pairs will either produce a single
pair of a higher fidelity, or both be destroyed. This is the first difference
with the dynamics involved in cluster state growth, where the quality of
particular elements can increase or decrease. Note here that now the pairs
are shared between two physically distant parties.

As before, we will assume a continuous population, an on demand supply
of pairs of a minimal fidelity (f0) and a maximum fidelity (fc) above which
elements are taken out of the production line. This again enables us to
simulate a closed system and look for steady state dynamics. The aim being
to produce as many pairs above that threshold, per time step. These pairs
could then be of a high enough fidelity so as to be used in teleportation
or entanglement swapping. First let us look at a particular example and
then give guidelines on how to generalize this to more complicated cases.
Consider that we have a supply of entangled states of rank two (similar
to the hybrid states discussed in the previous chapter), reducible through
random bilateral rotations to a state of the form

ρ = f |ψ〉〈ψ| + (1 − f)|φ〉〈φ|, (4.44)

with |ψ〉 = (|01〉 + |10〉) /
√

2 and |φ〉 = (|00〉 + |11〉) /
√

2. Assuming our
target state is |ψ〉 and we have two pairs, each with fidelity f1 and f2, our
initial combined state in the basis {|ψ〉1|ψ〉2, |ψ〉1|φ〉2, |φ〉1|ψ〉2, |φ〉1|φ〉2} is
given by

ρ1 ⊗ ρ2 =

(

f1f2 f1(1 − f2)
(1 − f1)f2 (1 − f1)(1 − f2).

)

(4.45)

With the qubits in pair 1 being the targets, a bilateral CNOT operation will
lead to the state

ρ1 ⊗ ρ2 →
(

f1(1 − f2) f1f2

(1 − f1)f2 (1 − f1)(1 − f2).

)

(4.46)

Selecting even parity measurement outcomes on pair 2, we obtain the output
state of pair 1

ρout = F (f1, f2)|ψ〉〈ψ| + (1 − F (f1, f2))|φ〉〈φ|, (4.47)

with

F1,2 ≡ F (f1, f2) =
f1f2

f1f2 + (1 − f1)(1 − f2)
, (4.48)
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the denominator being the probability of the successful purification (we will
interchangeably use fi and i)

p1,2 = f1f2 + (1 − f1)(1 − f2). (4.49)

This leads to two differences with the cluster state generation process. Firstly,
now the quality of the successful output of the fusion of two elements isn’t
simply the sum of their respective qualities (lengths), it is a more elaborate
function of them (the input fidelities). One could envisage generalizing to
different classes of functions describing the fusion process at hand. Maybe
this could also be applied to other complex systems involving the fusion of
elements in a population, observed in some biological systems for example.
The second difference is that there isn’t a fixed success probability through-
out the system, it now depends on the qualities themselves; the larger the
initial fidelities, the larger the success probability. So in a way there is an
acceleration of the process as the fidelities increase (again there may be other
systems with different quality dependent probabilities).

Concerning the ordering or numbering of the bins, there may be a few
subtleties, but these are only relevant to the algorithmic implementation.
The issue is that given an on demand supply of pairs with fidelity f0, the
number of accessible fidelities one can produce, bellow some threshold fc
grows very quickly. Ignoring the threshold for the time being and defining a
round as a recombination of every element generated so far, including with
itself, the number of accessible fidelities grows as 2,4,12,108 and 10476 from
rounds 1 to 5. Here we will just give an outline of how one could proceed in
building the accessible population.

Starting from f0, at each round we combine all elements of the previous
set together (including with themselves), generating a new set, to which we
add the previous set. Then we remove all elements exceeding fc and proceed
to the next round. Repeat this until all the new combinations yield fidelities
above fc. This will give us the set of all accessible fidelities. The next step is
to order or number the bins in a particular way, so as to make the transition
rule easy to program, in an iterative way. This brings us to the transition
rules for this purification process

Qi,j →











1
2pi,j

{

Q
(s)
Fi,j ,Fi,j

+Q
(s)
0,0

}

if Fi,j ≤ fc;

pi,jQ
(s)
0,0 if Fi,j > fc,

(4.50)
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In case of failure we have the simple replacement rule

Qi,j → (1 − pi,j)Q
(f)
0,0 . (4.51)

Then again we superpose these two transitions Q → Q(s) + Q(f) and solve
for the steady-state, normalizing over the number of pairs. One issue now
lies in the definition or the quantification the output. The qubit content of
the output was rather obvious in the cluster state case, but here we might
want to give a different type of weighting on possible fidelities produced, this
may depend on the actual protocol or architecture at hand. For simplicity
here we will just weigh them proportionally to the produced fidelity itself

Out[Q] =

N
∑

j=1

j
∑

i=1

pi,jFi,jQi,j with Fi,j > fc. (4.52)

To illustrate these ideas let us consider an example which doesn’t involve
too many accessible fidelities. Suppose we set f0 = 0.7, fc = 0.98 and
use the purification function in (4.48). Then we have access to 4 different
fidelities bellow the threshold: one is f0, the second is F0,0 = f1, the third is
F0,1 = f2 and the last is F0,2 = F1,1 = f3, in increasing fidelities. Notice here
that we have overlap between different ‘paths’ of purification, these features
will depend entirely on the purification function. All other combinations
(six of them) will produces pairs exceeding the threshold. Thus the output
becomes:

Out[Q] = p0,3F0,3Q0,3 + p1,2F1,2Q1,2

+ p1,3F1,3Q1,3 + p2,2F2,2Q2,2

+ p2,3F2,3Q2,3 + p3,3F3,3Q3,3. (4.53)

Maximizing this output, with the steady-state condition yields the optimal
strategy which doesn’t rely on the use of elements of fidelity f3 and has the
pairings Q0,0=0.316456, Q0,1=0.112059, Q1,2=0.0714857 with a net output
per cycle of 0.055986. This is a rather trivial example but it nevertheless
provides us with a strategy which can’t easily be arrived at intuitively. We
believe the real challenge in this particular application is to be able to find an
algorithm for generalizing to arbitrary purification functions and accessible
fidelities.

The flow approximation used in these results is very useful in queuing
theory and may very well be applicable to large scale cluster state produc-
tion and purification schemes. However the effects of discreteness remain
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to be investigated and an interesting result would be to find a threshold
qubit content N bellow which this approach collapses. Having covered the
large scale production regime, we now return to the discrete case of single
chain growth with one entangling operation per time step and reveal another
powerful approach.

4.2.3 Production rates and absorbing Markov chains

In this subsection we focus on single chain growth, with one entangling
operation per time step. This apparently simple framework will lead to a
whole range of possible strategies, involving at each time step an actual
distribution of chains of various lengths. To do this we use Markov chains
(and from now on we will use the words linear cluster, or simply cluster,
instead of using the word chain when referring the quantum systems, so as
to avoid confusion). A Markov chain is a stochastic process involving a set
of random variables {Xt}∞t=0 obeying the Markov property [166,167]

P (Xt+1 = sj|Xt = sit ,Xt−1 = sit−1, ..,X0 = si0) = P (Xt+1 = sj|Xt = sit),
(4.54)

where the possible values of Xt form a countable set S = {s1, s2, .., sn}
called the state space of the chain. In words, the Markov property states
that the process is memoryless, meaning the state of the chain at the next
time period only depends on its present state and not its past history. The
value Pij(t) = P (Xt = sj|Xt−1 = si) is the probability of being in state sj
at time t given that the chain was in state si at time t−1. It is refered to as
the transition probability of moving from si to sj at time t. Collecting all
these transition probabilities leads to the stochastic matrix P(t) = [Pij(t)].

When the transition probabilities are constant in time (Pij(t) = Pij),
the chain is said to be homogeneous and is fully described by the constant
stochastic matrix P = [Pij ], called the transition matrix. The state of the
chain on the other hand is characterized by a probability distribution vector
pT = (p1, p2, .., pn) with

∑

i pi = 1. Now if the initial state of the chain is
p(0), then it will evolve to p(k) = Pkp(0) after k time steps. For this reason
the (i, j)-entry in Pk represents the probability of moving from si to sj in
exactly k steps (this results from the Markov property).

A Markov chain can also be represented by a directed graph, in which
each node corresponds to a particular state and each edge to a possible
transition, with an associated probability. If all states are connected, i.e. if
there is a path connecting all nodes to one another, then the chain is said
to be irreducible.
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Now the application of this Markov chain formalism to linear cluster
growth is straightforward. In our case, the state space represents the length
of the cluster we are focusing our attention on. As we try to fuse it with
chains of different lengths, it can increase or decrease in length, in discrete
time steps. Now in order to incorporate a target or threshold length in
our framework, we require absorbing states, states such that once they are
entered, they are never left. Thus if sl is an absorbing state, then Pll = 1
(the (ll)-entry of the transition matrix P). This in turn means that a chain
containing absorbing states is reducible, not irreducible.

The transition matrix P of a reducible Markov chain can be made to
assume the canonical form [167]

P =

(

T11 T12

0 T22

)

, (4.55)

where 0 represents a matrix with entries 0 only. In the case of an absorbing
Markov chain, T22 becomes the identity matrix I and the canonical form of
P reads

P =





















P1,1 · · · P1,m P1,m+1 · · · P1,m+n
...

...
...

...
Pm,1 · · · Pm,m Pm,m+1 · · · Pm,m+n

0 · · · 0 1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 1





















, (4.56)

where we have m transient states and n absorbing states. From this transi-
tion matrix we will be able to calculate all that we need for our study. First
we can obtain the average number of times the chain passes through the
state sj given that it started off in state si [167]

Ei[j] = [(I − T11)
−1]ij . (4.57)

The matrix (I − T11)
−1 is often referred to as the fundamental matrix of

a Markov chain. Summing the above expectation value over all transient
states we obtain the expected time to absorption, having started in state si

ti = [(I − T11)
−1e]i. (4.58)

Finally, the probability of absorption into state sm+j, having started in state
si is given by
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pi[m+ j] = [(I − T11)
−1T12]ij . (4.59)

Now we have all the tools in hand to start looking at the growth of linear
clusters. Throughout this study we assume an on demand supply of single
qubits, and the aim is to generate a cluster exceeding a given length L
as fast as possible. This means T11 is now an L × L matrix and we will
always initiate the chain in state s1, that of a linear cluster of length one
(a single qubit). The performance of a strategy is evaluated as the rate
of production of clusters exceeding length L given in terms of their qubit
content. This rate is then normalized, such that we obtain the average qubit
output per entangling operation. This will be stated mathematically after
some examples. We note here that we will use the same type of entangling
gate as in the previous section, working with probability p.

To begin with, let us consider the growth of our main cluster, through
single qubit adding. We will call the repeated addition of a standard cluster
length as pumping. So in this first case, we are considering the strategy of
single qubit pumping, which we mentioned in the previous section. However
here we are not making any approximation on the main cluster length. The
transition matrix for the corresponding chain is a tridiagonal matrix

P =























1 − p p
1 − p 0 p

1 − p 0 p
. . .

. . .
. . .

1 − p 0 p
1 − p 0 p

1























, (4.60)

For this simple strategy we can easily calculate the time to absorption which
we will denote by t[1, L]. As there is a single absorbing state, the rate of
production is 1/t[1, L] and the average qubit output per entangling operation
is L/t[1, L]. This quantity corresponds to the performance Perf(S[1], L)
of the single qubit pumping strategy S[1]. The next obvious strategy to
consider is two-qubit pumping S[2], in which the transition matrix for the
main cluster growth process now becomes
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P =



























1 − p 0 p
1 − p 0 0 p

1 − p 0 0 p
. . .

. . .
. . .

. . .

1 − p 0 0 p
1 − p 0 0 p

1
1



























, (4.61)

and the underlying preparation of the pump corresponds to the transition

matrix

(

1 − p p

0 1

)

. So we are in effect following two Markov chains,

where the length of the time step for the main chain is modulated by the
time to absorption of the underlying chain. The graph representation of both
strategies is illustrated in Fig. 4.10. Now for the pump preparation we have
t[1, 2] = 1/p and we observe two absorbing states for the main chain: sL+1

and sL+2 each occurring with probability c1 and c2 (c1 + c2 = 1). These
probabilities can be computed via expression (4.59). Collecting all these
parameters we can now give the performance of this two-qubit pumping
strategy S[2] as

Perf(S[2], L) =
c1L+ c2(L+ 1)

t[2, L](t[1, 2] + 1)
. (4.62)

The performance of the single and the two-qubit pumping strategies are
plotted in Fig. 4.11. We can see that over the whole range of p, two-qubit
pumping is advantageous. This holds for different values of L. One fact to
stress here is that we are no longer running parallel entangling operations,
as was the case in the divide and conquer strategies. All we are doing is
applying entangling operations sequentially, on different linear clusters. An
approximation to the performance can be analytically calculated through the
expected growth speed of the main cluster, when its length is large enough.
This is in fact the approximation made in qubus cluster state generation
section. In the case of single qubit pumping, this growth speed is simply
p(+1) + (1 − p)(−1) = 2p − 1. For two-qubit pumping, the main chain
growth speed is 3p − 1, with the time 1/p to prepare the pump, yielding a
total growth speed (3p − 1)/(1/p + 1).

As we can see in the plots of Fig. 4.11, the approximations only start to
become useful for large L. But in general it seems like they can be taken as
lower bounds on the actual performance of the strategy.
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Figure 4.10: Schematic representations of the single and two-qubit pumping
strategies S[1] and S[2]. Absorbing states are represented by thick borders.
In (b) is also shown the underlying pump preparation process for S[2].

Following the method for two-qubit pumping, we can now consider a
whole family of strategies in which a pump of a certain size r is prepared
through single qubit adding: S[r]. The performance of these strategies is
given by

Perf(S[r], L) =

∑r
i=1 ci(L+ i− 1)

t[r, L](t[1, r] + 1)
, (4.63)

where the ci correspond to the absorption probability for the state corre-
sponding to L+ i. The -1 added to lengths in the summation accounts for
the fact that the cluster starts with L = 1. This guarantees that the the
performance tends to 1 as p tends to 1.

These performances are plotted for r = 1, 2, 3 and 4 in Fig. 4.12. We
can see that two-qubit pumping is more efficient for a wide range of p, but
increasing the pump size allows for an improvement in production rate for
small p.

Now that we are using larger pumps, we no longer need to produce the
pumps through single qubit adding, whose performance rapidly becomes
negligible for p < 1/2. The three-qubit pump cannot be produced more effi-
ciently, as decomposing the corresponding Markov chain into two processes

139



0.2 0.4 0.6 10.8 0.2 0.4 0.6 10.8

0.2

0.4

0.6

1

0.8

0

Perf(S, L)

p

L=10 L=30

S[1]
S[2] S[2]

S[1]

Figure 4.11: Plots of the performances of single and two-qubit pumping
strategies S[1] and S[2] (solid) along with their analytical approximations
(dashed). Both for L = 10 and L = 30 we observe a higher performance
of S[2] over all p. Though quite good in the case of L = 30, the analytical
approximations are are very rough in the case of L = 10.

does not increase the efficiency. This means that S[4] is the first pump size
which we can layer, that is we can produce the pump with another pump
larger than one qubit. In this case, the process layering proceeds as follows.
First we produce pairs. With these pairs we produce the pump. And with
this pump we increase the size of the main cluster.

Calculating the performance for this strategy is slightly more involved.
The whole system now contains three different processes. The first is pair

generation, with as before the transition matrix M1 =

(

1 − p p

0 1

)

. Next

the growth of the four qubit pump, from pairs, has the following transition
matrix

M2 =













1 − p 0 p
1 − p 0 0 p

0 1 − p 0 p

1
1













, (4.64)

and finally the growth of the main cluster from the above produced pump
is characterized by
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Figure 4.12: Plots of the performances of the one, two, three and four-qubit
pumping strategies S[1], S[2], S[3] and S[4], with L = 30. For high p the
strategies converge as shown in (a). On the whole two-qubit pumping seems
optimal for this type of strategy, however we observe an improvement in
using a larger pump for small p. This can be seen in plot (b), where S[2]
is overtaken by S[3] which itself is overtaken by S[4], as indicated by the
arrow.

M3 =

























1 − p 03 c1p c2p
1 − p 0 03 c1p c2p

. . .
. . .

. . .
. . .

. . .

1 − p 0 03 c1p c2p
. . .

. . .
. . .

. . .
. . .

1 − p 0 03 c1p c2p

I5×5

























, (4.65)

where 03 stands for three 0 entries. A graphic representation of this layered
strategy, which we will denote by S3[4] is illustrated in Fig. 4.13. The
comparative performance with the simpler S[4] strategy is shown in Fig.
4.14(a). As expected, preparing the four-qubit pump with pairs accelerates
the production rate.

As we can see from this example, the production (lengths and associated
probabilities) of each process has to be taken into the transition matrix for
the next process. Now for convenience we redefine the absorption time t as
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Figure 4.13: Graphic representation of the four-qubit pumping layered strat-
egy. Each Markov chain corresponds to a different process and a different
transition matrix. The main cluster growth is characterized by M3. Here we
have illustrated the possible transitions of a typical transient state (length)
1 < k ≤ L.

a function of a given transition matrix t[M], so as to be able to express the
performance of a strategy involving n separate processes as

Perf(Sn) =

∑r
i=1 ci(L+ i− 1)

t[Mn](t[Mn−1](t[Mn−2](...) + 1) + 1)
, (4.66)

here each transition matrix Mj depends on Mj−1. Obviously there are many
directions to take, based on this result, however we have so far only obtained
results for the four-qubit pumping strategy, which are positive. Within this
framework, a systematic optimization will clearly have to begin by fixing the
probability p and the maximum length L, before searching through different
layerings.

One essential type of strategy which remains to be formulated in this
Markov chain setting is insistent strategies, where all the entanglement gen-
erated in different processes is used up entirely. That is we repeatedly at-
tempt to fuse the main cluster and the pump until one or the other sees all
its entanglement consumed. Such a type of strategy was mentioned earlier
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Figure 4.14: (a) Comparative performance of S[4] and S3[4] as defined in
the text. We observe a clear improvement in layering more processes. (b)
The lower bound of the performance of the insistent three-qubit pumping
strategy Sin[3] and the expected performance of the non-insistent strategy
S[3].

on in the chapter at which point we followed previous work and made a
significant approximation. Here we come back to this calculation, where we
repeatedly attempt to join two linear clusters of lengths l1 and l2, as in [159].
The expected final length is given by

lf = l1 + l2 − 〈T 〉. (4.67)

〈T 〉 represents the average number of qubits consumed in the process and
writing lmin = min(l1, l2) we have

〈T 〉 = 2p

lmin−2
∑

n=0

n(1 − p)n + (1 − p)lmin−1(2lmin − 1)

=
2(1 − p)

p
− (1 − p)lmin−1

(

1 +
2(1 − p)

p

)

. (4.68)

Thus we can see how the limiting value for this quantity, with p fixed, tends
to 2(1−p)/2 as lmin tends to infinity. Individual terms in this summation give
us the transition probabilities for a particular cluster being grown through
insistent fusion. However different transitions take different amounts of time.
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Thus in fact we are no longer in a homogeneous Markov chain setting. We
propose to average out this time difference by using the average transition
time or the average number of fusion attempts

〈N〉 = p

lmin−2
∑

n=0

(n+ 1)(1 − p)n + (1 − p)lmin−1(lmin − 1)

=
1

p
− (1 − p)lmin−1

p
, (4.69)

and then using this average as a fixed time step value. Let us look at the
case of three-qubit pumping for example. The insistent strategy will allow
for two attempts at fusing the main cluster with the pump, because in a case
of an initial failure, there remains entanglement in the pump. Thus if we
consider a transient state 3 ≤ k ≤ L, then 〈N〉 = p(1) + (1 − p)(2) = 2 − p.
This value, alongside the pump preparation time, will modulate the time to
absorption for the main Markov chain with possible transitions Pk,k+3 = p,
Pk,k+1 = p(1 − p) and Pk,k−2 = (1 − p)2. So as not to waste resources, the
transient state k = 1 can only progress along the chain and the state k = 2
cannot decrease. However the transition times for both of these states are
N = 1, so in some sense we can view the above averaging as giving us a
lower bound on the performance of the insistent strategy Sin[3]. As shown
in plot (b) of Fig. 4.14, the resulting performance is lower than for the
non-insistent strategy for all p.

This result is not very satisfying and points to the weakness of the ap-
proximation. In order to really analyze this type of strategy, one would
need to introduce controlled Markov chains, in which an overarching chain
represents a decision process (the control space). To each state of this chain
is associated a transition matrix, which is applied to the system we are
actually looking at. Such an approach would also enable us to investigate
context-dependent strategies [163], where the chosen fusion attempt depends
on the distribution of chain lengths at each time step. It is worth noting here
however that in some instances, these strategies become fixed strategies. An
example is the greedy strategy as defined by Rohde and Barrett [163], which
attempts to fuse the two largest chains at each time step. Due to the fact
that they start off with a pool of single qubits, this strategy is nothing but
single qubit pumping, for which we obtained the exact performance without
resorting to computer simulation. In any case, these decision based strate-
gies are far more difficult and interesting to investigate, and will constitute
the theme of further research.
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We began this chapter by applying the qubus scheme to the generation
of cluster states of matter qubits and found significant improvements over
previous proposals. In the process we noticed the importance of strategies
for the probabilistic growth of cluster states in general. We approached
this issue in the second section from two different perspectives and observed
interesting results. In particular Markov chains, and potentially controlled
Markov chains seem to be a promising framework for the representation
of growth strategies. We managed to reproduce previous results obtained
through computer simulations and were able to give a general exact formula
for arbitrarily complicated fixed strategies, without recycling. For a large
range of success probabilities, two-qubit pumping seems to be optimal. The
introduction of recycling led us to understand the limits of fixed strategies.
The next level of analysis will require controlled Markov chains, which are
known to provide optimal strategies for the control of stochastic processes.

Throughout the chapter we have assumed the possibility of fusing any
two clusters being part of our pool at a given time. This can be done in one
of two ways. Either he physical clusters can be stationary and the distribu-
tion of entanglement mobile, or the clusters can be transported to different
locations. The latter may not seem this relevant at the cluster generation
stage, but as will most certainly be the case, the preparation and measure-
ment of the cluster during computation will be done in different locations.
In that sense the ability to move whole clusters (or their correlations) to
other locations is crucial. This constitutes one of the applications of the
composite system transfer protocols devised in the next chapter.
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Chapter 5

A qudit bus for data

transmission and quantum

information processing

Many of the proposed quantum computer architectures include spatially dis-
tinct regions that perform the roles of memory and interaction [168–172].
Such a distributed approach presents several advantages which we pointed at
earlier on, including decoherence suppression in well-isolated memories and
extendibility of the system. There is potential for simplifying and concen-
trating the level of control needed, and mitigating the effects of cross-talk,
by restricting the number of control elements in the processing regions. Also
a level of defect-tolerance can be incorporated by routing around defective
regions.

In this context an efficient transfer of information from the memory ar-
eas to the processing areas is crucial [57]. To achieve this information trans-
fer, current proposals include the use of mobile qubits [170–173] and flying
qubits with an interconversion to stationary qubits [79, 174, 175]. Other
possible frameworks for data transfer are spin chains [176–178] and qubus
schemes [108, 119]. Teleportation can also be used in quantum computer
architectures [68,179] to provide effective communication and computation
channels. Also, as mentioned at the end of the previous chapter, the effi-
cient transfer of cluster states from preparation locations to measurement
locations will be crucial for a fast one-way quantum computer.

Given an interface between stationary and flying systems, one natural
question is: how could higher dimensional buses be used in such data trans-
fer schemes? This constitutes the central theme of this chapter. For example
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we might want to transmit a pair of qubits with a single use of a quantum
channel. In general, the efficient use of qudits can optimize the Hilbert space
of the system’s degrees of freedom [180]. Most of the qubit realizations pro-
posed and used are actually embedded in a qudit structure already with the
non-computational states seen as sources of potential error to be quantified
and mitigated [181].

The study of qudits in information processing and communication has
generated many results [182–185], defining generalized gates, teleportation
protocols and finding feasible physical implementations [186]. Additionally,
the transient occupation of higher dimensional states can greatly reduce the
complexity of certain gates, for example Ralph et al. have shown that the
efficiency of synthesising the Toffoli gate can be improved by using a qutrit
subspace [187]. Yet the issue of data transfer between arbitrary dimensional
systems through a single higher dimensional qudit bus has not been con-
sidered. Such a qudit bus would constitute a generic resource, enabling the
distribution of entanglement and data over different groups of systems in a
flexible fashion. This will result in a physical compression of the informa-
tion, reducing the number of controlled physical systems and the number of
quantum channels required across the processor.

In this chapter we show protocols for high dimensional quantum transfer
employing a passive mediating bus. By keeping this mediator passive (fix-
ing it as the target to all qudit gates and avoiding local operation on it), we
simplify the interactions and reduce the level of control needed. The infor-
mation held by an arbitrary composite system can either be transfered or
teleported via the bus to a recipient system in another location, through en-
tangling operations, measurements and feed-forward. We focus initially on
a composite system made up of two subsystems of equal dimension and then
generalize to arbitrary numbers of subsystems. To illustrate our scheme we
describe in detail the cases of two-qubit and two-qutrit composite systems,
where a qutrit represents a three level system. As the composite system is
being transmitted, non-trivial operations may also be applied. At the end of
the chapter we will see how the qubus scheme provides a potential physical
realization.

5.1 Protocols

Our protocols enable quantum communication between two parties, Alice
and Bob, via a passive bus. We assume initially that Alice has two sub-
systems (qudits) of equal dimension that she wishes to send to Bob, who
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Figure 5.1: Schematic representation of the two variants of the protocol. In
a) Alice first couples her input state |ψ〉 with the passive bus via conditional
unitary operations and measures out her two subsystems in a conjugate
basis. She sends the bus and the measurement results to Bob. On his side,
Bob has prepared the recipient state of two subsystems and on receiving the
bus, couples his subsystems to the bus via conditional unitary operations.
After measuring the bus, Bob performs feed-forward (denoted by a unitary
operation F ) on his state to reconstruct Alice’s input. In b) Bob first couples
his recipient state to the bus and sends it to Alice. Upon receiving the bus
she couples her input state with it and then proceeds with the measurements
as in the transfer protocol. All the results are then communicated to Bob
who performs the adapted feed forward, effecting qudit teleportation.
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also has two qudits of the same dimension as Alice (see Fig. 5.1). Initially
Alice holds two d-dimensional systems A1 and A2 in an arbitrary state
|ψ〉A =

∑d−1
i,j=0 xij |i〉A1|j〉A2. Initiating the transfer protocol, Alice couples

her composite system to the d2-dimensional bus via conditional unitary op-
erations. These can be written as

CAj =

d−1
∑

i=0

|i〉〈i| ⊗ UAji , (5.1)

where the projectors |i〉〈i| act on subsystem Aj (here j = 1, 2) and the
unitary operations Ui act on the bus state. An appropriate set of operations
for each subsystem will produce a one-to-one mapping between the basis
states of the composite system and the basis states of the bus (always to the
right, with basis states |ϕij〉), guaranteeing a complete mapping of the xij
coefficients. The resulting combined state we write as

|ξ〉 =

d−1
∑

i,j=0

xij|i〉A1|j〉A2|ϕij〉,

with 〈ϕi′j′ |ϕij〉 = δii′δjj′ , (5.2)

at which point the bus is then sent to Bob through a quantum channel.
Before receiving the bus, Bob prepares his two d-dimensional recipient

qudits in the equally weighted superposition |ψ′〉B = 1
d

∑d−1
k,l=0 |k〉B1|l〉B2.

Then he couples each one of them to the encoded bus via interactions of the
form of Eq. (5.1), leading to a combined state

C|ψ′〉|ξ〉 =
1

d

d−1
∑

i,j,k,l=0

xij(|k〉|l〉)B(|i〉|j〉)AUB2
l UB1

k |ϕij〉, (5.3)

with C = CB2CB1. To transfer the input state, Alice measures her subsys-
tems in a conjugate basis (one can be obtained through a Fourier transform
of the computational basis). This can be done at any time after sending the
bus, removing |i〉|j〉 from the above expression up to known phases. The
results will be sent as classical information used in the final feed-forward
applied by Bob.

To complete the transfer, Bob measures the mediator and for all measure-

ment results retrieves Alice’s state up to a known correction (unitary two-
qudit operation, denoted by F in Fig. 5.1). Complete quantum information
transfer places requirements on the unitary operations,

{

UB1
k , k = 0, 1, .., d − 1

}
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and
{

UB2
l , l = 0, 1, .., d − 1

}

that must be fulfilled. These requirements can
be expressed thus

Tr
[

(

UB2
l UB1

k

) (

UB2
l′ UB1

k′
)†]

= d2δkk′δll′ , (5.4)

for all k, k′, l and l′. The above expression states that any ordered combina-
tion made up of a single unitary operation from each set needs to result in
an operation orthogonal to all other combinations, in terms of the Hilbert-
Schmidt inner product, defined on operators V̂ and Ŵ as Tr(V̂ Ŵ †).

Reversing the order of the coupling to the mediator allows qudit quan-
tum teleportation to be performed (Fig. 5.1(b)). In this case, Bob first
entangles his subsystems (prepared in an equally weighted superposition, as
before) with the mediating bus, and sends the mediator to Alice. Alice then
entangles her state with the mediator. The entanglement and subsequent
measurement enables the completion of a qudit teleportation protocol be-
tween Alice and Bob. Keeping the indices used above, the final state after
these interaction is precisely that of Eq. (5.3), switching i and j for k and
l. Thus a deterministic transfer of the quantum information held by Alice’s
composite system is obtained if the unitary operations contained in her in-
teractions obey the relation in Eq. (5.4). In other words we have flexibility
in the direction in which we want to use the quantum channel, leading to
two different protocols, serving essentially the same purpose and requiring
the same type of interactions.

Now we must identify the sets of unitary operations that satisfy Eq.
(5.4), and for this we focus on a particular class of unitary operators namely
permutation operators. They will provide us with an intuitive understanding
of the problem and allow us to straightforwardly see the feasibility of the
protocol. These operators we define as P ≡ ∑m−1

s=0 |p(s)〉〈s| where p is a
permutation mapping an ordered set of elements to itself, written as p(s) =
s′. A compact expression for describing permutations is provided by the
cycle notation [188]

(

1 2 3 4 5
2 3 1 5 4

)

≡ (123)(45), (5.5)

where each pair of brackets contains a cycle which is read from left to right.
The effect of p on an element can for example be written as p(4) = 5. The
operator corresponding to Eq. (5.5) is then P = |1〉〈3| + |2〉〈1| + |3〉〈2| +
|4〉〈5|+|5〉〈4| and the associated permutation p entirely specifies the operator
P .
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Having chosen and defined the class of permutation operators, we pro-
ceed to writing down the two sets of operators

{

PB1
k , k = 0, 1, .., d − 1

}

and
{

PB2
l , l = 0, 1, .., d − 1

}

, for each subsystem. In addition to the orthogo-
nality requirements, by choosing one of the permutations in each set (PB1

0

and PB2
0 ) to be the identity, the expression in Eq. (5.4) implies that all

non-trivial combinations must correspond to complete permutations (de-
rangements). This can be expressed as PB2

l PB1
k |s〉 6= |s〉 for all k and l

except when k = l = 0. The simplest case occurs for d=2, which we explore
in detail in the next section.

5.2 Transmitting two qubits

To illustrate our transfer protocol we consider the transmission of a two-
qubit state. To effect transmission, Alice and Bob require a four dimen-
sional bus. There is a total of n! permutations on n elements, of which
!n = n!

∑n
k=0(−1)k/k! correspond to complete permutations [189]. In con-

sequence, given the present dimensionality, we have !4 = 9 permutation
operators to choose from. We define the bus basis states {|s〉, s = 0, .., 3}.
The full interaction between Alice’s two qubits and the bus we write as

CA2CA1 =
(

|0〉A2〈0| ⊗ IA2 + |1〉A2〈1| ⊗ PA2
)

×
(

|0〉A1〈0| ⊗ IA1 + |1〉A1〈1| ⊗ PA1
)

, (5.6)

where, the identity I and the permutation operators PA1 and PA2 act on the
bus. We will arrange the possible operators into two groups, one consisting
of pairwise swap operations and the other of cyclic permutations. They
are represented schematically in Fig. 5.2. There are 3 distinct pairwise
swap permutations which in the cycle notation we write as q1 = (01)(23)
(corresponding to the permutation operator Q1 = |1〉〈0| + |0〉〈1| + |3〉〈2| +
|2〉〈3|), q2 = (02)(13) and q3 = q1q2 = (03)(12). The 6 cyclic permutations
are given by r1 = (0123), r2 = (0132), r3 = (0213) and their inverses. We
begin with the first type of interaction in which both Alice and Bob make
use of pairwise swap operators. Proceeding with the first part of the transfer
protocol, Alice starts with her two qubits in an arbitrary state with the bus
initiated in the |0〉 state, leading to a combined state

|ψ〉 = (x0|00〉 + x1|01〉 + x2|10〉 + x3|11〉)A |0〉. (5.7)

Setting PA1 = Q1, P
A2 = Q3 she entangles her state with the bus,

C|ψ〉 = x0|00〉A|0〉 + x1|01〉A|3〉 + x2|10〉A|1〉 + x3|11〉A|2〉, (5.8)
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with C = CA2CA1. Then she measures out her qubits in the |±〉 basis
and up to phase corrections depending on the measurement outcomes, Alice
sends the disentangled bus to Bob, which is in state

|ξ〉 = x0|0〉 + x1|3〉 + x2|1〉 + x3|2〉. (5.9)

The phase corrections are sent as classical information and kept until then
end of protocol when Bob performs the feed-forward operation on his two-
qubit state.
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Figure 5.2: A schematic representation of the nine possible derangements
on four elements represented here by dots. The table indicates whether the
state that is mapped out by Bob before the feed forward is applied is lo-
cally equivalent to the initial two-qubit state Alice sent, or whether Bob
must perform entangling operations on his two-qubit state to reconstruct
the transmitted state. This depends on the derangement chosen for each
subsystem 1 and 2, and the bus measurement outcomes. Within the two
stages of the protocol, the choice of permutations must obey the orthogo-
nality requirements. This explains why we specify the qi+1, as it is the only
one satisfying the requirements of Eq. (5.4), given that ri was chosen. The
table is not exhaustive but gives the main observations.

In the second part of the protocol, Bob prepares a pair of qubits B1
and B2 in |+〉 = (|0〉 + |1〉)/

√
2 states. Upon receiving the bus, he lets

the two qubits interact consecutively with it, keeping the same interaction
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C = CB2CB1,

C|+〉|+〉|ξ〉 =
1

2
{|00〉B(x0|0〉 + x1|3〉 + x2|1〉 + x3|2〉)
+|01〉B(x0|3〉 + x1|0〉 + x2|2〉 + x3|1〉)
+|10〉B(x0|1〉 + x1|2〉 + x2|0〉 + x3|3〉)

+|11〉B(x0|2〉 + x1|1〉 + x2|3〉 + x3|0〉)}. (5.10)

To complete the protocol Bob measures the mediating bus in the compu-
tational basis. To view the results of different measurement outcomes the
above combined state can be written in a matrix form which we term the
pre-measurement matrix. The pre-measurement matrix contains the possible
unitary operations the initial two-qubit state will undergo as it is transmit-
ted in function of the measurement outcomes. Thus defining the projector
λn = |n〉〈n|, we rewrite Eq. (5.10) as

Mloc,=









λ0 λ3 λ1 λ2

λ3 λ0 λ2 λ1

λ1 λ2 λ0 λ3

λ2 λ1 λ3 λ0









. (5.11)

So for example if Bob measures the bus in the state |3〉 (corresponding to
λ3), he has reproduced Alice’s initial two-qubit state up to the (known)
unitary operation

Mloc,|3〉 =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









. (5.12)

Measuring the mediating bus in any one of the states |0〉, |1〉, |2〉, or |3〉 yields
the initial two-qubit state up to the unitary operations IB1IB2, XB1IB2,
XB1XB2 and IB1XB2 applied to it respectively, where X is the qubit Pauli
matrix X = |1〉〈0| + |0〉〈1|. This means the feed-forward operation F only
consists of local unitary operations on the qubits and is therefore a local
mapping.

In contrast, if Alice uses the two permutation operators PA1 = Q1, P
A2 =

Q3 and Bob uses PB1 = Q2, P
B2 = Q3, he then obtains the pre-measurement

matrix

Ment =









λ0 λ3 λ1 λ2

λ3 λ0 λ2 λ1

λ2 λ1 λ3 λ0

λ1 λ2 λ0 λ3









. (5.13)
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In this case all measurement outcomes require a non-local feed-forward op-
eration F , so we call this an entangling mapping. The mapped out state is
locally equivalent to Alice’s input state with a CNOT gate applied to it, for
all outcomes.

The second type of interaction makes use of cyclic permutations. We
note here that Alice and Bob cannot choose their two permutation operators
from the cyclic permutations alone, as they will not fulfill the requirements
of Eq. (5.4). An example of a valid choice is to set PA1 = PB1 = R1 and
PA2 = PB2 = Q2 = R2

1, then we obtain the pre-measurement matrix

Mcom =









λ0 λ2 λ1 λ3

λ2 λ0 λ3 λ1

λ1 λ3 λ2 λ0

λ3 λ1 λ0 λ2









. (5.14)

Here what we see is that the measurement outcomes |1〉 and |3〉 lead to a local
mapping while the |0〉 and |2〉 measurement outcomes lead to an entangling
mapping. For arbitrary states, each mapping occurs with equal probability
in this case, we term this measurement dependent case a combined map-
ping. It is worth noting here that either way, the quantum information is
left intact, meaning a repeat-until-success scheme [80] can be envisaged. If
the aim of the protocol is to entangle the two transmitted qubits through a
CNOT gate, and the permutation operators at hand are those used to gen-
erate the output in Eq. (5.14), then we can repeat the protocol (on average
twice), until the desired entangled output state is obtained.

By searching through different combinations we see that local and en-
tangling mappings can only be achieved if both Alice and Bob choose their
permutations from the pairwise Q1, Q2 and Q3 operators. Using the same
permutations will yield a local mapping, whereas changing them will yield
an entangling mapping. Another important point is that independent of
Alice’s choice of interaction, Bob using an element Ri will yield a combined
mapping.

As the subsystem dimension increases, finding sets of permutation oper-
ators satisfying (5.4) and observing the feed-forward operations for different
measurement outcomes rapidly becomes intractable. Also the entangling
power of the resulting unitary operations applied to the transmitted state
(before the feed-forward) can vary, unlike in the two-qubit case [190]. In
spite of these difficulties, the general methods given in the next section al-
low us to systematically investigate higher dimensions.
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5.3 Building interactions with permutations

We can generalize the previous discussion, keeping the concepts of local,
entangling and combined mappings. To effect these mappings for arbitrary
subsystem dimension d, we find two different types of interactions based on
conditional permutation operators. The first type of interaction makes use
of the commuting operators H and V whose corresponding permutations in
the cycle notation are

h = (0, 1, .., d − 1)

(d, d + 1, .., 2d − 1)

...

(d2 − d, d2 − d+ 1, .., d2 − 1),

v = (0, d, .., d2 − d)

(1, d + 1, .., d2 − d+ 1)

...

(d− 1, 2d − 1, .., d2 − 1), (5.15)

acting on d2 elements representing the bus basis states. As we can see
h and v consist in cycles of length d where each element is included in
only one cycle from each. We now identify them with q1 and q2 for d = 2
respectively. Extending the representation in Fig. 2 we see that if we arrange
the elements into a d×d square lattice, h groups the elements composing the
cycles in a horizontal way whereas v groups them in a vertical way. Arbitrary
combinations V lHk lead to orthogonal permutation operators satisfying Eq.
(5.4) and thus we can arrange them into the two sets

{PB1
k |PB1

k = Hk, k = 0, .., d − 1},
{PB2

l |PB2
l = V l, l = 0, .., d − 1}. (5.16)

These operators based on permutations with d-cycles allow for a transmis-
sion of Alice’s state without the need for nonlocal operations at the feed-
forward stage. This can be seen by first rewriting the bus basis states |s〉 as
|MODd(s), ⌊s/d⌋〉 so that the above operators act according to V lHk|m,n〉 =
|MODd(m+k),MODd(n+ l)〉. By initiating the bus in the state |0, 0〉, Alice
and Bob can choose their sets so that the final state in Eq. (5.3) before the
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bus measurement reads

1

d

d−1
∑

i,j,k,l=0

xij (|k〉|l〉)B (|i〉|j〉)A V d−lHd−kV jH i|0, 0〉

=
1

d

d−1
∑

i,j,k,l=0

xij (|k〉|l〉)B (|i〉|j〉)A

⊗|MODd(i− k),MODd(j − l)〉. (5.17)

Alice measuring her subsystems in the conjugate basis and Bob measuring
the bus in the |m,n〉 state will result in Bobs composite system being in the
state

d−1
∑

i,j=0

xij|MODd(i−m)〉|MODd(j − n)〉 = X−m ⊗X−n|ψ〉, (5.18)

up to local phase corrections induced by Alice’s measurements (no entan-
gling operation can arise from the measurements, as shown in Appendix B).
|ψ〉 is the initial state of Alice’s composite system and X is the general-
ized Pauli operator [191] defined by its action on the basis states: X|s〉 ≡
|MODd(s+1)〉. With this interaction we can also choose to deterministically
entangle the subsystems in the transmission, directly processing information,
as observed in the previous section.

The second type of conditional permutation operator is the simplest
and makes use of the cyclic permutation on d2 elements x = (0, 1, ...d2 −
1) corresponding to the generalized Pauli X operator acting on d2 basis
states (modulo d2). Because Xn operations commute, Eq. (5.4) becomes
a set of simultaneous modulo inequations on different values of n. It is
always possible to find two sets satisfying these requirements; in the first
set, conditioned on the first subsystem we choose

{PB1
k |PB1

k = Xk, k = 0, .., d − 1}. (5.19)

Based on this choice, we can adapt the second set so that no two combina-
tions induce the same shift operation:

{PB2
l |PB2

l = X ld, l = 0, .., d − 1}. (5.20)

Using this type of permutation again leads to deterministic transfer of Alice’s
composite system up to a known two-qudit operation. However whether
or not Bob’s state before the feed-forward is locally equivalent to Alice’s
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input state will depend on the measurement result. We note here that this
controlled interaction can be assimilated to the hybrid version of the SUM
gate [183] (acting on qudits of different dimension), the qudit extension of
the CNOT gate.

This cyclic permutation approach can be applied to the generalized case
of transmitting m subsystems via a dm-dimensional bus. In this case there
are m sets of d permutations (including the identity), each defining the
interaction of a particular subsystem with the bus. The main idea behind
Eq. (5.4) is conserved: any ordered combination of permutations from the
sets (one from each set), must result in a permutation orthogonal to all the
other combinations in terms of the Hilbert-Schmidt inner product

Tr







m
∏

Bj=1

PBjkBj





m
∏

Bj=1

PBjlBj





†




= dm

m
∏

Bj=1

δkBj lBj
, (5.21)

for all Bj, k and l, where Bj numbers the subsystems. Following on from
the previous case we can use the sets

{P jkBj
|P jkBj

= XkBjd
Bj−1

, Bj = 1, ..,m,

and kBj = 0, .., d − 1, }, (5.22)

with X =
∑dm−1

i=0 |MODdm(i + 1)〉〈i|, ensuring deterministic data transfer
for all m and d. The order in which the permutation operators are arranged
within the sets will define the feed-forward operation applied by Bob. Thus
we have found two types of interactions allowing for the successful trans-
fer of composite systems, with or without entanglement generation. This
constitutes a generic resource for quantum data transfer.

5.4 Transmitting two qutrits

To illustrate the method developped above, let us consider the case of two
qutrits. Alice holds two qutrits initially unentangled with the bus, with
basis states {|0〉, |1〉, |2〉} for each qutrit and {|s〉, d = 0, 1, .., 8} for the bus.
The three systems are coupled via the consecutive interactions

Ĉ =
(

|0〉〈0| ⊗ IA2 + |1〉〈1| ⊗ PA2
1 + |2〉〈2| ⊗ PA2

2

)

×
(

|0〉〈0| ⊗ IA1 + |1〉〈1| ⊗ PA1
1 + |2〉〈2| ⊗ PA1

2

)

, (5.23)

where qutrit A1 interacts with the bus before qutrit A2. We now must
find sets of permutations {I, P1, P2}A1 and {I, P1, P2}A2 which satisfy the
requirements for complete information transfer (5.4).
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Following the first type of interaction proposed in the previous section,
we identify nine orthogonal permutation operators including the identity.
The two operators G and H generating all nine of them when combined,
correspond to the derangements

g = (012)(345)(678) and h = (036)(147)(258). (5.24)

We write the permutation operators as Yn,m = HnGm with n,m = 0, 1, 2.
By combining them correctly we can satisfy the relations (5.4) and thus
realize a deterministic transfer of the two-qutrit state. We illustrate this
with a first example, in which Alice couples her input composite system to
the bus via the operators {I, Y0,1, Y0,2}A1 and {I, Y1,0, Y2,0}A2. After Alice
measures out her two qutrits the bus is in the state

|ξ〉 = x0|0〉 + x1|3〉 + x2|6〉 + x3|1〉 + x4|4〉
+x5|7〉 + x6|2〉 + x7|5〉 + x8|8〉 (5.25)

up to phase corrections. Bob then prepares two blank qutrits each in the
superposition (|0〉 + |1〉 + |2〉)/

√
3 and couples them to the bus via the in-

verse permutations {I, Y0,2, Y0,1}B1 and {I, Y2,0, Y1,0}B2. This yields the
pre-measurement matrix

M =





























λ0 λ3 λ6 λ1 λ4 λ7 λ2 λ5 λ8

λ6 λ0 λ3 λ7 λ1 λ4 λ8 λ2 λ5

λ3 λ6 λ0 λ4 λ7 λ1 λ5 λ8 λ2

λ2 λ5 λ8 λ0 λ3 λ6 λ1 λ4 λ7

λ8 λ2 λ5 λ6 λ0 λ3 λ7 λ1 λ4

λ5 λ8 λ2 λ3 λ6 λ0 λ4 λ7 λ1

λ1 λ4 λ7 λ2 λ5 λ8 λ0 λ3 λ6

λ7 λ1 λ4 λ8 λ2 λ5 λ6 λ0 λ3

λ4 λ7 λ1 λ5 λ8 λ2 λ3 λ6 λ0





























. (5.26)

This is a local mapping, i.e. Bob obtained Alice’s two-qutrit input state
up to local operations, independent of the measurement outcome. By us-
ing this set of permutation operators, we can also achieve an entangling
mapping. Starting with the same interactions on Alice’s side but switch-
ing to {Y0,1, Y0,2}B1 and {I, Y2,2, Y1,1}B2 on Bob’s side we obtain the pre-
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measurement matrix

M =





























λ0 λ3 λ6 λ1 λ4 λ7 λ2 λ5 λ8

λ8 λ2 λ5 λ6 λ0 λ3 λ7 λ1 λ4

λ4 λ7 λ1 λ5 λ8 λ2 λ3 λ6 λ0

λ1 λ4 λ7 λ2 λ5 λ8 λ0 λ3 λ6

λ6 λ0 λ3 λ7 λ1 λ4 λ8 λ2 λ5

λ5 λ8 λ2 λ3 λ6 λ0 λ4 λ7 λ1

λ2 λ5 λ8 λ0 λ3 λ6 λ1 λ4 λ7

λ7 λ1 λ4 λ8 λ2 λ5 λ6 λ0 λ3

λ3 λ6 λ0 λ4 λ7 λ1 λ5 λ8 λ2





























. (5.27)

Each measurement outcome will simulate an entangling operation on the
transmitted state. Clarisse et al. [190] derived criteria for identifying max-
imally entangling permutation matrices (acting on two systems of equal
dimension), which we review here. The matrix corresponding to a permu-
tation operator P is maximally entangling over all unitary operations if it
satisfies the following conditions: every block contains a single nonzero en-
try; all blocks are different; nonzero entries in the same block-row are in
different subcolumns; nonzero entries in the same block-column are in dif-
ferent subrows. In the case of two qubits, the CNOT operation constitutes
a maximally entangling permutation.

From these criteria it can be seen that the above resulting matrix is
not maximally entangling (for all measurement outcomes), because it fails
to fulfill one of the requirements: one identifies identical blocks. However
with a judicious choice of permutations, one can achieve a maximally en-
tangling mapping. For example Alice choosing the sets {I, Y0,1, Y0,2}A1,

{I, Y1,0, Y2,0}A2, and Bob the sets {I, Y2,1, Y1,2}B1 and {I, Y2,2, Y1,1}B2 re-
sults in the pre-measurement matrix

Mmax =





























λ0 λ3 λ6 λ1 λ4 λ7 λ2 λ5 λ8

λ8 λ2 λ5 λ6 λ0 λ3 λ7 λ1 λ4

λ4 λ7 λ3 λ5 λ8 λ2 λ3 λ6 λ0

λ7 λ1 λ4 λ8 λ2 λ5 λ6 λ0 λ3

λ3 λ6 λ0 λ4 λ7 λ1 λ5 λ8 λ2

λ2 λ5 λ8 λ0 λ3 λ6 λ1 λ4 λ7

λ5 λ8 λ2 λ3 λ6 λ0 λ4 λ7 λ1

λ1 λ4 λ7 λ2 λ5 λ8 λ0 λ3 λ6

λ6 λ0 λ3 λ7 λ1 λ4 λ8 λ2 λ5





























. (5.28)

Here all blocks are different and for each measurement outcome we have a
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maximally entangling permutation operator and in consequence a maximally
entangling unitary operation [190], acting on the transmitted qutrits.

Continuing with the second method of the previous section we now use
the shift operation X =

∑8
n=0 |n +m (mod 9)〉〈n|, the sets are of the form

{

I,X,X2
}A1

and
{

I,X3,X6
}A2

. If Alice uses the ordered combination
above and Bob couples his two qutrits to the bus with the combination
{

I,X8,X7
}B1

and
{

I,X6,X3
}B2

(i.e. the inverse, which is also a solution
of Eq. (5.4)) we obtain the pre-measurement matrix

M =





























λ0 λ3 λ6 λ1 λ4 λ7 λ2 λ5 λ8

λ6 λ0 λ3 λ7 λ1 λ4 λ8 λ2 λ5

λ3 λ6 λ0 λ4 λ7 λ1 λ5 λ8 λ2

λ8 λ2 λ5 λ0 λ3 λ6 λ1 λ4 λ7

λ5 λ8 λ2 λ6 λ0 λ3 λ7 λ1 λ4

λ2 λ5 λ8 λ3 λ6 λ0 λ4 λ7 λ1

λ7 λ1 λ4 λ8 λ2 λ5 λ0 λ3 λ6

λ4 λ7 λ1 λ5 λ8 λ2 λ6 λ0 λ3

λ1 λ4 λ7 λ2 λ5 λ8 λ3 λ6 λ0





























. (5.29)

The same observation as in the two qubit case can be made. Different
measurement outcomes call for different types of feed forward. If we measure
the states |0〉, |3〉 or |6〉 (which occurs with a probability 1/3) we obtain
the initial state up to local operations on the two qutrits. However all
other outcomes will lead to the initial state having undergone an entangling
operation, though not a maximally entangling one. We now move on to
consider the physical implementation of the proposed operations along with
the coupling between the bus and the subsystems.

5.5 A continuous variable bus

The implementation of general qudit gates requires considerable control.
However the second interaction with which we propose to implement our
protocols only depends on the ability to perform a generalized X opera-
tion conditionally. The use of a CV bus may seem like a complication
at first, but interestingly it provides a very natural way of realizing such
a conditional operation. Given an interaction Hamiltonian of the form
Hint = −~χn̂busΛ̂sub where Λ̂sub =

∑d−1
s=0 s|s〉〈s| acts on the subsystem, we

can approximate the conditional X by preparing the bus in a coherent state
|α〉. n̂bus represents the number operator acting on the energy eigenstates
of the harmonic oscillator, so in fact we are looking at a conditional rotation
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type of interaction. After an interaction time t the combined state evolves
as e−iHintt/~|s〉|α〉 = |s〉|αeiθs〉 with θ = χt. Thus we see that the possible
states of the subsystem are encoded into the phase of the coherent state,
as is the case in the qubus scheme. However here we assume an arbitrary
interaction strength.

X
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(a) (b)
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Figure 5.3: (a) A phase space picture of the cyclic effect of the shift operation

eiθN̂ on the state of the CV bus, with θ = 2π/D. As defined in the text,
|n) = |αeinθ〉. (b) The maximum dimension of the composite system to be
transmitted as a function of the amplitude α, for a fixed overlap ǫ = 10−j

representing the error. From top to bottom we have j = 2, .., 6. The dashed
horizontal lines represent the capacity of the channel in number of qubits
that can be transferred.

Now given a D-dimensional composite system, the bus states we will
write as {|n) ≡ |αei2nπ/D〉, n = 0, ..,D − 1}. It is worth noting here that
this set of states is literally generated at the encoding stage, on Alice’s side
in the transfer protocol or on Bob’s side in the teleportation protocol. Each
subsystem interacts with the bus for a different amount of time, rotating
the states of the bus in phase space by a different angle (see Fig. 5.3(a)).
This is reminiscent of the three-qubit gate proposed in the previous chapter.
Setting θ = 2π/D, we can view the effect of a general interaction as

Ck|s〉|n) = |s〉|MODD(n+ ks)), (5.30)

with C = eiθn̂busΛ̂sub . Thus we see that by repeating the interactions or

161



equivalently increasing the interaction time, we obtain all the conditional
operations required to implement our protocol, even for arbitrary numbers
of subsystems (Eq. (5.22)). This is achieved through the cyclic nature of
the rotation operation eiθn̂ on the coherent state.

The bus states do not form an orthogonal basis (n|m) 6= δnm, and so
the dimension D of the transmitted composite system will be limited by the
available amplitude α of the bus. For a fixed overlap ǫ = (n|n+ 1) which is
deemed acceptable, the dimension of the composite system is bounded from
above by

D ≤ 2π

cos−1(lnǫ/α2 + 1)
. (5.31)

The behavior of this bound is illustrated in Fig. 5.3(b). We can see that
the scaling is close to being linear and the capacity of the bus is large, even
for ǫ as low as 10−5. In this case the CV bus can potentially teleport up to
7 qubits with a moderate amplitude of α = 100.

If we plan to use heterodyne detection to distinguish between the bus
states, a more appropriate value to keep small will be the overlap of the Q
functions [192]. Another option we have at our disposal is to trade the error
probability for the probability of a failure outcome by employing unambigu-
ous state discrimination (USD). Building on from a result by Chefles and
Barnett [193], some work has already been done by van Enk [194] on the
USD of symmetric coherent states using linear optics and photodetectors.
These schemes are near optimal for small amplitudes and will be optimized
for the transmission of large composite systems. In consequence we have a
choice of measurements to implement on this CV bus which enable us to re-
alize our transfer and teleportation protocols, given an arbitrary interaction
strength.
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Chapter 6

Summary and outlook

In this thesis we have investigated three areas related to the implementation
of QIP. As a starting point we argued that distributed approaches constitute
the most promising route toward a scalable quantum computer, already
allowing for nontrivial applications to be realized experimentally at the time
of writing. We also pointed at the potential advantages of the cluster state
model for information processing. This set the framework for the results
obtained.

Having chosen the qubus scheme as a physical realization, in the third
chapter we looked at the effects of dissipation on the bus. First we gen-
eralized previous work on dissipation during dispersive interactions. These
interactions led to the conditional rotation which is one of the center pieces
of the qubus proposal. We found that as well as causing decoherence in
the qubit interacting with the bus, dissipation induces a known conditional
phase on the qubit. This problematic phase is a function of the amount of
loss incurred by the probe as well as its initial amplitude. We followed the
entanglement dynamics between the bus and the qubit and found that the
larger the initial amplitude of the probe the larger the maximum entangle-
ment and the lower the entropy of the combined state at the entanglement
peaking time.

The decoherence process corresponds to a phase-flip channel which can
be combined with the phase-flip channel induced by inter-cavity loss. This
enabled us to characterize the effects of loss in the complete measurement-
free CZ gate. We obtained the quantum operations induced and their effect
on the fidelity and entanglement of output states. These operations are
essential to the development of a large scale architecture containing levels
of error correction. We found that in the presence of moderate loss the gate
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operated with a high fidelity and that a simple reversal of the gate made
the errors balance out to being independent single qubit phase-flip channels.
This is the simplest quantum operation one could conceive of in this situation
and could potentially simplify error correction on higher levels. Overall we
find that dissipation in the bus leads to a well understood dephasing of the
qubits and provide a general approach to characterizing decoherence effects
in quantum bus schemes, through the calculation of overlaps.

In the fourth chapter we applied the qubus scheme to the distributed
generation of cluster states of matter qubits. Keeping a simple homodyne
measurement, we proposed a three qubit gate working with probability 3/4.
This increase in probability past the 1/2 limit is crucial, as it allows us to
generate cluster states in a truly scalable fashion. The improvements over
previous proposals are significant. At this point we came to understand the
importance of strategies for the probabilistic growth of cluster states. This
led us to provide two new view points on cluster growth, independent of the
physical realization. In the large flow approximation we obtained the opti-
mal strategies for various cluster state lengths, which in other circumstances
is a particularly tough problem solve. Coming back to the discrete growth
of a single cluster we introduced absorbing Markov chains. We found that
for a large range of p, two-qubit pumping was the optimal pumping strat-
egy, however we also found that strategies could be layered to improve their
performance. These results introduce new tools and perspectives to cluster
growth studies and have the potential to be extended to context dependent
strategies.

Finally in the fifth chapter we addressed the important issue of composite
system transmission. This application is vital for distributed approaches to
QIP and also for cluster state quantum computing in the case that the prepa-
ration and measurement regions are distinct. We provided simple protocols
for the deterministic transfer of states of arbitrary dimension via a single
bus. We discussed in detail the cases of two-qubit and two-qutrit transmis-
sion, finding the interactions leading to a maximally entangling mapping.
As a closing point the qubus scheme, or the use of a CV bus, proved to be
a natural framework for the physical realization of such protocols. Overall
these results illustrate the potential applications of higher dimensional buses
and points to their use in increasing the information processing power by
accelerating data transfer and entanglement distribution.

The results obtained in this thesis provide a basis for many further topics
of research. Concerning the first part of the results, on the effects of dissi-
pation on the qubus CZ gate. We now have a rough model for one source
of noise. It needs to be complemented by a realistic inherent decoherence
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process of the qubits, before one has a complete noise model for the gate.
Once this is achieved, the real question of a scalable architecture will come
into play. First we should find out what the noise threshold for the system
is, based on previous calculation methods. Then we will have to choose a
computational model and design a full blown architecture which incorpo-
rates the required levels of error correction. This in itself would constitute
an extension of the results presented here.

With regards to cluster state growth, further work can be divided into
two areas. The first is the adaptation of a more involved mathematical
framework, such as controlled Markov chains, to really obtain a context de-
pendent optimal growth strategy, if such a strategy exists or can be stated
with a set of directives. Maybe a deeper question would be to determine
whether the questions of growth speed and the question of maximum ex-
pected length as addressed by Gross et al. [159] can be related and solved
via the same mathematical approach. The second logical extension is the
development and comparison of 2D cluster state growth strategies. A start-
ing question would be whether or not it is possible to significantly increase
the growth efficiency by not first generating linear clusters and then trying
to connect them. There are already a number of 2D growth strategies in the
literature which again assume large parallel entangling resources, making
them hard to compare with each other. Setting the work and time as equal
quantities might be a good start for this study.

Lastly, the protocols for composite system transfer could be incorporated
into the design of a scalable architecture mentioned earlier. In addition to
this, the protocols may be modified or extended so as to guarantee secure
data transfer to different users via the same bus. This would enter into the
area of research known as data hiding, and in this case quantum data hiding
for multiple users.

Overall, the results presented in this thesis point to the strong potential
of distributed applications, in particular using a robust higher dimensional
quantum bus. These distributed applications constitute a natural approach
to the preparation of the cluster state and the combination of the two forms
a very promising route toward scalable quantum information processing.
We hope the results contained in this work will contribute to the develop-
ment of actual devices and will trigger new research in the field of quantum
information processing.
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Appendix A

Decomposition theorem

In this appendix we state the relevant decomposition theorem derived by
Witschel in [125]. For an operator algebra obeying the commutation relation

[Â, B̂] = yB̂, (A.1)

an exponentiation of the two operators can be decomposed as follows

exp[µ(Â+ νB̂)] = exp[µÂ] exp[(ν/y)(1 − e−µyB̂)] (A.2)

= exp[(ν/y)(eµy − 1)B̂] exp[µÂ]. (A.3)

Coming back to our superoperators we have

exp[Lnmt] ≡ exp[t(Â+ B̂)], (A.4)

with

Â ≡ (iχλn − γ)M + (−iχλm − γ)P,
B̂ ≡ 2γJ . (A.5)

Noting that [J ,M] = [J ,P] = J , we observe the commutation relation
[Â, B̂] = yB̂ with y = 2γ − i(λn − λm)χ. Then setting ν = 1 in expression
A.3 we straightforwardly obtain 3.17.
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Appendix B

Alice’s measurements in the

qudit bus protocol

Here we show how Alice’s measurements do not change the fact that Bob’s
final composite state is locally equivalent to the initial state |ψ〉. To see
this we rewrite the full state of the bus with Alice’s and Bob’s composite
systems, after all the interactions (5.17)

|ϕT 〉 =
1

d

d−1
∑

a1,a2,b1,b2=0

xa1a2 (|b1〉|b2〉)B (|a1〉|a2〉)A

⊗|MODd(a1 − b1),MODd(a2 − b2)〉. (B.1)

Measuring the bus in the |m,n〉 state leaves Alice’s and Bob’s qudits in the
combined state

|m,n〉〈m,n||ϕT 〉 =
d−1
∑

a1,a2,b1,b2=0

xa1a2 (|a1 −m〉|a2 − n〉)B (|b1 +m〉|b2 + n〉)A ,

(B.2)
where we have omitted the MODd. One possible way of seeing the effect of
Alice’s measurement is to apply the discrete Fourier transform to her qudit
states before a measurement in the computational basis. The transform is
given by [40]

|k〉 → 1√
d

d−1
∑

l=0

e2iπlk/d|l〉, (B.3)
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and applying it to (B.2) we obtain

1

d

d−1
∑

a1,a2,b1,b2=0

xa1a2 (|a1 −m〉|a2 − n〉)B

⊗
d−1
∑

c1,c2=0

e2iπ(c1(b1+m)+c2(b2+n))/d (|c1〉|c2〉)A . (B.4)

Now Alice measuring her qudits in the states |s〉|t〉 will leave Bob’s composite
system in the state

|ψf 〉 =

d−1
∑

a1,a2=0

xa1a2Z
sX−m|a1〉 ⊗ ZtX−n|a2〉

= ZsX−m ⊗ ZtX−n|ψ〉, (B.5)

locally equivalent to the initial state, with Z being the generalized Pauli
operator acting as Z|j〉 = e2iπj/d|j〉.
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