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1. General Introduction 
 

 Organisms are living by using combinations of various functional systems. How have 

functional systems been diversified through evolution? Each system is composed of various 

proteins, therefore functional systems have been diversified by changing functions of proteins 

in each system. How were protein functions in functional systems diversified? Amino acid 

sequences of each protein have been substituted through evolution, and protein functions of 

each protein have been changed. The main theme of this dissertation is to predict such 

functional changes through molecular phylogenetic analyses. 

 Electron transfer energy metabolism system is the one of the good targets for the 

analysis about the divergence of protein functions and functional systems. There are various 

electron transfer energy metabolism systems, but the common characteristic features are 

shared among the systems. For example among the four major electron transfer energy 

metabolism systems (photosynthesis, aerobic recpiration, denitrification and sulfur 

respiration), ATP synthase for producing ATP and quinone as an electron transporter are 

used in all the four systems, and cytochrome c is used as an electron transporter in 

photosynthesis, aerobic respiration and denitrification (Fig. 1.1). Furthermore, homologous 

proteins are found among photosynthesis, aerobic respiration and denitrification (Berry et al. 

2000; Hauska et al. 1988), between aerobic respiration and denitrification (Mogi et al. 1998; 

Saraste and Castresana 1994; Zumft et al. 1992) and between denitrification and sulfur 

respiration (Dias et al. 1999; Krafft et al. 1992; Moreno-Vivian et al. 1999) (Fig. 1.1). These 

common characteristics and homologous proteins in the four systems suggest that there are 

evolutionary relationships among the four systems. But the previous studies about the 

homologous proteins are not enough to discuss how these four systems have evolved and how 
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the protein functions in the four systems have changed. Previous studies could suggest the 

phylogeny of each homologous protein in the four systems, but they could not suggest the 

phylogeny of the four systems. If we want to describe the phylogeny of the four systems, we 

should refer not only one phylogenetic analysis of each homologous protein but also multiple 

phylogenetic analyses of homologous proteins in the four systems. Protein functions have 

changed by amino acid substitutions through evolution. We should describe protein function 

changes referring to both phylogenetic trees of each homologous protein and amino acid 

sequences of each protein. To predict how functional systems have evolved and how protein 

functions have been changed through evolution, I conducted phylogenetic analyses at three 

levels; system, domain, amino acid. 

 

Fig. 1.1: Homologous proteins in photosynthesis, aerobic respiration, denitrification and 
sulfur respiration. Black arrows designate electron flows. Square objects are proteins. Same 
colored proteins are homologous. Abbreviations in this figure are as follows. PS II = 
photosystem II; Q = Quinone; b6f = cytochrome b6f complex; Cyt c= cytochrome c; PS I = 
photosystem I; NDH = NADH dehydrogenase; bc1 = cytochrome bc1 complex; COX = 
cytochrome c oxidase; NAR = respiratory nitrate reductase; NAP = periplasmic nitrate 
reductase; NOR = nitric oxide reductase; NOS = nitrous oxide reductase; PSR = polysulfide 
reductase 
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 In this study, I tried to predict the evolution of functional systems by superimposition 

of phylogenetic trees constructed by as many homologous proteins in the functional systems 

as possible. The basic idea of the predicting method was based on the phylogenetic analysis of 

muscle tissues by OOta and Satitou (1999). There are eight muscle tissue classes in 

vertebrates and invertebrates. If homologous genes are expressed in different tissue classes, 

the divergences of structural genes in the eight classes correspond to the divergence of the 

tissue classes, In this case, the inference of deduced tissue phylogenetic trees is possible from 

phylogenetic trees of structural genes. If the same gene is expressed in more than one tissue 

classes, it can be interpreted that the tissue classes are closely related. In this case, 

phylogenetic trees help us to infer deduced tissue phylogenetic trees. Under the assumption 

that the five structural genes they chose are these two cases, OOta and Saitou (1999) 

superimposed phylogenetic trees of five structural genes in the eight muscle tissue classes, 

and inferred the deduced phylogenetic tree of muscle tissues.  

I applied this idea to the inference of the deduced phylogenetic tree of functional 

systems. Under the assumption that phylogenetic trees constructed by structural genes in 

functional systems correspond to deduced phylogenetic tree of functional systems, I tried to 

superimpose phylogenetic trees of as many homologous proteins in the functional systems as 

possible to infer the deduced phylogenetic tree of functional systems. I did phylogenetic 

analysis at system level to predict phylogeny of functional systems. 

 Some of proteins are composed of multiple functional domains, and each domain 

might be inserted or deleted through evolution. Insertions or deletions of functional domains 

have changed protein functions. I tried to predict how domain compositions had changed 

through evolution and how protein functions had diversified by domain insertions and 

deletions. Phylogenetic trees constructed by amino acid sequences of proteins are not enough 
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to predict domain composition changes in some cases. In these cases, multiple phylogenetic 

trees constructed by amino acid sequences of various functional domains are necessary. I did 

phylogenetic analysis at the domain level by constructing composite gene trees so as to predict 

protein function changes in functional systems. 

 It is possible that protein functions are different even if domain compositions of 

proteins are the same. I tried to predict the essential amino acid substitutions for changing 

protein functions through evolution referring to phylogenetic trees and amino acid sequences 

which cannot be detected by domain level analysis. I did phylogenetic analysis at the amino 

acid level to predict protein function changes in functional systems. 

 As I described above, I predicted the evolution of functional systems and protein 

function changes in the functional systems at the three levels; system level, domain level and 

amino acid level. I applied the three level predictions to the two functional systems; electron 

transfer energy metabolism system (chapter 2) and neurotransmission system (chapter 3). As 

I explained in this section, the four electron transfer energy metabolism systems 

(photosynthesis, aerobic respiration, denitrification and sulfur respiration) share the common 

characteristic features (Fig. 1.1). Furthermore, homologous proteins exist among the four 

systems (Berry et al. 2000; Dias et al. 1999; Hauska et al. 1988; Krafft et al. 1992; Mogi et al. 

1998; Moreno-Vivian et al. 1999; Saraste and Castresana 1994; Zumft et al. 1992) (Fig. 1.1). 

They suggest that the four systems are evolutionarily related. But the exhaustive 

phylogenetic analysis of proteins among the four systems has not been tried yet. Furthremore, 

I had done phylogenetic analyses of proteins in the four energy metabolisms in master course. 

Therefore, I decided to try the three level predictions in the four energy metabolism systems 

to infer the phylogeny of the four systems and the protein function changes in the four 

systems. I constructed molecular phylogenetic trees by using amino acid sequences of 



 9 

functional domains. These trees and amino acid compositions of proteins suggest that domain 

insertions and deletions in the four systems made functions of electron transfer in proteins 

change. I tried to predict ligand binging specificities of catalytic proteins at the amino acid 

level, but experimental data about ligand binding functions are not enough for doing such 

predictions. Therefore, I did not predict protein function changes at amino acid level. Most of 

proteins in the four systems are not homologous each other. Only some important proteins for 

generating energy are homologous among the four systems. It means that most of proteins 

have evolved independently, and few of proteins are conserved among the four systems. I tried 

to superimpose phylogenetic trees of homologous proteins in the four energy metabolism 

systems to predict the phylogeny of the four energy metabolisms, and the phylogeny of aerobic 

respiration, denitrification and sulfur respiration was predicted. 

 The three level predictions were also applied to chemical neurotransmission system 

(Fig. 1.2). Neurotransmitters except for neuropeptides are produced by synthases in 

presynaptic cells, and the neurotransmitters are released to synapse. The neurotransmitters 

in the synapse are captured by receptors in postsynaptic cells, and the postsynaptic cells are 

activated. The neurotransmitters in the synapse are uptaken by transporters in the 

presynaptic cells or degradated in the synapse, and the chemical neurotransmission is 

inactivated. There are various kinds of neurotransmitters, and synthases, receptors and 

transporters for each neurotransmitter exist in chemical neurotransmission system. 

Therefore, each functional system for chemical neurotransmission can be defined as a system 

composed of synthases, receptors and transporters for each neurotransmission. I tried to 

predict how the chemical neurotransmission systems have been diversified by means of 

superimposing the phylogenetic trees of synthases, receptors and transporters. The 

phylogenetic trees of some synthases and some receptors are possible to superimpose, and the 
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phylogenetic trees of some receptors and some transporters are also possible to superimpose. 

These proteins might evolve together. But most of other proteins seem to have evolved 

independently from this study. Therefore, the unit of evolution is not system in chemical 

neurotransmission systems. I also did phylogenetic analyses of receptors at the domain level 

and the amino acid level. I inferred domain composition changes which had changed protein 

functions from the domain level analyses. Some domain changes seem to be essential for 

generating some receptors. The essential amino acid substitutions for changing ligand 

specificities were also predicted from the amino acid level analysis. 

 Based on the phylogenetic analyses of energy metabolism and chemical 

neurotransmission system, I carried out phylogenetic analysis of voltage-gated potassium 

channels at both; domain level and amino acid level (chapter 4). Voltage-gated ion channels 

are important for generating action potentials in postsynaptic neurons after chemical 

neurotransmission. Voltage-gated ion channels have the three states; resting, activation and 

inactivation (Fig. 1.3). I focused on inactivation, one of the major electrophysiological features, 

and predicted how the diversification of the inactivation had occurred. There are two kinds of 

inactivation in voltage-gated potassium channels. One is N-type inactivation which is sudden 

inactivation immediately after activation, the other one is C-type inactivation which is slow 

inactivation. Reffering to phylogenetic trees and domain compositions of voltage-gated 

potassium channels, domain composition changes seem not to affect inactivation differences. 

Previous studies (Murrell-Lagnado and Aldrich 1993a; Murrell-Lagnado and Aldrich 1993b) 

suggest that the specific chemical features of 20 N-terminal amino acids are important for 

generating N-type inactivation (Fig. 1.3). Therefore, I investigated the specific chemical 

features of 20 N-terminal amino acid sequences in voltage-gated potassium channels. The 

specific chemical features of the 20 amino acids which induce N-type inactivation are found in 
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the three subtypes out of the 21 subtypes. A small number of amino acid substitutions might 

produce the three N-type inactivation subtypes. The specific chemical features are not found 

in 20 N-terminal amino acids in the other five subclasses which can generate N-type 

inactivation. The amino acid substitutions which produce the five subtypes may different 

from those of the three subtypes which have the specific chemical features in the 20 

N-terminal amino acids. 

 I did phylogenetic analyses at system and domain levels in electron transfer energy 

metabolism systems, did analyses at system, domain and amino acid levels in chemical 

neurotransmission systems, and did analyses at domain and amino acid levels in 

voltage-gated potassium channel family. From system level analysis, most of proteins in 

functional systems seem to be evolved independently. Although functions have been conserved 

in energy metabolism systems and chemical neurotransmission system, most of proteins in 

these systems have not been conserved. Tree superimpositions predict the phylogeny among 

the three systems in energy metabolism system and co-evolutions of some proteins in 

chemical neurotransmission system. From domain level analyses, I predicted how electron 

transferring mechanisms have changed through evolution in energy metabolism and how 

protein functions have changed through evolution in chemical neurotransmission system. In 

neurotransmission system, some domain compositions seem to be essential for generating 

some receptors. From amino acid level analyses, I predicted the essential amino acid 

substitutions for changing ligand binding specificities in chemical neurotransmission system 

and those for changing inactivation differences in voltage-gated potassium ion channel family. 

Domain composition changes seem to be slower than a small number of amino acid 

substitutions referring to phylogenetic analyses in this study. The combinations of the slower 

domain composition changes and the faster amino acid substitutions may have changed 
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protein functions and these combinations might produce divergence of protein functions. 

Functional systems may have been conserved their functions by the combinations and been 

diversified also by the combinations. 
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Receptor 
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3. Activation 

4. Inactivation (Uptake) 
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(Degradation) 

Fig. 1.2: Chemical neurotransmission. Neurotransmissions are synthesized by synthases (1), and stored into vesicles. When presynaptic neuron is 
activated, neurotransmitters are released to synapse (2). Neurotransmitters in synapse are captured by receptors, and postsynaptic neuron is 
activated (3). Neurotransmitters in synapse are uptaken by transporters or degraded by enzymes, and chemical neurotransmission is inactivated 
(4). 
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Fig. 1.3: Three states of ion channels. Pores of ion channel are shown. 20 N-terminal amino acids 
close a pore of voltage-gates ion channel. 
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2. Phylogenetic Analysis of Proteins 
in Energy Metabolism Systems 

 

2.1 Introduction 

Photosynthesis, aerobic respiration, denitrification, and sulfur respiration are energy 

generation metabolisms. Proton potential is generated through the electron transfer, and ATP 

synthase produces ATP with the help of this potential in all the four systems. Furthermore, 

the electron transporter in all the four metabolism systems is quinine, and cytochrome c 

works as an electron transporter in photosynthesis, aerobic respiration and denitrification. 

Some homologous proteins are used in different metabolic systems (Fig. 2.1). Cytochrome bc1 

complex in aerobic respiration and denitrification, and cytochrome b6f complex in 

photosynthesis are evolutionarily related (Berry et al. 2000; Hauska et al. 1988). Subunit I 

and II of cytochrome c oxidase in aerobic respiration were shown to be homologous with nitric 

oxide reductase subunit b and monomeric nitrous oxide reductase in denitrification (Mogi et 

al. 1998; Saraste and Castresana 1994; Zumft et al. 1992). Between denitrification and sulfur 

respiration, respiratory nitrate reductase, periplasmic nitrogen reductase, and polysulfide 

reductase are homologous (Dias et al. 1999; Krafft et al. 1992; Moreno-Vivian et al. 1999). 

It is of my interest how these proteins and characteristics common to the four energy 

metabolism systems evolved. Evolutionary relationships of some proteins in the four 

metabolisms were already analyzed as I described above. However, the exhaustive 

phylogenetic analysis of proteins among the four metabolisms has not been tried yet. I 

therefore conducted a molecular phylogenetic analysis of all available amino acid sequences of 

those four energy metabolism systems by using the homology search program PSI-BLAST 

(Altschul et al. 1997), because it can detect evolutionary relationships of highly diverged 
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proteins (Park et al. 1998).  It is possible that homologous proteins in the four energy 

metabolism systems were also used in other nitrogen and sulfur metabolisms (nitrate 

assimilation, nitrogen fixation and nitrification in nitrogen metabolism, and assimilation and 

dissimilation in sulfur metabolism) in addition to denitrification and sulfur respiration.  

Therefore, I also included amino acid sequences in these metabolisms for my analysis. 

Fig. 2.1: Homologous proteins in photosynthesis, aerobic respiration, denitrification and 
sulfur respiration. Black arrows designate electron flows. Square objects are proteins. Same 
colored proteins are homologous. Abbreviations in this figure are as follows. PS II = 
photosystem II; PQ = plastoquinone; Cyt b6f = cytochrome b6f complex; Cyt c553 = cytochrome 
c553; PS I = photosystem I; FNR = ferredoxin NADP reductase; NDH = NADH 
dehydrogenase; UQ = ubiquinone; Cyt bc1 = cytochrome bc1 complex; Cyt c = cytochrome c; 
COX = cytochrome c oxidase; NAR = respiratory nitrate reductase; NAP = periplasmic 
nitrate reductase; Cyt c550 = cytochrome c550; NOR = nitric oxide reductase; NOS = nitrous 
oxide reductase; MQ = menaquinone; PSR = polysulfide reductase 
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2.2 Materials and Methods 

2.2.1 Amino Acid Sequence Retrieval 

 I retrieved amino acid sequences of proteins involved in photosynthesis, aerobic 

respiration, nitrogen metabolism including denitrification, nitrate assimilation, nitrogen 

fixation and nitrification and sulfur metabolism including assimilation and dissimilation from 

SWISS-PROT (Boeckmann et al. 2003), by referring mainly to the pathway maps of oxidative 

phosphorylation, ATP synthesis, photosynthesis, nitrogen metabolism and sulfur metabolism 

in KEGG (http://www.genome.ad.jp/kegg/; Kanehisa et al. 2002). Fig. 2.2 shows the proteins 

used in this study (red-colored) involved in the four energy metabolism systems. Proteins 

whose amino acid sequence data are not available from SWISS-PROT are colored black in Fig. 

2.2. The V-type ATP synthase in eukaryotic cells is included in the map of ATP synthesis in 

KEGG.  However, it is not involved in this metabolism (Wieczorek et al. 1999). Therefore, 

this enzyme was excluded from the present study. In total, I used 182 proteins retrieved by 

this procedure (Table 2.1). 

I used those sequence data as queries, and searched SWISS-PROT by using 

PSI-BLAST (Altschul et al. 1997) with SEG filter and 10 passes. Based on PSI-BLAST search 

result, I defined homologous groups of query sequences by taking their union.  By this way, I 

can find amino acid regions (domains) shared by all the query sequences.  Amino acid 

sequences retrieved through PSI-BLAST using these query sequences belonging to one 

homologous group are used for phylogenetic analysis. When function of a protein was not 

clearly defined, and was listed only as “hypothetical protein” in SWISSPROT, these sequences 

were ignored in the further analyses. 
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Fig. 2.2: Proteins I retrieved sequences (red colored proteins in this figure) mainly 
referring to pathway maps in KEGG. 
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Table 2.1: Amino acid sequences I used. 

Metabolism SWISS-PROT ID 
(Accession Number) 

Photosynthesis 

PSAA_SYNY3 (P29254) 
PSAB_SYNY3 (P29255) 
PSAC_SYNY3 (P32422) 
PSAD_SYNY3 (P19569) 
PSAE_SYNY3 (P12975) 
PSAF_SYNY3 (P29256) 
PSH1_ARATH (Q9SUI7) 
PSAI_SYNY3 (Q55330) 
PSAJ_SYNY3 (Q55329) 
PAK1_SYNY3 (P72712) 
PSAL_SYNY3 (P37277) 
PSAM_SYNY3 (P72986) 
PSAN_ARATH (P49107) 
PSAX_ANASP (P58566) 
PSB1_SYNY3 (P07826) 
PSBD_SYNY3 (P09192) 
PSBC_SYNY3 (P09193) 
PSBB_SYNY3 (P05429) 
PSBE_SYNY3 (P09190) 
PSBF_SYNY3 (P09191) 
PSBL_SYNY3 (Q55354) 
PSBJ_SYNY3 (P73070) 
PSBK_SYNY3 (P15819) 
PSBM_SYNY3 (P72701) 
PSBN_SYNY3 (P26286) 
PSBH_SYNY3 (P14835) 
PSBT_ARATH (P37259) 
PSBI_SYNY3 (Q54697) 
PSBO_SYNY3 (P10549) 
PSP1_ARATH (Q42029) 
PSBU_SYNY3 (Q55332) 
C550_SYNY3 (Q55013) 
PSBW_SYNY3 (Q55356) 
PSBY_SYNY3 (P73676) 
PS11_SYNY3 (P74367) 
CYB6_SYNY3 (Q57038) 
PETD_SYNY3 (P27589) 
CYF_SYNY3  (P26287) 
UCRI_SYNY3 (P26290) 
PETL_ORYSA (P12180) 
PETM_SYNY3 (P74810) 
PETG_SYNY3 (P74149) 
PLAS_SYNY3 (P21697) 
FENR_SYNY3 (Q55318) 

Photosynthesis, 
Aerobic Respiration 

NUOA_ECOLI (P33597) 
NUOB_ECOLI (P33598) 
NUGC_SYNY3 (P19125) 
NUCC_SYNY3 (P27724) 
NUOE_ECOLI (P33601) 
NUOF_ECOLI (P31979) 
NUOG_ECOLI (P33602) 
NUOH_ECOLI (P33603) 
NUOI_ECOLI (P33604) 
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NUOJ_ECOLI (P33605) 
NUOK_ECOLI (P33606) 
NUOL_ECOLI (P33607) 
NUOM_ECOLI (P31978) 
NUON_ECOLI (P33608) 

Aerobic Respiration 

DHSC_ECOLI (P10446) 
DHSD_ECOLI (P10445) 
DHSA_ECOLI (P10444) 
DHSB_ECOLI (P07014) 
FRDC_ECOLI (P03805) 
FRDD_ECOLI (P03806) 
COXX_YEAST (P21592) 
CYOD_ECOLI (P18403) 
COX3_YEAST (P00420) 
COX1_YEAST (P00401) 
COX2_YEAST (P00410) 
CX5A_YEAST (P00424) 
COX6_YEAST (P00427) 
COX4_YEAST (P04037) 
COXE_YEAST (P32799) 
COXG_YEAST (Q01519) 
COXH_HUMAN (P09669) 
COX7_YEAST (P10174) 
COXM_HUMAN (P24311) 
COX8_YEAST (P04039) 
COXR_HUMAN (P10176) 
COXZ_YEAST (P19516) 
COXW_YEAST (P40086) 
COXS_YEAST (Q12287) 

Aerobic Respiration, 
Nitrogen Metabolism 

UCRI_YEAST (P08067) 
CYB_YEAST  (P00163) 
CY1_YEAST  (P07143) 
UCR1_YEAST (P07256) 
UCR2_YEAST (P07257) 
UCRH_YEAST (P00127) 
UCR7_YEAST (P00128) 
UCRQ_YEAST (P08525) 
UCR9_YEAST (P22289) 
UCRX_YEAST (P37299) 

Nitrogen Metabolism 

HAO_NITEU  (Q50925) 
2NPD_NEUCR (Q01284) 
NARB_SYNY3 (P73448) 
NASA_KLEPN (Q06457) 
NARG_ECOLI (P09152) 
NARH_ECOLI (P11349) 
NARI_ECOLI (P11350) 
NAPA_ECOLI (P33937) 
NAPB_ECOLI (P33933) 
NIA1_ARATH (P11832) 
NIA_BETVE  (P27783) 
NIA_NEUCR  (P08619) 
NIRB_ECOLI (P08201) 
NIRD_ECOLI (P23675) 
NIR_SYNP7  (P39661) 
NIR_RHOSH  (Q53239) 
NIRS_PARDE (Q51700) 
NORB_PSEST (P98008) 
NORC_PSEST (Q52527) 
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NOSZ_PSEST (P19573) 
NIFD_AZOVI (P07328) 
NIFK_AZOVI (P07329) 
NIH1_AZOVI (P00459) 
VNFD_AZOVI (P16855) 
VNFK_AZOVI (P16856) 
VNFG_AZOVI (P16857) 
NIH2_AZOVI (P15335) 
ANFD_AZOVI (P16266) 
ANFK_AZOVI (P16267) 
ANFG_AZOVI (P16268) 
NIH3_AZOVI (P16269) 

Sulfur Metabolism 

CYSN_ECOLI (P23845) 
CYSD_ECOLI (P21156) 
SAT_SYNY3  (P74241) 
APA1_YEAST (P16550) 
DPNP_ARATH (Q42546) 
CYSC_ECOLI (P23846) 
SUP1_HUMAN (P50225) 
SUHA_HUMAN (Q06520) 
SUOE_HUMAN (P49888) 
CYSH_ECOLI (P17854) 
DSRA_ARCFU (Q59109) 
DSRB_ARCFU (Q59110) 
CYSI_ECOLI (P17846) 
CYSJ_ECOLI (P38038) 
SIR_SYNY3  (P72854) 
ASRA_SALTY (P26474) 
ASRB_SALTY (P26475) 
ASRC_SALTY (P26476) 
PHSA_SALTY (P37600) 
PHSB_SALTY (P37601) 
PHSC_SALTY (P37602) 
PSRA_WOLSU (P31075) 
PSRB_WOLSU (P31076) 
PSRC_WOLSU (P31077) 

ATP Synthase 

ATPE_ECOLI (P00832) 
ATPB_ECOLI (P00824) 
ATPG_ECOLI (P00837) 
ATPA_ECOLI (P00822) 
ATPD_ECOLI (P00831) 
ATPF_ECOLI (P00859) 
ATPL_ECOLI (P00844) 
ATP6_ECOLI (P00855) 
ATPE_YEAST (P21306) 
ATPD_YEAST (Q12165) 
ATPB_YEAST (P00830) 
ATPG_YEAST (P38077) 
ATPA_YEAST (P07251) 
ATPO_YEAST (P09457) 
ATP9_YEAST (P00841) 
ATP6_YEAST (P00854) 
ATPF_YEAST (P05626) 
ATPJ_HUMAN (P56385) 
ATPR_HUMAN (P18859) 
ATPK_HUMAN (P56134) 
ATP8_YEAST (P00856) 
ATP7_YEAST (P30902) 
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ATPK_YEAST (Q06405) 
AT14_YEAST (Q12349) 
AT18_YEAST (P81450) 
AT19_YEAST (P81451) 
ATPN_YEAST (Q12233) 
VATC_METJA (Q57672) 
VATF_METJA (Q57671) 
VATA_METJA (Q57670) 
VATB_METJA (Q57669) 
VATE_METJA (Q57673) 
ATPL_METJA (Q57674) 
VATI_METJA (Q57675) 
VATD_METJA (Q58032) 
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2.2.2 Phylogenetic Analysis 

Because amino acid sequences which I analyzed are so diverged, I did not use the 

whole region of each protein for phylogenetic analysis so as to obtain reliable multiple 

alignments and phylogenetic trees. I defined conserved regions based on domains listed in 

Pfam database (http:// www.sanger.ac.uk/Software/Pfam/; Bateman et al. 2002). Pfam is a 

database of conserved amino acid sequence regions. Each conserved region is called a family. 

Multiple alignment of conserved region is constructed in each family, and is available from the 

Pfam web site. I used multiple alignments available in the Pfam database. When I 

encountered amino acid regions which are not defined by Pfam but were weakly homologous 

with a known Pfam domain, those amino acid sequences and corresponding Pfam domain 

sequences were multiply aligned by using ClustalX (Thompson et al. 1997). Neighbor-joining 

trees (Saitou and Nei 1987) were constructed by using MEGA2 (Kumar et al. 2001). Numbers 

of amino acid substitutions were computed both for Poisson correction and gamma distance 

with shape parameter 1 (default value). 

 

2.2.3 Identification of Electron Transfer Patterns 

 In this study, I analyzed the relationship between amino acid sequences and catalytic 

features mainly focused on patterns of electron transfer, because electron transfer is essential 

for catalysis. Information on catalytic features especially about patterns of electron transfer 

were retrieved from both SWISS-PROT database and bibliographies cited in this paper. I 

categorized proteins whose amino acid sequence data were used in this study into 4 categories 

as follows. Category of each amino acid sequence data is shown in Table 2.2. 

A. The amino acid sequence of the protein was experimentally determined, and its 

function is known. Moreover, electron transfer pattern in the protein has been 
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revealed or predicted. References regarding its function are shown in Table 2.2. 

B. The amino acid sequence of the protein was experimentally determined, and its 

function is known. References regarding its function are shown in Table 2.2. 

C. The amino acid sequence of the protein was predicted only by translating genomic 

or cDNA nucleotide sequence, and its function was predicted by sequence 

similarity in SWISS-PROT. 

D. The amino acid sequence of the protein was predicted only by translating genomic 

or cDNA nucleotide sequence, and there is no description on its function in 

SWISS-PROT. 

Table 2.2: Electron transfer patterns of proteins found to belong to three homologous groups. 
Group 1 

Enzyme SWISS-PROT ID Accession 
Number 

Cate-
gory Reference 

NUOG_ECOLI P33602 C  
NUOG_RICPR Q9ZCF6 C  
NUOG_SALTY P33900 C  
NUOG_STRCO Q9XAR0 C  
NUG2_RHIME P56914 C  
NUAM_ACACA Q37373 C  
NUAM_BOVIN P15690 A Ohnishi 1998 

NUAM_HUMAN P28331 B Chow et al. 1991 
NUAM_RECAM O21241 C  
NUAM_SOLTU Q43644 B Rasmusson et al. 1998 
NUAM_NEUCR P24918 B Preis et al. 1991 
NQO3_PARDE P29915 B Xu et al. 1992 

NADH  
Dehydrogenase 

NQO3_THETH Q56223 C  
FDHA_METFO P06131 B Shuber et al. 1986 
FDHA_METJA Q60314 C  
FDHF_ECOLI P07658 A Boyington et al. 1997; Sauter et al. 1992 
FDOG_ECOLI P32176 B Abaibou et al. 1995 
FDNG_ECOLI P24183 A Jormakka et al. 2002 

Formate 
Dehydrogenase 

FDXG_HAEIN P46448 C  
NAPA_DESDE P81186 A Dias et al. 1999 
NAPA_ALCEU P39185 B Siddiqui et al. 1993 
NAPA_ECOLI P33937 B Grove et al. 1996; Thomas et al. 1999 

NAPA_PARPN Q56350 A 
Berks et al. 1995; Breton et al. 1994; 
Butler et al. 1999; Moreno-Vivian et al. 
1999 

NAPA_RHOSH Q53176 B Reyes et al. 1996 
NARB_SYNP7 P39458 B Rubio et al. 1996 
NARB_SYNY3 P73448 B Aichi et al. 2001 

Nitrate 
Reductase 

NASA_KLEOX Q06457 B Lin et al. 1993 
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NASC_BACSU P42434 B Ogawa et al. 1995 
NARG_BACSU P42175 C  

NARG_ECOLI P09152 A 
Blasco et al. 1989; Guigliarelli et al. 
1992; Magalon et al. 1997; Magalon et 
al. 1998; Moreno-Vivian et al. 1999 

NARZ_ECOLI P19319 B Blasco et al. 1990 
Polysulfide 
Reductase PSRA_WOLSU P31075 B Krafft et al. 1992 
Thiosulfate 
Reductase PHSA_SALTY P37600 B Heinzinger et al. 1995 

DMSA_ECOLI P18775 A 
Cammack and Weiner 1990; Heffron et 
al. 2001; Rothery et al. 1999; Rothery 
and Weiner 1996; Trieber et al. 1996 

DMSA_HAEIN P45004 C  

DMSA_RHOCA Q52675 A 
Bray et al. 2000; McAlpine et al. 1998; 
Schneider et al. 1996; Stewart et al. 
2000 

Dimethyl 
Sulfoxide 
Reductase 

DMSA_RHOSH Q57366 A Li et al. 2000; Schindelin et al. 1996 
TORA_ECOLI P33225 A Gon et al. 2001 

TORA_SHEMA O87948 B Dos Santos et al. 1998 
TORZ_ECOLI P46923 B Gon et al. 2000 

Trimethylamine- 
N-oxide 

Reductase TORZ_HAEIN P44798 C  
BISC_ECOLI P20099 B Pierson and Campbell 1990 Biotin 

Sulfoxide 
Reductase BISC_RHOSH P54934 A Garton et al. 2000; Pollock and Barber 

2001; Temple et al. 2000 
Group 2 

Enzyme SWISS-PROT ID Accession 
Number 

Cate-
gory Reference 

CYSI_ECOLI P17846 A Crane et al. 1995; Crane et al. 1997b; 
Crane et al. 1997c 

CYSI_SALTY P17845 B Ostrowski et al. 1989b 
Sulfite Reductase 

[NADPH] 
Hemoprotein CYSI_THIRO P52673 B Bruhl et al. 1996 

SIR_SYNY3 P72854 C  
SIR_SYNP7 P30008 B Gisselmann et al. 1993 Sulfite Reductase 

 (Ferredoxin) - Q42590 B Bruhl et al. 1996 
Sulfite Reductase, 
Assimilatory-type SIR_DESVH Q05805 A Tan and Cowan 1991 

NIR_SYNP7 P39661 C  
NIR_PHOLA Q51879 B Merchan et al. 1995 
NIR_SPIOL P05314 B Back et al. 1988; Back et al. 1991 

Ferredoxin--nitrite 
Reductase 

NIR_BETVE P38500 C  
NIR_NEUCR P38681 A Lafferty and Garrett 1974; Prodouz and 

Garrett 1981; Vega 1976 
NIR_EMENI P22944 B Johnstone et al. 1990 

NIRB_KLEOX Q06458 B Lin et al. 1993 
NASD_BACSU P42435 B Ogawa et al. 1995 

Nitrite Reductase 
[NAD(P)H] 

NIRB_ECOLI P08201 B Jayaraman et al. 1987; Peakman et al. 
1990 

Anaerobic Sulfite 
Reductase ASRC_SALTY P26476 B Huang and Barrett et al. 1991 

DSRA_ARCFU Q59109 B Dahl et al. 1993 
DSRA_CHRVI O33998 B Hipp et al. 1997 
DSRB_ARCFU Q59110 B Dahl et al. 1993 
DSVA_DESVH P45574 B Karkhoff-Schweizer et al. 1995; Pierik 

et al. 1992 
Sulfite Reductase, 
Dissimilatory-type 

DSVB_DESVH P45575 B Karkhoff-Schweizer et al. 1995; Pierik 
et al. 1992 
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Group 3 
Enzyme SWISS-PROT ID Accession 

Number 
Cate-
gory Reference 

CDP-6-deoxy-delta- 
3,4-glucoseen 

Reductase 
ASCD_YERPE P37911 A Gassner et al. 1996; Johnson et al. 1996 

Anaerobic Sulfite 
Reductase ASRB_SALTY P26475 B Huang and Barrett et al. 1991 
Benzoate 

1,2-dioxygenase BENC_ACICA P07771 A Karlsson et al. 2002 

Bifunctional 
P-450:NADPH-P450 

Reductase 
CPXB_BACME P14779 A 

Haines et al. 2001; Hazzard et al. 1997; 
Li and Poulos 1997; Peterson et al. 
1997; Ravichandran et al. 1993; 
Sevrioukova et al. 1996; Sevrioukova et 
al. 1999a; Sevrioukova et al. 1999b; 
Yeom et al. 1995 

CYSJ_ECOLI P38038 A 
Eschenbrenner et al. 1995a; 
Eschenbrenner et al. 1995b; Gruez et al. 
2000; Ostrowski et al. 1989a; Siegel et 
al. 1973 

Sulfite Reductase 
[NADPH] 

Flavoprotein 
MT10_YEAST P39692 B Hansen et al. 1994 

Phenol Hydroxylase 
P5 

Protein 
DMPP_PSESP P19734 A Powlowski and Shingler 1990 

FHP_CANNO Q03331 B Iwaasa et al. 1992 
FHP_YEAST P39676 B Zhu and Riggs 1992 Flavohemoprotein 

HMPA_ALCEU P39662 B Cramm et al. 1994 
NADH 

Oxidoreductase hcr HCR_ECOLI P75824 A van den Berg et al. 2000 
Fruit Protein 

PKIWI502 K502_ACTCH P43394 D  
Flavin Reductase LUXG_VIBHA P16447 C  

MCR1_YEAST P36060 B Hahne et al. 1994 
NC5R_BOVIN P07514 B Ozols et al. 1984; Ozols et al. 1985; 

Strittmatter et al. 1992 
NC5R_RAT P20070 B Pietrini et al. 1988; Zenno et al. 1990 

NADH-cytochrome 
b5 Reductase 

NC5R_YEAST P38626 C  
Methane 

Monooxygenase MMOC_METCA P22868 A Lund et al. 1985 
NCPR_HUMAN P16435 B Haniu et al. 1989 

NCPR_RAT P00388 B Porter and Kasper 1985; Porter et al. 
1990 

NADPH- 
cytochrome P450 

Reductase NCPR_YEAST P16603 B Yabusaki et al. 1988 
Naphthalene 

1,2-dioxygenase 
System 

Ferredoxin-NAD(+) 
Reductase 
Component 

NDOR_PSEPU Q52126 B Simon et al. 1993 

NIA_ASPNG P36858 B Unkles et al. 1992 
NIA_PHYIN P39864 B Pieterse et al. 1995 
NIA_PICAN P49050 B Avila et al. 1995 Nitrate Reductase 

NIA2_ARATH P11035 A Skipper et al. 2001 
NOS_DROME Q27571 B Regulski and Tully 1995 

NOS1_RAT P29476 B Bredt et al. 1991 

NOS2_MOUSE P29477 A 
Aoyagi et al. 2001; Crane et al. 1997a; 
Crane et al. 1998; Crane et al. 1999; 
Ghosh et al. 1999; McMillan et al. 2000; 
Siddhanta et al. 1998 

Nitric-oxide 
Synthase 

NOS3_BOVIN P29473 B Lamas et al. 1992 
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NOS3_HUMAN P29474 B Janssens et al. 1992 
NS2A_HUMAN P35228 A Fischmann et al. 1999; Li et al. 1999  
PDR_BURCE P33164 A Batie et al. 1991; Correll et al. 1992  Phthalate 

Dioxygenase 
Reductase PHT2_PSEPU Q05182 B Nomura et al. 1992 

POBB_PSEPS Q52186 B Dehmel et al. 1995 Phenoxybenzoate 
Dioxygenase RFBI_SALTY P26395 D  
Toluene-4- 

Monooxygenase TMOF_PSEME Q03304 B Yen and Karl 1992 
Vanillate 

O-demethylase 
Oxidoreductase 

VANB_PSEPU O54037 B Venturi et al. 1998 

Xylene 
Monooxygenase XYLA_PSEPU P21394 A Shaw and Harayama 1992 

Toluate 
1,2-dioxygenase XYLZ_PSEPU P23101 B Harayama et al. 1991 

Putative 
Dioxygenase YEAX_ECOLI P76254 C  

FENR_ANASO P21890 A 
Arakaki et al. 1997; Martinez-Julvez et 
al. 1998; Martinez-Julvez et al. 2001; 
Mayoral et al. 2000; Morales et al. 2000; 
Serre et al. 1996 

FENR_SYNY3 Q55318 A Arakaki et al. 1997; van Thor et al. 
1999 

FENR_PEA P10933 B Newman and Gray 1988 
FENR_SPIOL P00455 B Jansen et al. 1988; Karplus et al. 1984 
FENR_AZOVI Q44532 A Arakaki et al. 1997; Isas and Burgess 

1994; Sridhar Prasad et al. 1998 
FENR_BUCAP Q9Z615 C  

Ferredoxin-NADP 
Reductase 

FENR_ECOLI P28861 A Arakaki et al. 1997; Bianchi et al. 1993; 
Ingelman et al. 1997 
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2.3 Results 

2.3.1 Homologous Groups 

 I found 24 homologous groups of proteins through the PSI-BLAST search. Because 

my objective is to discover the changes of metabolic pattern among the four energy 

metabolism systems and the additional nitrogen and sulfur metabolisms, I only used 

homologous groups including proteins belonging to more than one metabolism system in the 

further analyses. Homologous groups suitable for my objective were groups 1-8. Table 2.3 

shows the list of these eight groups. Homologous relationships of groups 5-8 were already 

reported (Berry et al. 2000; Hauska et al. 1988; Mogi et al. 1998; Saraste and Castresana 

1994). All the proteins of group 4 had a conserved domain defined as Fer4 domain (4Fe-4S 

ferredoxin binding domain) by Pfam database (Bateman et al. 2002). Unfortunately, this 

domain is very short (less than 50 amino acids), and I could not construct a reliable 

phylogenetic tree. I thus analyzed groups 1-3 in the followings. 
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Table 2.3: Eight homologous protein groups found in this study 
Group 1 

ID Name Metabolism 
No. of 

homologous 
proteins 

NUOG_ECOLI NADH Dehydrogenase Chain G O 
NARG_ECOLI Respiratory Nitrate Reductase Alpha Chain 
NARB_SYNY3 Assimilatory Nitrate Reductase (Ferredoxin-dependent) 
NASA_KLEOX Assimilatory Nitrate Reductase (NADH-dependent) 
NAPA_ECOLI Periplasmic Nitrate Reductase 

NDN 

PHSA_SALTY Thiosulfate Reductase PhsA Subunit SDS 
PSRA_WOLSU Polysulfide Reductase Chain A SR 

44 

 
Group 2 

ID Name Metabolism 
No. of 

homologous 
proteins 

NIR_SYNP7 Ferredoxin--nitrite Reductase 
NIRB_ECOLI Nitrite Reductase (NAD(P)H) Large Subunit NAS 
DSRA_ARCFU Sulfite Reductase (Dissimilatory-type) Alpha Subunit 
DSRB_ARCFU Sulfite Reductase (Dissimilatory-type) Beta Subunit SDS 
ASRC_SALTY Anaerobic Sulfite Reductase Subunit C 
CYSI_ECOLI Sulfite Reductase (NADPH) Beta-component 
SIR_SYNY3 Sulfite Reductase (Ferredoxin) 

SAS 

21 

 
Group 3 

ID Name Metabolism 
No. of 

homologous 
proteins 

FENR_SYNY3 Ferredoxin--NADP Reductase P 
NIA2_ARATH Nitrate Reductase [NADH] 
NIA_BETVE Nitrate Reductase [NAD(P)H] 
NIA_NEUCR Nitrate Reductase [NADPH] 

NAS 

CYSJ_ECOLI Sulfite Reductase (NADPH) Alpha-component 
ASRB_SALTY Anaerobic Sulfite Reductase Subunit B SAS 

122 

 
Group 4 

ID Name Metabolism 
No. of 

homologous 
proteins 

PSAC_SYNY3 Photosystem I Subunit VII (PsaC) P 
NUOI_ECOLI NADH Dehydrogenase Chain I O 
NARH_ECOLI Respiratory Nitrate Reductase Beta Chain NDN 
PSRB_WOLSU Polysulfide Reductase Chain B SR 
PHSB_SALTY Thiosulfate Reductase PhsB Subunit 
DSRA_ARCFU Sulfite Reductase (Dissimilatory-type) Alpha Subunit 
DSRB_ARCFU Sulfite Reductase (Dissimilatory-type) Beta Subunit 

SDS 

ASRC_SALTY Anaerobic Sulfite Reductase Subunit C SAS 

185 

 
Group 5 

ID Name Metabolism 
No. of 

homologous 
proteins 

CYB6_SYNY3 Cytochrome b6f Complex Cytochrome b6 Subunit P 
CYB_YEAST Cytochrome bc1 Complex Cytochrome b Subunit O, NDN 956 
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Group 6 

ID Name Metabolism 
No. of 

homologous 
proteins 

UCRI_SYNY3 Cytochrome b6f Complex Iron-sulfur Subunit P 
UCRI_YEAST Cytochrome bc1Complex Iron-sulfur Subunit O, NDN 37 
 
Group 7 

ID Name Metabolism 
No. of 

homologous 
proteins 

COX2_YEAST Cytochrome c Oxidase Polypeptide II O 
NOSZ_PSEST Nitrous-oxide Reductase NDN 247 
 
Group 8 

ID Name Metabolism 
No. of 

homologous 
proteins 

PETD_SYNY3 Cytochrome b6f Complex Subunit 4 P 
CYB_YEAST Cytochrome bc1 Complex Cytochrome b Subunit O, NDN 937 
 
P = photosynthesis; O = aerobic respiration; NDN = denitrification; NAS = nitrate assimilation; SR = sulfur 
respiration; SDS = dissimilation in sulfur metabolism; SAS = assimilation in sulfur metabolism
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2.3.1.1 Group 1 

Domain compositions of 44 proteins belonging to homologous group 1 are shown in 

Fig. 2.3. All the group 1 proteins have the Molybdopterin domain that has a binding site to 

molybdenum (Boyington et al. 1997, Czjzek et al. 1998, Dias et al. 1999, Jormakka et al. 2002, 

Li et al. 2000, McAlpine et al. 1998, Schindelin et al. 1996, Schneider et al. 1996, Stewart et al. 

2000).  

 The phylogenetic tree of this group is presented in Fig. 2.4, based on the multiple 

alignment of the Molybdopterin domain. Although the 9 sequences (FDXG_HAEIN, 

FDOG_ECOLI, FDNG_ECOLI, NQO3_THETH, NUG2_RHIME, NUOG_MYCTU, 

NUOG_ECOLI, NUOG_SALTY and NUOG_STRCO) listed in Fig. 2.3 have Molybdopterin 

domain, those domain sequences were fragmentary. I therefore excluded the 9 sequences from 

the phylogenetic tree (Fig. 2.4). Topologies of two NJ trees constructed by using Poisson 

correction (not shown) and gamma distance (Fig. 2.4) were slightly different. I thus 

constructed a tree (not shown) by using the combination of Molybdopterin domain and 

Molydop_binding domain regions. Although 9 proteins lack Molydop_binding domain, they 

formed a clear monophyletic clusters with a high bootstrap probability (see Fig. 2.4), and 

exclusion of those sequences does not influence the overall tree topology. This new tree is more 

reliable than the tree constructed by using only Molybdopterin domain because of higher 

bootstrap probabilities (shown in parentheses in Fig. 2.4). The topology of this new tree was 

consistent with the tree computed for the gamma distance, thus I chose that tree as shown in 

Fig. 2.4. 
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Fig. 2.3: Domain structures of group 1 proteins. SWISS-PROT IDs were used for protein names. Domains are defined following the Pfam database. 
Binding sites of molybdenum (Mo) which is important for catalysis are shown by full circles. I predicted molybdenum binding sites based on the multiple 
alignment of group 1 proteins. I regarded amino acid which is the same column of known molybdenum binding site as molybdenum binding site (shown by 
gray circles). 
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Fig. 2.4: A phylogenetic tree of group 1 proteins based on Molybdopterin domain sequences. The gray colored 
region shows possible locations of root for this tree. Each colored square designates a Pfam domain. 
Explanatory note about color is shown in Fig. 2.3. Electron transfer patterns are also shown. Arrows of the 
patterns indicate the direction of electron flow. D and A surrounded by square mean electron donor and 
acceptor, respectively. Unknown patterns of electron transfer were predicted from known patterns of 
evolutionarily closely related proteins. Proteins with * can generate proton gradient. Amino acid sequences of  
eubacteria, archaea and eukaryotes are designated by (B), (A) and (E), respectively. 
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All the group 1 proteins are involved in enzymatic reactions accompanied by electron 

transfer. Group 1 proteins shown in Fig. 2.4 can be divided into five types based on domain 

structures corresponding to patterns of electron transfer. Arrows in electron transfer patterns 

of Fig. 2.4 designate directions of electron flows. Electron flow in one pair of brackets occurs in 

each group 1 protein. Although electron transfer patterns of type 4 and 5 look same in Fig. 2.4, 

electron transfer patterns among electron donor, molybdenum and electron acceptor seem to 

be different between type 4 and 5 proteins. Type 4 protein gets electron from electron donor 

(substrate) at active site and seems to give it to electron acceptor (another subunit) by way of 

another side (Rothery et al. 1999). But type 5 gets electron from electron donor (substrate) at 

active site and probably gives it to at the same active site (Schindelin et al. 1996). 

Type 1 proteins (NADH dehydrogenase subunit) do not bind molybdenum. 

Molybdenum plays an important role for reaction with substrates involving electron transfer. 

The main function of type 1 proteins is electron transfer from one subunit to another subunit 

through three ferredoxins (two 4Fe4Ss and one 2Fe2S) (Ohnishi 1998). Only type 1 protein 

has Fer2 domain, 2Fe2S ferredoxin binding domain, among group 1 proteins, and one 

ferredoxin is bound to this domain. 

Type 2 proteins (formate dehydrogenase subunit) bind molybdenum. Electron flow of 

this protein is as follows; electron donor (substrate [formate]) => molybdenum => 4Fe4S => 

electron acceptor (another subunit) (Boyington et al. 1997; Jormakka et al. 2002). 

FDHA_METJA lost Molybdop_binding domain that is important for binding molybdenum 

(Boyington et al. 1997, Czjzek et al. 1998, Dias et al. 1999, Jormakka et al. 2002, Schindelin et 

al. 1996, Schneider et al. 1996). The function of FDHA_METJA was predicted only by 

sequence similarity (Table 2.3). FDHA_METJA may not bind molybdenum and lose the 

catalytic function by molybdenum. Type 3 proteins (subunit of assimilatory and periplasmic 
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nitrate reductase) have the same domains as type 2 proteins except for FDHA_METJA, but 

the electron flow is reversed (Breton et al. 1994; Butler et al. 1999; Dias et al. 1999). 4Fe4S 

ferredoxin is bound to Molybdop_Fe4S4 domain, 4Fe4S ferredoxin binding domain, in 

proteins of types 2 and 3. 

Type 4 proteins (subunit of trimer type DMSO reductase and respiratory nitrate 

reductase) do not bind 4Fe4S ferredoxin. Molybdop_4Fe4S domain of trimer type DMSO 

reductase subunit (DMSA_ECOLI and DMSA_HAEIN) is less conserved, and that of 

respiratory nitrate reductase subunit (NARG_BACSU, NARG_ECOLI and NARZ_ECOLI) 

was lost. Four cysteines in this domain are essential for binding 4Fe4S ferredoxin. The 

arrangement of the four cysteines in type 4 is different from that of types 2 and 3 (Trieber et 

al. 1996). There are two amino acids between the first N-terminus two cysteines in type 2 and 

3 proteins, but there are three amino acids in trimer type DMSO reductase subunit. In 

respiratory nitrate reductase subunit, the first cysteine is replaced by histidine. Changed 

cysteine arrangement in type 4 lost the ability for binding ferredoxin (Magalon et al. 1998; 

Trieber et al. 1996). The cysteine arrangement is not found in type 5 proteins (biotin sulfoxide 

reductase, trimethylamine-N-oxide reductase and monomer type DMSO reductase), therefore 

type 5 does not bind ferredoxin. 

Which type of electron transfer pattern was ancestral among the five types in group 1 

proteins? Type 2 proteins exist in eubacteria and archaea. It suggests that type 2 proteins 

emerged before the divergence of eubacteria and archaea. Types 3-5 proteins are found only in 

eubacteria (see Fig. 2.4), and it suggests their relatively recent origin, after the divergence of 

eubacteria and archaea. Type 1 proteins exist both in eubacteria and eukaryotes. Type 1 

protein gene in some eukaryote species (NUAM_ACACA and NUAM_RECAM) is encoded in 

mitochondrial genome. It is hypothesized that mitochondria was established as a result of 
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endosymbiosis of an ancestor of alpha proteobacteria P. denitrificans, and is also hypothesized 

that type 1 protein gene encoded in mitochondrial genome was transferred to eukaryotic 

genome after the endosymbiosis (Finel. 1998). Andersson et al. (1998) showed that alpha 

proteobacteria R. prowazekii is the closest eubacterial relative of mitochondria.  Therefore, 

type 1 protein gene of eukaryotes could be derived from that of the ancestor of alpha 

proteobacteria. Consequently, type 2 proteins seem to be the ancestor type protein in group 1. 

The gray colored region in Fig. 2.4 shows possible locations of root for this tree. I couldn’t 

decide the exact root point. 

 

2.3.1.2 Group 2 

 The domain structures of 21 proteins belonging to group 2 are shown in Fig. 2.5. All 

the group 2 proteins have NIR_SIR domain and NIR_SIR_ferr domain defined by Pfam in 

adjacent locations. Both domains have siroheme binding sites, and confusingly NIR_SIR  

domain have ferredoxin binding sites according to Pfam annotation (Crane et al. 1995). 

Hatched domains in Fig. 2.5 are not defined by Pfam, but they were detected as weakly 

similar to these two Pfam domains through PSI-BLAST search. Some of them were previously 

noticed by Crane and Getzoff (1996) and Larsen et al (1999). I constructed a phylogenetic tree 

of group 2 proteins by using the conserved regions consisting of the two domains (Fig. 2.6). 

The first 9 proteins of Fig. 2.5 have two NIR_SIR_ferr and two NIR_SIR domains, although 

ferredoxin binding sites are lost in hatched NIR_SIR domains (Crane et al. 1995). These two 

NIR_SIR_ferr and two NIR_SIR domains suggest internal gene duplication. In the case of 

these duplicated conserved regions, I used each region as independent sequence. For example, 

I used two sequences in different conserved regions of CYSI_ECOLI; amino acid positions 

from 109 to 233 and those from 387 to 489.



 37 

 

Fig. 2.5: Domain structures of group 2 proteins. SWISS-PROT IDs were used for protein names. Domains are defined following the Pfam database. 
Hatched domains were found by this study. 
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Fig. 2.6: A phylogenetic tree of group 2 proteins based on conserved regions consisting of NIR_SIR_ferr 
domain and NIR_SIR domain. Conserved regions which are used for constructing this phylogenetic tree 
were referred to previous works (Crane et al. 1997; Crane and Getzoff 1996; Larsen et al. 1999). Amino 
acid sequences of sulfite reductase (Q42590) in previous work are also added. The gray colored region 
shows possible locations of root for this tree. Each colored square in this figure shows domain. 
Explanatory note of each domain is shown in Fig. 2.5. Arrows of electron transfer patterns indicate the 
direction of electron flow. D and A surrounded by square mean electron donor and acceptor, respectively. 
Unknown patterns of electron transfer were predicted from known patterns of evolutionarily closely 
related proteins. Amino acid sequences of  eubacteria, archaea and eukaryotes are designated by (B), 
(A) and (E), respectively. 

(B) 
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 Enzymatic reactions of group 2 proteins are accompanied by electron transfer. 

Arrows show electron flows. Group 2 proteins can be categorized into two types by the 

differences of electron transfer patterns (Fig. 2.6). Type 1 proteins bind siroheme and 4Fe4S 

ferredoxin, and electrons from donor are transferred to acceptor at these molecules (Crane et 

al. 1997; Tan and Cowan 1991). Type 2 proteins bind siroheme and 4Fe4S ferredoxin. 

However, electron flow is probably different from type 1 as follows; electron donor => FAD => 

4Fe4S => siroheme => electron acceptor or substrate (Vega 1976). The tree topology of the 

phylogenetic tree shown in Fig. 2.6 suggests that the electron transfer pattern for type 1 is 

ancestral and that for type 2 is derived. 

Larsen et al. (1999) noticed that dissimilatory sulfite reductase alpha subunit 

(DSAR_ARCFU) and beta subunit (DSRB_ARCFU) of Archaeoglobus fulgidus may have been 

duplicated from an ancestral dsr gene before the eubacteria and archaea divergence. The tree 

topology of Fig. 2.6 indicates that this gene duplication was followed by emergence of proteins 

having a pair of NIR_SIR and NIR_SIR_ferr domains. This suggests that duplicated genes 

were fused in the first 8 proteins in Fig. 2.5. The root of the tree shown in Fig. 2.6 must be 

placed before this gene duplication. The gray colored region in Fig. 2.6 thus shows possible 

locations of root for this tree. 

 

2.3.1.3 Group 3 

 Homologous group 3 contains 122 proteins, and they were found by using 7 query 

sequences. Conserved region shared by all the proteins in this group was NAD_binding_1 

domain defined by Pfam database. NAD_binding_1 domain has NAD(P)H connection sites. 

NAD(P)H works as electron donor or acceptor of group 3 protein. Because some proteins were 

closely related and formed clear monophyletic clusters in the phylogenetic tree when I used 
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all proteins, I chose one amino acid sequence from each cluster.  When more than one 

enzyme were found in one cluster, I chose representative proteins from each enzyme. A total of 

48 proteins were thus used in the following analyses. 

 Domain structures of group 3 proteins are shown in Fig. 2.7, and they are all flavin 

enzymes which bind flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN). FAD 

is bound to FAD_binding_6 domain or FAD_binding_1 domain, and FMN is bound to 

Flavodoxin or FAD_binding_6 domain. 
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Fig. 2.7: Domain structures of group 3 proteins. SWISS-PROT IDs were used for protein names. Domains are defined following the Pfam database. 
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Fig. 2.8: A phylogenetic tree of group 3 proteins constructed based on NAD_binding_1 domain 
sequences. Each colored square shows domain. Explanatory note of each domain is shown in Fig. 2.7. 
Arrows of electron transfer patterns indicate the direction of electron flow. D and A surrounded by 
square mean electron donor and acceptor respectively. Unknown patterns of electron transfer were 
predicted from known patterns of evolutionarily closely related proteins. Amino acid sequences of  
eubacteria, archaea and eukaryotes are designated by (B), (A) and (E), respectively. 
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Fig. 2.9: A. A phylogenetic tree of the type 2, 3, 4 and 5 proteins based on FAD_binding_1 and 
NAD_binding_1 domains. B. A phylogenetic tree of the type 1 proteins in group 1 and the type 6 and 8 
proteins in group 3 based Fer2 domain. C. A phylogenetic tree of the type 7 proteins constructed based 
on Globin domain. D. A phylogenetic tree of the type 9 and 10 proteins based on FAD_binding_6 and 
NAD_binding_1 domains. 
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Enzymatic reactions of group 3 proteins are accompanied by electron transfer. 

Arrows in Fig. 2.8 are electron flows. Group 3 proteins can be categorized into ten types based 

on electron transfer patterns (Fig. 2.8). Type 1 proteins (ferredoxin-NADP reductase) have 

relatively simple domain structures, and both eukaryotes and eubacteria have this type. 

Furthermore, looking at the tree topology of Fig. 2.8, type 1 proteins are not monophyletic.  

Therefore, the common ancestor of group 3 proteins could be similar to that of type 1. 

Type 2 proteins (nitric-oxide reductase) are homodimers. FAD, FMN and heme are 

bound to each subunit. One subunit gets electron from NADPH and gives it to heme of the 

other subunit through FAD and FMN of the first subunit. Heme of the second subunit gives 

electron to electron acceptor. Electron from NADPH passes through two subunits and goes to 

electron acceptor. Electron flow in each pair of brackets shows electron flow occurring in each 

subunit. Although type 3 protein binds FAD, FMN, and heme as in the case of type 2 proteins, 

their electron transfer pattern is different from that of type 2 proteins. Type 3 protein is not 

homodimer. Type 3 protein receives electron from NADPH and gives it to electron acceptor 

through FAD, FMN, and heme. The NO_synthase domain of type 2 proteins and the P450 

domain of type 3 protein have heme binding sites. It suggests that the insertion of 

NO_synthase domain or P450 domain enabled group 3 protein to bind heme. Type 2, 3, and 4 

proteins bind FAD and FMN. The FAD_binding_1 domain has FAD binding sites, and the 

Flavodoxin domain has FMN binding sites. The insertion of Flavodoxin domain may have 

enabled group 3 protein to bind FMN.  

Fig. 2.9A shows the phylogenetic tree of the proteins belonging to types 2-5, 

constructed based on FAD_binding_6 and NAD_binding_1 domains. The topology of this tree 

is more reliable than that of the tree constructed based on only NAD_binding_1 domain 

sequences. Type 5 proteins do not have Flavodoxin domain. Therefore, Fig. 2.9A tree suggests 
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that the insertion of Flavodoxin occurred on the lineage to type 2, 3 and 4 proteins. Fig. 2.9A 

also suggests that NO_synthase and P450 domains that have binding sites of heme were 

inserted on the lineage to type 2 and type 3 proteins, respectively. 

Type 6 and type 8 proteins bind 2Fe2S ferredoxin. Ferredoxin is bound to Fer2 

domain. It suggests that insertion of Fer2 domain enabled group 3 proteins to bind ferredoxin. 

Fig. 2.9B shows the phylogenetic tree constructed based on Fer2 domain. Not only type 6 and 

type 8 proteins in group 3 have Fer2 domain, but also type 1 proteins in group 1 have this 

domain. I thus used Fer2 domain sequences of the tree type proteins for constructing the tree 

shown in Fig. 2.9B. Proteins of this tree can be largely categorized into two lineages; type 1 

proteins in group 1, and type 6 and type 8 proteins in group 3. The tree topology of group 3 

proteins in Fig. 2.9B suggests that the Fer2 domain was inserted to type 6 proteins, and the 

same domain was further inserted to form type 8 proteins. The inserted location of the Fer2 

domain is different between type 6 and 8 proteins except for HCR_ECOLI (Figs. 2.7 and 2.9B). 

Although the domain structure of HCR_ECOLI is similar to that of type 8 proteins, the 

electron transfer pattern of HCR_ECOLI is similar to type 6 proteins. HCR_ECOLI is 

phylogenetically closer to type 6 proteins (see Fig. 2.9B). One possibility is that domain 

inversion occurred in the HCR_ECOLI lineage. 

Hemes in type 7 proteins are bound to the Globin domain (see Fig. 2.8). The insertion 

of the Globin domain may have enabled group 3 proteins to bind heme. Type 7 proteins are 

not monophyletic; HMPA_ALCEU (bacteria) and FHP_YEAST (eukaryote) formed a weak 

monophyletic cluster (bootstrap probability is only 30%), while FHP_CANNO is located in a 

different lineage (Fig. 2.8). Fig. 2.9C shows the phylogenetic tree of type 7 proteins 

constructed based on the Globin domain sequences. This tree also suggests that 

HMPA_ALCEU and FHP_YEAST form a monophyletic cluster. The bootstrap probability of 
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this cluster is now 93%. Therefore, it is possible that the lineage of HMPA_ALCEU and 

FHP_YEAST is separated from that of FHP_YEAST. It implies that the Globin domain may 

have been inserted independently on the lineage to HMPA_ALCEU and FHP_YEAST and the 

lineage to FHP_YEAST. 

Type 9 proteins are nitrate reductase, and they bind FAD according to the tertiary 

structure analysis (Lu et al. 1994; Lu et al. 1995). It was hypothesized by sequence similarity 

that heme and molybdenum are bound to Heme_1 domain and Oxidored_molyb domain of 

type 9 protein, respectively (Avila et al. 1995; Crawford et al. 1988; Pieterse et al. 1995; 

Unkles et al. 1992). It suggests that insertion of the Oxidored_molyb domain enabled group 3 

proteins to bind molybdenum, and insertion of the Heme_1 domain enabled group 3 proteins 

to bind heme. Fig. 2.9D shows the phylogenetic tree of type 9 and type 10 proteins constructed 

based on NAD_binding_1 and FAD_binding_6 domains. The topology of this tree is more 

reliable than that of the tree of Fig. 2.8 that was constructed based on only NAD_binding_1 

domain sequences. This tree suggests that type 9 and 10 proteins are not monophyletic. 

However, bootstrap probabilities of various branches are not so high, so it is not clear. 
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2.4 Discussion 
2.4.1 Domain Change and Electron Transfer Pattern Change through Evolution 

The phylogenetic analysis of the three groups suggests that each homologous group 

experienced frequent insertions and deletions of domains. I thus estimated domain 

insertion/deletion events during evolution and connected those events with electron transfer 

pattern changes. 

Group 1. I hypothesized the evolutionary process of group 1 proteins, as depicted in 

Fig. 2.10A, based on the phylogenetic tree shown in Fig. 2.4. I assumed that type 2 was the 

ancestral type of electron transfer pattern, and the domain structure of the ancestral protein 

was assumed to be the same as that of type 2 proteins. Type 2 proteins have Molybdop_Fe4S4 

and Molybdopterin domains. Two of type 2 proteins have Molydop_binding domain which is 

important for binding molybdenum, but FDHA_METJA does not have this domain. As I 

described above, I suspected that FDHA_METJA does not bind molybdenum and lost the 

catalytic activity. Because some of NADH dehydrogenase subunits (type 1 proteins) have 

Molydop_biding domain (Fig. 2.3), it seems that the ancestral protein also had 

Molydop_binding domain. Therefore, I assumed that the Molydop_binding domain was lost 

independently on the lineage to FDHA_METJA and on the type 1 proteins (Fig. 2.10). If this 

hypothesis is true, the ancestral protein probably had Molydop_Fe4S4, Molybdopterin, and 

Molydop_binding domains as in the case for the type 2 proteins except for FDHA_METJA. 

The ancestral protein may have bound molybdenum and 4Fe4S ferredoxin.
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Fig. 2.10: Estimated domain insertion/deletion events during evolution of the three protein groups. 
Each square shows domain defined by Pfam. A. Group 1 proteins. Color patterns are same as in Fig. 
2.3. B. Group 2 proteins. The correspondence between color and Pfam domain is shown in Fig. 2.5. C. 
Group 3 proteins. Color of each domain is same as that in Fig. 2.7. 



 49 

A scenario of evolutionary changes of the group 1 proteins from this ancestral protein 

is as follows. On the lineage to type 1 proteins (NADH dehydrogenase), Fer2 domain was 

acquired, and ferredoxin was bound to this domain. In contract, the Molybdopterin domain 

became less conserved, and most of type 1 proteins lost Molydop_binding domain. Both Fer2 

and ferredoxin domains are important for molybdenum binding. Therefore type 1 proteins lost 

the function of binding molybdenum which is important for catalysis. Its main function 

changed from catalysis to electron transfer. On the lineage to type 3, the direction of electron 

flow was reversed. The molybdop_4Fe4S domain that has binding sites of 4Fe4S ferredoxin 

became less conserved on the lineage to type 4 proteins, and was completely lost on the 

lineage to type 5. Types 4 and 5 proteins lost the function of binding 4Fe4S ferredoxin. In type 

5 proteins, electron is exchanged at molybdenum from electron donor to electron acceptor. 

There are no other electron carriers in this protein. 

The common feature of the group 1 proteins is that all of them have Molybdopterin 

domain (Fig. 2.3), although this domain is not conserved well in type 1 proteins. Other 

features are not necessarily common. For example, ferredoxin exists in types 1-3, but not in 

others (Fig. 2.4). Molybdenum exists in types 2-5, but not in type 1 (Fig. 2.4). Some of group 1 

proteins (with * in Fig. 2.4) are subunits of proteins which can generate proton gradient. 

Proton gradient is the energy source for generating ATP by ATP synthase. From my 

phylogenetic analysis, this important function, proton gradient generation, is not necessarily 

conserved. Although the general electron transfer patterns are more or less similar in type 3 

proteins, some proteins (polysulfide reductase subunit and thiosulfate reductase subunit) 

work for proton gradient generation, but the others (assimilatory nitrate reductase subunit) 

do not (see Fig. 2.4). 
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 Group 2. I conjectured the evolution of group 2 proteins as shown in Fig. 2.10B. The 

common ancestral protein was assumed to have both the NIR_SIR_ferr and NIR_SIR 

domains, because all the group 2 proteins have these two domains (including weakly 

conserved ones).  The two Fer4 domains were assumed to exist in the common ancestral 

protein, as in the case of ASRC_SALTY protein. Under this assumption, three losses of Fer4 

domain were assumed (Fig. 2.10B). However, proteins with only one or no Fer4 domain can 

also be common ancestor. All three possibilities are equally parsimonious for three 

insertion/deletion events of Fer4 domain. 

Later, a gene duplication produced two copies of NIR_SIR_ferr and NIR_SIR 

domains. It means that one gene including NIR_SIR_ferr and NIR_SIR domains was 

duplicated, and two genes like a pair of DSRA (alpha subunit of sulfite reductase) and DSRB 

(beta subunit) or that of DSVA (alpha subunit of sulfite reductase) and DSVB (beta subunit) 

were produced. These two genes were later fused. In the lineage of DSRA and DSVA, 

Pyr_redox domain was added and FAD binding site was generated. This FAD binding seems 

to be the critical point for generating the type 2 proteins. 

 Group 3. A parsimoniously hypothesized evolutionary pathway of group 3 proteins is 

shown in Fig. 2.10C. As I described in the Results section, the electron transfer pattern of the 

ancestral proteins seems to have been type 1. If so, that ancestral protein had NAD_binding_1 

and FAD_binding_6 domains like type 1 proteins of eubacteria. On the lineage to types 2, 3 

and 4, Flavodoxin domain having the FMN binding region was inserted. Because of this 

addition, FMN joined as a member of electron flow. Domains of P450 and NO_synthase that 

have binding sites for heme were inserted on the lineages to type 2 and 3 proteins, 

respectively. Type 2 and type 3 proteins thus acquired the ability to bind heme. On the 

lineages to types 6 and 8, 2Fe2S ferredoxin was added by the insertion of Fer2 domain which 
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has a 2Fe2S ferredoxin binding sites. FAD was replaced to FMN in type 8, although the 

FAD_binding_6 domain that has the binding region of FAD or FMN did not change. Heme was 

also added on the lineage to type 7 proteins because of being inserted Globin domain which 

has heme binding sites. Lineages to types 9 and 10 proteins are a little complicated. Based on 

the phylogenetic tree in Fig. 2.9D, I hypothesized that the insertion of the three domains 

(Oxidored_molyb, Mo-co_dimer and Heme_1) had occurred once. The three domains were then 

deleted three times on the lineage to MCR1_YEAST, the lineage to NC5R_YEAST and the 

lineage to NC5R_BOVIN and NC5R_RAT independently. But the branching pattern of types 9 

and 10 is not supported by high bootstrap probabilities. Therefore, I can not predict how these 

proteins were evolved in detail. In Fig. 2.10C, I illustrated the lineages of type 9 and 10 

proteins which I hypothesized based on Fig. 2.9D. 

 The common features of the group 3 proteins are that all proteins have 

NAD_binding_1 domain. NAD(P)H is their electron donor or acceptor, and FAD or FMN is 

bound to them as an electron transfer component. Although these features are conserved, 

electron transfer patterns in group 3 proteins are so diverged by adding and deleting various 

domains. 

 

2.4.2 Evolution of the Energy Generation Metabolisms and the Assimilatory 

Metabolisms 

 The four energy metabolisms and dissimilation in sulfur metabolism are energy 

generation metabolisms. Proteins which can generate proton potential (abbreviations of such 

proteins are red-colored in Fig. 2.11) are conserved between different metabolism systems. 

Proton potential is the source for the synthesis of ATP by ATP synthase. This function is 

important for energy generation metabolisms. Proteins which have this important function, 
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generation of proton potential, seem to be conserved among the four energy metabolisms and 

dissimilation in sulfur metabolism. This suggests that those systems are evolutionarily 

related. 

 I therefore tried to infer the evolutionary relationship of the four energy metabolisms 

and dissimilation metabolism. Trees A-E of Fig. 2.12 show the five phylogenetic trees of 

homologous proteins analyzed in this study and previous analyses (Berry et al. 2000; Saraste 

et al. 1994). Divergence between eubacteria and others (archaea and eukaryotes) are shown 

in Fig. 2.12 based on rough estimation of this study (Figs. 2.4, 2.6, and 2.8) and previous 

studies (Berry et al. 2000; Saraste and Castresana 1994). 

Those protein trees were superimposed to infer the evolutionary tree of metabolic 

systems. The idea of superimposition came from OOta and Saitou (1999), who inferred the 

evolutionary tree of muscle tissues by superimposition of muscle protein trees.  Because the 

protein cluster of denitrification (NDN), sulfur respiration (SR), and dissimilation in sulfur 

metabolism (SDS) was estimated to emerge after the divergence of eubacteria and 

archaea/eukaryotes according to tree A, these three systems were considered to be closely 

related. Therefore, NDN of trees B and C of Fig. 2.12 were assumed to correspond to the NDN - 

SR - SDS cluster of tree A. Trees A, B, and C of Fig. 2.12 were thus superimposed to produce 

tree F.   

I then superimposed trees D and E of Fig. 2.12. Because my interest is the order of 

system generation, I ignored the newer lineage of nitrate assimilation (NAS) and  

assimilation in sulfur metabolism (SAS) in these two trees. The resultant superimposed tree is 

tree G of Fig. 2.12. Trees F and G were further superimposed to produce single phylogenetic 

tree H of the seven metabolic systems. However, because of the lack of information, the 

branching point of the aerobic respiration system was not able to be determined, and there 
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are five branching possibilities (① -⑤  in tree H of Fig. 2.12). Tree H suggests that 

photosynthesis is basal (diverged first) among the energy metabolisms I analyzed.  

 If I accept tree H, the assimilation process (nitrate assimilation and assimilation in 

sulfur metabolism) seems to be older than the dissimilation process (denitrification, sulfur 

respiration and dissimilation in sulfur metabolism). Assimilation systems might be generated 

before the divergence of eubacteria and archaea/eukaryotes, and dissimilation systems might 

be generated after the divergence of eubacteria and archaea/eukaryotes. 

Although tree H does not tell the ancestral system at the branching nodes, I can infer 

that nitrate assimilation was ancestral to the sulfur assimilation metabolism. Nitrate 

assimilation is involved in the metabolism for producing any amino acids, while assimilation 

in sulfur metabolism is involved only for producing amino acids including sulfur (cysteine and 

methionine). It is conceivable that generation of nitrate assimilation enabled ancient 

organisms to produce amino acids except for cysteine and methionine at first, followed by 

acquisition of the ability for producing cysteine and methionine by assimilation in sulfur 

metabolism. 

 
Fig. 2.11 (next page): Homologous proteins in the four metabolisms (photosynthesis, 
oxidative phosphorylation, nitrogen metabolism and sulfur metabolism). Black and blue 
arrows designate electron flow and compound change (enzymatic reaction), respectively. 
Square objects are a proteins. When one protein is composed by subunits, small squares 
showing subunits are shown in the lower part of the square. Some proteins involved in the 
four metabolisms are not shown in Fig. 2.11. Same colored proteins are homologous. The 
explanatory notes of colors are shown at the bottom of this figure. Each color shows each 
homologous group. Purple red colored proteins (COX1) were not detected by homology 
search analysis in this study, but they are thought to be homologous (Mogi et al. 1998; 
Saraste and Castresana 1994; Zumft et al. 1992). Subunits A to D and H to N of NDH are 
put together. Same alphabetical subunits of NDH in photosynthesis and NDH in oxidative 
phosphorylation are homologous. Conserved Pfam domains in each homologous group are 
shown in parenthesis of explanatory notes. Abbreviations in this figure are as follows. PS 
II = photosystem II; NDH = NADH dehydrogenase; PQ = plastoquinone; Cyt b6f = 
cytochrome b6f complex; ISP = iron sulfur protein (subunit); FNR = ferredoxin NADP 
reductase; Cyt c553 = cytochrome c553; PS I = photosystem I; UQ = ubiquinone; Cyt bc1 = 
cytochrome bc1 complex; Cyt c = cytochrome c; COX = cytochrome c oxidase; NAR = 
respiratory nitrate reductase; NAP = periplasmic nitrate reductase; NAS = assimilatory 
nitrate reductase; Cat = catalytic subunit; Cyt c550 = cytochrome c550; NIA = eukaryotic 
assimilatory nitrate reductase; NIR = nitrite reductase; NOR = nitric oxide reductase; 
NosZ = nitrous oxide reductase; MQ = menaquinone; PSR = polysulfide reductase PHS = 
thiosulfate reductase; DSR = sulfite reductase dissimilatory type; SIR = sulfite reductase 
(ferredoxin); CYS = sulfite reductase (NADPH); ASR = anaerobic sulfite reductase 
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Fig. 2.12: Phylogenetic trees of proteins shown in Fig. 
2.11 (the upper trees). Branch length has no meaning. 
Red dotted line indicate divergence between eubacteria 
and others (archaea and eukaryotes). Divergence 
between eubacteria and others were estimated by this 
study (Figs. 2.4, 2.6 and 2.8) and previous studies (Berry 
et al. 2000; Saraste and Castresana 1994). The lower 
trees are superimposed trees of the upper trees. Each 
OTU name is metabolism in which each protein works. 
Abbreviations of metabolism names are as follows. P = 
photosynthesis; O = aerobic respiration; NDN = 
denitrification; NAS = nitrate assimilation; SR = sulfur 
respiration; SDS = dissimilation in sulfur metabolism; SAS 
= assimilation in sulfur metabolism 
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 As I have seen in this study, insertions and deletions of domains produce 

diverse patterns of electron transfer which is essential for enzymatic function. But the 

diversity of electron donor and acceptor is not produced by insertions and deletions of 

domains. A small number of amino acid substitutions may produce the diversity of 

electron donor and acceptor. However, I did not conduct the analysis of a small number 

of amino acid substitutions because of scanty experimental data. Homologous domains 

are found not only within the energy generation metabolisms but also both in the 

energy metabolisms and the assimilatory metabolisms. The functions of these 

homologous domains are involved in electron transfer. This type of function can be used 

widely in various metabolisms. Combinations of functional domains produce diversity of 

protein function and functional domains can be used repeatedly in various metabolisms 

through evolution. 
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3. Phylogenetic Analysis of Proteins 
in Neurotransmission Systems 

 

3.1 Introduction 
 Communications between neurons are realized through chemical transmission 

or electrical transmission. Neurotransmitters as neurotransmission signals between 

neurons are transferred from presynaptic cells to postsynaptic cells in chemical 

neurotransmission. Three molecules are important for chemical neurotransmission 

except for peptides and some neurotransmitters. They are synthases, receptors and 

transporters of neurotransmitters (Fig. 3.1). Synthases produce neurotransmitters and 

neurotransmitters are released from presynaptic terminals when presynaptic neurons 

are activated. The released neurotransmitters bind to receptors of postsynaptic cells, 

and the chemical signals from the presynaptic neurons are transmitted to the 

postsynaptic neurons. Neurotransmitters in synapses are uptaken by transporters of 

the presynaptic neurons. 

 How have the chemical neurotransmission system composed of the three 

classes of molecules evolved? Have these three important molecules evolved together or 

not? If these three important molecules have evolved together, the evolution of the 

chemical transmission system can be hypothesized as follows. The three important 

molecules were generated at first, and chemical neurotransmission system was 

established. After that various neurotransmitters gradually became used. But if the 

three important molecules have not evolved together, the evolution of the chemical 

neurotransmission system is as follows. Each molecule had evolved independently, and 

these three molecules started to work together by chance. I did phylogenetic analysis of 
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the three important molecules to confirm which hypothesis is correct. 

 I am also interested in how these three important molecules have evolved. For 

example, ligand specificities of each molecule have changed by amino acid substitutions 

through evolution. I analyzed the relationship between amino acid sequences and 

functions of the molecules, and predicted the amino acid substitutions which are critical 

for functional changes based on the results of the phylogenetic analysis. 
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Fig. 3.1: Chemical neurotransmission. Neurotransmissions are synthesized by synthases (1), and stored into vesicles (2). When presynaptic neuron is 
activated, neurotransmitters are released to synapse (3). Neurotransmitters in synapse are captured by receptors, and postsynaptic neuron is 
activated (4). Neurotransmitters in synapse are uptaken by transporters or degradated by enzymes, and chemical neurotransmission is 
inactivated (5). 
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3.2 Materials and Methods 
3.2.1 Amino Acid Sequence Retrieval and Categorization 

 I retrieved the amino acid sequences of the synthases, the receptors and the 

transporters of the neurotransmitters listed in Alexander and Peters (2000) and 

NeuronDB (http://senselab.med.yale.edu/senselab/NeuronDB/) from SWISS-PROT and 

TrEMBL (Boeckmann et al. 2003) except for neuropeptides whose synthases and 

transporters do not exist. I used these sequence data as queries and searched 

SWISS-PROT and TrEMBL by using BLAST2 (Altschul et al. 1990; Altschul et al. 1997; 

Tatusova and Madden 1999). Based on the results, I categorized the enzymes, the 

receptors and the transporters into groups by sequence homology. 

 

3.2.2 Database Construction 

 Amino acid sequence data in each homologous group were integrated into 

web-based SQL database (PostgreSQL) and I named it “Macaroni” 

(http://neuron.genes.nig.ac.jp/macaroni/), for transmembrane regions of receptors and 

transporters look like macaroni. This database has five tables, and each table has 

relationships to other tables (lines between tables in Fig. 3.2). To entry data, 

administrator (myself) of the Macaroni database inputs only two data; accession 

number and category data defined by the administrator. Categories in the database are 

mainly based on the homologous groups. First major categories are synthases, receptors 

and transporters (Top Menu in Fig. 3.3). Each protein data is linked to SWISS-PROT or 

TrEMBL on GenomeNet (http://www.genome.ad.jp) (①  in Fig. 3.3). Amino acid 

sequence data of each protein is also linked to SWISS-PROT or TrEMBL on GenomeNet 

(② in Fig. 3.3). If amino acid sequence data is fragment, red “F” is shown (② in Fig. 
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3.3). Domain composition of each protein can be easily to known by Pfam through direct 

link (③ in Fig. 3.3). Users can easily retrieve amino acid sequence data of proteins in 

Macaroni. After checking boxes of proteins of which one wants to get sequences (④) and 

clicking the “get the sequences” button (⑤), users can retrieve sequences of checked 

proteins. The sequences can store in virtual basket of the Macaroni site (⑥), and users 

can convert to some sequence formats, or do multiple alignments and construct 

phylogenetic tree by ClustalW on GenomeNet or DDBJ.
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T_INDEX 
Field Name ID† DB* OS FRAG PFAM PDB DE 
Data Type VARCHAR(20) VARCHAR(3) TEXT INT2 TEXT TEXT TEXT 

 
T_AC 
Field Name NUM† AC* ID* 
Data Type VARCHAR(20) VARCHAR(20) VARCHAR(20) 

 
T_PROT 
Field Name AC† CAT_ID* PMID 
Data Type VARCHAR(20) VARCHAR(39) TEXT 

 
T_CAT 
Field Name CAT_ID† CAT_NAME#* CAT_DE 
Data Type VARCHAR(39) VARCHAR(50) VARCHAR(254) 

 
T_PUBMED 
Field Name PMID† TITLE* AUTH* JN* 
Data Type VARCHAR(10) VARCHAR(254) VARCHAR(254) VARCHAR(254) 

 
†: Primary Key, #: Unique, *: Not Null, Blue Characters: INDEX 
 

Fig. 3.2: Tables in Macaroni database. Abbrebiations of the field name in each field are as follows. ID 
= ID number of each sequence; DB = database where sequences are existed; OS = species 
name; FRAG = fragment data or not; PFAM = IDs of pfam domains which each protein has; 
PDB = pdb IDs, if tertiary structure of each protein is available; DE = description of each 
domain; NUM = non-redundant number for identification of each data; AC = accession 
number of each protein; CAT_ID = IDs of categories we defined; PMID = PubMed IDs of 
references in which functions of each protein describe; CAT_NAME = category name; 
CAT_DE = description of each category; TITLE = title of reference; AUTH = author of 
reference; JN = journal name of reference 
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3.2.3 Domain Composition Analysis 

 I searched Pfam database (http:// www.sanger.ac.uk/Software/Pfam/; Bateman 

et al. 2002), a collection of protein families and domains, for functional domains of each 

protein. 

 

3.2.4 Phylogenetic Analysis 

 Amino acid sequences which I analyzed are so diverged, and proteins in some 

homologous groups are composed of several domains. Therefore, I constructed 

phylogenetic trees by using amino acid sequences of each functional domain to obtain 

reliable trees and know domain composition changes through evolution. Multiple 

alignment of each domain is available from the Pfam web site. I used multiple 

alignments available in Pfam database, and constructed neighbor-joining trees (Saitou 

and Nei 1987) by using MEGA2 (Kumar et al. 2001). Numbers of amino acid 

substitutions were computed for Poisson correction. 

Multiple alignments from Pfam database were not used for the phylogenetic 

analyses of S1 synthase, soluble guanylyl cyclase and 1.2 receptor. Phylogenetic trees of 

S1 synthase and soluble guanylyl cyclase constructed by using multiple alignments of 

the functional domains from Pfam database are not reliable, because the functional 

domains I used for constructing trees are short. Therefore, I used all sequence regions in 

S1 synthase and soluble guanylyl cyclase and made the multiple alignments by 

ClustalX (Thompson et al. 1997). The multiple alignments of the ligand binding 

domains (S1 and S2 domains) in 1.2 receptors are not available in Pfam database, 

therefore I made the multiple alignment of the ligand binding domains by ClustalX. The 

constructions of S1 synthase, soluble guanylyl cyclase and 1.2 receptor were done by the 
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same way as I described in the last paragraph. 

Phylogenetic trees which have same domains were superimposed. Some 

domains are shared among some homologous groups, and these domains can connect 

phylogenetic trees constructed by using domains which existed only in each homologous 

group. I estimated the divergences of species. When I connected phylogenetic trees, I 

decided the connecting points between phylogenetic trees based on the divergences. 

 

3.2.5 Analysis of Domain Changes and Amino Acid Substitutions 

 Analyses of the relationship between amino acid sequences and protein 

functions were applied to receptors. Domain compositions of receptors in some 

homologous groups were changed through evolution. I analyzed the relationship 

between domain compositions and receptor functions. Receptor functions were retrieved 

from annotations in SWISS-PROT and TrEMBL, and bibliographies. 

Furthermore, I analyzed the relationship between amino acids of ligand 

binding sites and ligand binding functions. Ligand binding functions can be changed by 

several amino acid substitutions. I retrieved amino acid binding sites from 

bibliographies and parsimoniously predicted amino acid substitutions of each site 

through evolution based on phylogenetic trees I constructed. Based on the amino acid 

substitutions I predicted, I hypothesized the essential amino acid substitutions for 

changing ligand binding functions. 
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3.3 Results and Discussion 

3.3.1 Phylogenetic Analysis of Neurotransmission Systems 

 I categorized amino acid sequences of enzymes, receptors and transporters of 

neurotransmitters except for peptides into groups by sequence homology. Table 3.1 is 

the list of the homologous groups. Chemical structures and metabolic pathways of 

neurotransmitters are shown in Fig. 3.4. The homologous groups of synthases and 

transporters were named by myself, and the names of homologous receptor groups were 

IUPHAR Receptor Code (Humphrey and Barnard 1998). ATP and acetylcholine are 

degraded to adenosine and choline, and they are uptaken by adenosine transporter and 

acetylcholine receptor, respectively. The mechanism of neurotransmission by NO is 

different from others, NO is transmitted from the postsynaptic cell to the presynaptic 

cell. 

 Synthases, receptors and transporters of the same homologous groups are used 

for some neurotransmitters. S1 synthases and 1.1 receptors are used for GABA, 

histamine and 5-HT. S1 synthases and 2.1 receptors are used for histamine, 5-HT and 

dopamine. 1.1 receptors and T1 transporters are used for GABA, Glycine and 5-HT. 2.1 

receptors and T1 transporters are used for 5-HT, dopamine, adrenaline and 

noradrenaline. It may be possible to hypothesize that S1 synthases and 2.1 receptors for 

histamine, dopamine and 5-HT have evolved together, and 2.1 receptors and T1 

transporters for 5-HT, dopamine, adrenaline and noradrenaline have evolved together. 

Other homologous group combinations of synthase and receptor, receptor and 

transporter, or synthase and transporter are random. Therefore, synthases, receptors 

and transporters except for S1 synthases, 2.1 receptors and T1 transporters may have 

evolved independently. 
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Table3.1: Homologous groups of synthases, receptors and transporters 
  Neurotransmitter Synthase Receptor* Transporter 

Glutamate S5 1.2 2.3 T2 

Glycine S2 1.1 T1 
Amino 
Acid 

GABA S1 1.1 2.3 T1 

Histamine S1 1.1 2.1 Degradation 

5-HT (Serotonin) S1 1.1 2.1 T1 

Dopamine S1 2.1 T1 

Adrenaline S4 2.1 T1 

Amine 

Noradrenaline S3 2.1 T1 

ATP S6 S7 S8 1.4 2.1 
Degradation 

(Adenosine Transporter) Purine 

Adenosine S9 2.1 T3 T4 

Acetylcholine S10 1.1 2.1 
Degradation 

(Choline Transporter) 

Cannabinoid S12 2.1 ? 

Prostanoid S13 S14 S15 S16 S17 2.1 T5 

Taurine S18 1.1? T1 

Others 

NO S11 Sol-GC Degradation 

 * 1.1, 1.2, 1.4: Ionotropic Receptors / 2.1, 2.3: Metabotropic Receptors
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Fig. 3.4: Neurotransmitters and their metabolic 
pathways. The names of neurotransmitters and 
synthases are colored red and blue, respectively. 
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3.3.2 Phylogenetic Analysis of Receptors 

 I then analyzed the relationships between amino acid sequences and functions 

of receptors.  Domain compositions of receptors which I analyzed are shown in Fig. 3.5. 

Each domain is referred from Pfam database (blue colored names in Fig. 3.5). Some 

domains are shared among some proteins. For example, ANF_receptor domain is shared 

among 1.2 receptor, 2.3 receptor, Leu/Ile/Val-binding protein (bacterial amino acid 

binding protein), and membrane-bound guanylyl cyclase (hormone receptor).  

ANF_receptor domain is a ligand binding domain in 2.3 receptor, bacterial amino acid 

binding protein and membrane-bound guanylyl cyclase (Kunishima et al. 2000; 

McNicoll et al. 1996; Sacks et al. 1989a; van den Akker et al. 2000). ANF_receptor 

domain in 1.2 receptor is not the ligand binding domain, but the subunit association 

domain (Ayalon and Stern-Bach 2001). The ligand binding domains of 1.2 receptor are 

S1 and S2 domains which are defined by Pfam (Armstrong and Gouaux 2000; 

Armstrong et al. 1998). Glutamine-binding protein, another bacterial amino acid 

binding protein, also has S1 and S2 ligand binding domains (Hsiao et al. 1996; Sun et al. 

1998), and these domains in the bacterial amino acid binding protein are defined as 

SBP_bac_3 in Pfam database. Soluble guanylyl cyclase and membrane-bound guanylyl 

cyclase share Guanylate_cyc domain, a catalytic domain. 

 1.1, 1.4 and 2.1 receptors do not share domains with other receptors I analyzed. 

Ligand binding sites of 1.1, 1.4 and 2.1 are in Neur_chan_LBD, P2X_receptor and 

7tm_1, and transmembrane domains are in Neur_chan_memb, P2X_receptor and 7tm_1, 

respectively.



 

 

 

Fig. 3.5: Domain compositions of neurotransmission receptors (red colored names) and their homologous proteins (orange colored names). 
Domains defined by Pfam are written by blue characters. 



3.3.2.1 Phylogenetic Analysis of 1.2 and 2.3 Receptors and Soluble Guanylyl 

Cyclase 

3.3.2.1.1 Domain Changes of 1.2 and 2.3 Receptors and Soluble Guanylyl Cyclase 

 As I described in the last section, ANF_receptor domain is shared among 1.2 

receptor, 2.3 receptor, bacterial amino acid binding protein and membrane-bound 

guanylyl cyclase (Fig. 3.5). And one of membrane-bound guanylyl cyclase domains, 

Guanylate_cyc domain, is shared between membrane-bound guanylyl cyclase and 

soluble guanylyl cyclase which is nitric oxide receptor (Fig. 3.5). These domain 

compositions suggest that the three receptors are evolutionarily related. I constructed 

molecular phylogenetic trees by using each domain to pursue the domain changes of 1.2 

and 2.3 receptors and soluble guanylyl cyclase through evolution. 

 

3.3.2.1.2 Domain Changes of 1.2 and 2.3 Receptors –Phylogenetic Analysis of 

ANF_receptor Domain- 

 Fig. 3.6 shows the phylogenetic tree of 1.2 receptor, 2.3 receptor, bacterial 

amino acid binding protein and membrane-bound guanylyl cyclase constructed by using 

ANF_receptor. Bacterial amino acid binding protein exists in bacteria, and the other 

proteins exist in eukaryotes. Therefore, I defined bacteria amino acid binding protein as 

the out-group. If I think parsimoniously, the hypothetical ancestral protein was the 

protein which might have only ANF_receptor domain (Fig. 3.6). I assume that the 

ancestral protein was the soluble ligand binding protein like bacterial amino acid 

binding protein. My hypothesis of the evolution from the ancestral protein is as follows 

(Fig. 3.6). The ionotropic 1.2 receptor was produced by the insertions of the red colored 

three transmembrane domains (M1-M3 regions in Fig. 3.5), the orange colored 
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intramembrane domain (P region in Fig. 3.5), the light green and green colored ligand 

binding domains. Although the ligand binding domains in membrane-bound guanylyl 

cyclase, 2.3 receptor and bacterial amino acid binding protein are ANF_receptor 

domains, the ligand binding domain in 1.2 receptor is not ANF_receptor. The ligand 

binding domains of 1.2 receptor are the light green colored S1 domain and the green 

colored S2 domains (Fig. 3.5). The ligand binding function of ANF_receptor in 1.2 

receptor was lost on the lineage to 1.2 receptor. 7tm_3 domain including seven 

transmembrane regions was inserted on another lineage, and metabotropic 2.3 receptor 

(GPCR class C) was generated by the insertion. The insertions of Guanylate_cyc and 

Pkinase domains on the lineage to membrane-bound guanylyl cyclase generated 

membrane-bound guanylyl cyclase which is hormone receptor.



Fig. 3.6: Phylogenetic trees of 1.2 and 2.3 receptors, membrane-bound guanylyl cyclase 
and bacterial amino acid binding protein constructed by ANF_receptor domains. 
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3.3.2.1.3 Domain Changes of 2.3 Receptors –Phylogenetic Analysis of 7tm_3 Domain- 

 I constructed the molecular phylogenetic tree by using 7tm_3 domain which 

includes seven transmembrane regions and is conserved among all 2.3 receptors (Fig. 

3.7). Metabotropic glutamate GABA-like receptor (O96954) exists in porifera, and other 

receptors exist in eumetazoa (also refer to species distribution in Fig. 3.13). Therefore, I 

defined metabotropic glutamate GABA-like receptor as the out-group. If I think 

parsimoniously as I did in the phylogenetic tree of ANF_receptor domain, there are 

some candidates about the insertions and deletions of ANF_receptors. I postulated that 

the occurance of the insertion event might be more difficult than that of the deletion. 

Based on the assumption, I chose the one candidate. It is that the insertion of 

ANF_receptor may have occurred once, and two deletions of ANF_receptor may have 

occurred (Fig. 3.7). 

 If I accept the hypothesis, the evolution of 2.3 receptor family is as follows (Fig. 

3.7). The ancestral protein had seven transmembrane regions like metabotropic 

glutamate GABA-like receptor (O96954). After divergence between porifera and 

eumetazoa, ANF_receptor domain which is the ligand binding domain was inserted, and 

ligand binding function was acquired. Then, the ancestor of 2.3 receptor was generated. 

After that, ANF_receptor domain was lost on the lineage to hypothetical proteins and 

bride of sevenless protein. Interestingly, bride of sevenless protein is membrane-bound 

ligand for sevenless tyrosine-kinase receptor (Kramer et al. 1991), that is, 2.3 receptor 

might change into membrane-bound ligand on the lineage to bride of sevenless protein. 



Fig. 3.7: Phylogenetic trees of 2.3 receptors constructed by 7tm_3 domains. 
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Fig. 3.8: Phylogenetic trees of 1.2 receptors constructed by 7tm_3 domains. 
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3.3.2.1.4 Domain Changes of 1.2 Receptors –Phylogenetic Analysis of Lig_chan Domain- 

 Fig. 3.8 is the phylogenetic tree constructed by using Lig_chan domain 

including three transmembrane domains (M1-M3), one intramembrane domain (P) and 

one ligand binding domain (S2), but Lib_chan domain does not include the other ligand 

binding domain (S1) (Fig. 3.5). Glutamate receptor-like proteins exist in plants, and the 

remaining proteins exist in animals (also refer to species distribution in Fig. 3.14). 

Therefore, I defined glutamate receptor-like proteins as the out-group. My hypothesis is 

that the ancestral protein of 1.2 receptors had ANF_receptor domain, Lig_chan domain 

and S1 domain (Fig. 3.8). And ANF_receptor may have been lost on the lineage to 

kainate binding protein (Fig. 3.8). 

 

3.3.2.1.5 Domain Changes of Membrane-bound Guanylyl Cyclase –Phylogenetic 

Analysis of ANF_receptor Domain- 

 As I described in previous sections, membrane-bound guanylyl cyclase have 

ANF_receptor domain which also exist in 1.2 and 2.3 receptors. I constructed the 

phylogenetic tree of membrane-bound guanylyl cyclase by using ANF_receptor domain 

to know the domain changes of membrane-bound guanylyl cyclase (Fig. 3.9), although 

this protein is not the receptor I focused on (Table 3.1). I defined bacterial amino acid 

binding proteins as the out-group, because membrane-bound guanylyl cyclases are 

present in animals. This tree suggests that Pkinase domain (kinase homology region) 

and Guanylate_cyc domain (guanylyl cyclase domain) are inserted after the divergence 

between bacteria and animals. And these domains may have been lost on the lineage to 

natriuretic peptide receptor C. As a result, natriuretic peptide receptor C might lose the 

function of guanylyl cyclase.



Fig. 3.9: Phylogenetic trees of membrane-bound guanylyl cyclase constructed by ANF_receptor domains. 
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Fig. 3.10: Phylogenetic trees of soluble guanylyl cyclase, membrane-bound guanylyl cyclase and adenylyl cyclase constructed by Guanylate_cyc domains. 
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3.3.2.1.6 Domain Changes of Soluble Guanylyl Cyclase –Phylogenetic Analysis of 

Guanylate_cyc Domain- 

 The phylogenetic tree in Fig. 3.10 was constructed by using all regions of 

soluble guanylyl cyclase, membrane-bound guanylyl cyclase and adenylyl cyclase which 

have Guanylate_cyc domain. I defined adenylyl cyclase existed in bacteria as the 

out-group of this tree. Soluble guanylyl cyclase is the receptor for nitric oxide (Table 3.1). 

The phylogenetic tree in Fig. 3.10 suggests ANF_receptor and Pkinase domains were 

inserted after the divergence between bacteria and animals. And after the insertion, 

soluble guanylyl cyclase may have changed to membrane-bound guanylyl cyclase. 

 

3.3.2.1.7 Domain Changes of 1.2 Receptors –Phylogenetic Analysis of SBP_bac_3, and 

S1 and S2 Domains- 

 Fig. 3.11 is the molecular phylogenetic tree constructed by multiple alignment 

of SBP_bac_3 domain in bacterial amino acid binding protein, and S1 and S2 domains in 

1.2 receptors (Fig. 3.5). I defined bacterial amino acid as the out-group, because other 

proteins exist in plants and animals (also refer to species distribution in Fig. 3.14). This 

tree suggests that ANF_receptor domain, three red colored transmembrane domains 

(M1-M3 regions in Fig. 3.5) and one orange colored intramembrane domain (P region in 

Fig. 3.5) may have been inserted after the divergence between bacteria, and plants and 

animals. As a result of the insertions, the 1.2 receptors may have been generated. 

 



Fig. 3.11: Phylogenetic trees of 1.2 receptors and bacterial amino acid binding protein constructed by S1 and S2 regions in 1.2 receptors (Fig. 3.2) and 
SBP_bac_3 domain in bacterial amino acid binding protein. 
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3.3.2.1.8 Domain Changes of 1.2 and 2.3 Receptors and Soluble Guanylyl Cyclase - 

Construction of Composite Gene Tree - 

 I hypothesized domain changes of 1.2 and 2.3 receptors and soluble guanylyl 

cyclase by the molecular phylogenetic trees (Fig. 3.6 – 3.11). I composed the trees (Fig. 

3.6 – 3.11) to infer the overall domain change of 1.2 and 2.3 receptors and soluble 

guanylyl cyclase (Fig. 3.12). The ancestral proteins of the three neurotransmitter 

receptors may have been generated before the divergence between bacteria and 

eukaryotes, much before the emergence of the nervous system. And the ancestral 

proteins might combine some domains, and evolved to 1.2 or 2.3 receptors. 

 My hypothesis about the evolution of 1.2 receptor is as follows. The two ligand 

binding domains (light green and green domains in Fig. 3.12) were inserted before the 

divergence between plants and animals. The ligand binding domains were separated 

when they were inserted. ANF_receptor domain was also inserted before the divergence 

between plants and animals. Although ANF_receptor domains in 2.3 receptor, 

membrane-bound guanylyl cyclase and bacterial amino acid have ligand binding 

function, ANF_receptor domain in 1.2 receptor lost the function. 

 I hypothesized that 2.3 receptor had been generated by the combination of 

ANF_receptor domain including ligand binding sites and 7tm_3 domain including seven 

transmembrane regions after the divergence between porifera and eumetazoa. 

 Soluble guanylyl cyclase, receptor for nitric oxide, seems to have been 

generated without domain changes. A smaller number of amino acid substitutions 

might produce soluble guanylyl cyclase after the divergence between porifera and 

eumetazoa. 

 Although some domains in 1.2 and 2.3 receptors and soluble guanylyl cyclase 
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may have been generated before the divergence between bacteria and eukaryotes, these 

receptors might diversify after the divergence between porifera and eumetazoa by a 

small number of amino acid substitutions.

 

 

Fig. 3.12: Composite tree of Figs. 3.3-3.8. Branch length has no meaning. 



3.3.2.1.9 Necessary Amino Acid Changes for Ligand Binding Specificity of 2.3 Receptors 

 2.3 receptors are categorized into GPCR class C. 2.3 receptors are dimer 

proteins, and each subunit binds ligand. But one subunit of GABA receptor which is 

heterodimer protein may not bind ligand (Kniazeff et al. 2002). Fig. 3.13 shows the 

phylogenetic tree of 2.3 receptors constructed by using ANF_receptor domains which 

are ligand binding domains. The important amino acid sites for ligand binding are listed 

and aligned in Table 3.2. These sites are detected by tertiary structure studies, 

computer modeling studies and mutation studies (bibliographies cited are listed in 

Table 3.2). The meaning of color in each amino acid site in Fig. 3.13 is same as the 

meaning written in Table 3.2. Amino acid numbers I’ll describe in this section 

correspond to the amino acid numbers of metabotropic glutamate receptor 1 of rat 

(P23385) (Table 3.2).

Fig. 3.13 (next page): Phylogenetic tree of 2.3 receptors constructed by  
ANF_receptor domains. Protein whose ligand binding sites are detected in the tertiary 
structure is colored red, proteins whose ligand binding sites are predicted by modeling 
and experiments are colored blue, respectively. Amino acid substitutions important for 
changing ligand binding specificities are shown (corresponding sites are surrounded by 
yellow lines in Table 3.2).  
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Amino Acid Site Number of mGluR1 (P23385) 74 78 164 165 186 188 208 236 292 293 318 320 323 408 409 References 
1 Glutamate Receptor (mGluR7) N R G S A T D Y N D D W K G K  
2 Glutamate Receptor (mGluR8) K R A S A T D Y N E D W K G K  
3 Glutamate Receptor (mGluR6) Q R A S A T D Y N E D W K G K  
4 Glutamate Receptor (mGluR4) K R G S A T D Y N E D W K G K  
5 Hypothetical Protein Q R G S S T D Y D E D W K S Y  
6 Glutamate Receptor (Drosophila) R R Y S A T D Y R A D W Q S K  
7 Glutamate Receptor (mGluR2) R R Y S A T D Y R S D W L S K  
8 Glutamate Receptor (mGluR3) R R Y S A T D Y R S D W Q S K  
9 CG30361 G A S S F T D Y S D D W R D Q  
10 MGL-2 Y R K S S T D Y E G D W R P K  
11 Glutamate Receptor (mGluR1) Y** R* S* S** S** T** D** Y** E* G* D** W R** S K** Kunishima et al. 2000 
12 Glutamate Receptor (mGluR5) Y R S S S T D Y E G D W R S K  
13 Glutamate Receptor (C.elegans) R R Y S A T D Y G T E W N D K  
14 7TM Receptor (Human) H W S T A S D Y S R E W S S S  
15 Taste Receptor (T1R1 [Mouse]) H L N T E S D Y N R E W S S A  
16 Taste Receptor (T1R2 [Human]) I L N S S I A Y P D E W D R V  
17 Taste Receptor (T1R2 [Mouse]) L L N S S I A Y P E E W D R V  
18 Taste Receptor (T1R3 [Mouse, Rat]) L L S S S S D Y S A E W S H Q  
19 7TM Receptor (Human) N L S S G S D Y S V E W S H Q  
20 Ca2+-sensing Receptor R W G S+ A S+ D+ Y+ S G E+ W S R I Zhang et al. 2002 

21 Odorant, Pheromone Receptor H/R/L F/H/L 
/W/Y 

E/G/ 
L/T S/T F/S/ 

T/Y S/T D Y A/H/ 
S/V 

D/E/F/ 
H/S/Q E W A/D/S 

/T/- R/P I/P/
Y  

22 Odorant Receptor (5.24) K Q S S+ A T+ D Y+ K+ S D+ W S D+ M Kuang et al. 2003 
23 GABA Receptor (R3) D E C S G T D V S Q E M P Q Y  
24 GABA Receptor (R2) I/T V C T/P A T D/E R N/D E/Q A/G Y D/S/A K/R F  
25 GABA Receptor (R1) G C C S+ G S A V Y+ V/E G Y+ N/T Q/P E+ Kniazeff et al. 2002 

**  Ligand binding site which interacts directly with ligand detected by tertiary structure study. 
* Ligand binding site which interacts indirectly with ligand detected by tertiary structure study. 
+ Ligand binding site which interacts with ligand predicted by modeling and experiments. 

 :Basic Amino Acid (Positive Charged) 
 :Acidic Amino Acid (Negative Charged) 
 :Uncharged Polar Amino Acid 
 :Nonpolar Amino Acid 

Table 3.2: Important sites for ligand binding in 2.3 receptors 



 Among 2.3 receptors, amino acid sites of 165, 188, 208, 236, and 318 are 

conserved (red arrows in Table 3.2). And these sites are also conserved in bacterial 

amino acid binding proteins which are the out-group proteins of 2.3 receptors (Fig. 3.6). 

I hypothesized that amino acids of these sites in the ancestral protein of 2.3 receptors 

are S165, T188, D208, Y236, E318. S165 directly interacts with α-carboxyl group of 

ligand, and T188 directly interact with α-carboxyl group and α-amino group of ligand in 

bacterial amino acid binding protein (Sack et al. 1989a; Sack et al. 1989b) and 

metabotropic glutamate receptor (Kunishima et al. 2000). Therefore, I hypothesized 

that the ancestral protein had possessed the ability of binding α-carboxyl and α-amino 

groups of ligand (Fig. 3.13). Although D208, Y236 and E318 in bacterial amino acid 

binding protein does not interact with ligand (Sack et al. 1989a; Sack et al. 1989b), 

these corresponding sites in metabotropic glutamate receptor (D208, Y236 and D318) 

directly interact with α-amino group of glutamate (Kunishima et al. 2000). Therefore, I 

hypothesized that D208, Y236 and E318 in the ancestral protein had interacted with 

α-amino group of ligand. The ancestral protein of 2.3 receptor may have already 

acquired the ability of binding α-carboxyl group and α-amino group of ligand from these 

hypotheses, that is, the ligand of the ancestral protein might be amino acid. 

 Tertiary structure analysis detected ligand binding sites of metabotropic 

glutamate receptor (Kunishima et al. 2000). These sites are shown in Table 3.2 (amino 

acid sites with asterisks). I predicted the branches where these amino acid sites 

appeared by amino acid substitutions. R78 and K409 are conserved among all 

glutamate receptors, and I predicted amino acid substitutions to R78 and K409 had 

occurred on the branch to glutamate receptors (Fig. 3.13). After these two substitutions, 

glutamate receptors may have been generated. Therefore, these two amino acid 
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substitutions are essential substitutions for producing glutamate receptors. The amino 

group of K409 directly interacts with the γ-carboxyl group of glutamate ligand, and 

the amino group of R78 indirectly interacts with the γ-carboxyl group of glutamate 

ligand (Kunishima et al. 2000) (Fig. 3.13). The amino acid substitutions to the two basic 

amino acids might occur before the divergence between vertebrates and invertebrates 

and enable 2.3 receptor to bind glutamate (Fig. 3.13). 

 Odorant 5.24 receptor is the receptor for lysine. Ligand binding sites of odorant 

receptor 5.24 were predicted by computer modeling and mutation study (Kuang et al. 

2003) (Table 3.2). Although odorant receptor 5.24 is not the receptor listed in Table 3.1, I 

predicted the essential amino acid substitutions for generating the receptor. Predicted 

ligand binding sites except for K292 and D408 may have conserved from the ancestral 

protein of 2.3 receptor, if I think parsimoniously. Therefore, I hypothesized amino acid 

substitutions to K292 which may interact with α-carboxyl group of lysine and D408 

which may interact with ε-amino group are important substitutions for generating 

odorant receptor 5.24. Especially, amino acid substitution to D408 seems to be more 

important. Amino acids which can interact with α-carboxyl group of amino acid may 

have been conserved from the ancestral protein of 2.3 receptor by my prediction. Amino 

acid substitution to D408 enabled 2.3 receptor to interact with ε-amino group of lysine. 

Therefore, I hypothesized the essential amino acid substitution for generating odorant 

5.24 receptor was the amino acid substitution to D408. 

 There are three kinds of subunits in GABA receptor; R1, R2 and R3. R1 binds 

GABA, but R2 may not bind GABA (Kniazeff et al. 2002). The function of R3 is not well 

known, and R3 exists only in Drosophila (Mezler et al. 2001). GABA receptor is a 

heterodimer protein composed of R1 and R2 (Jones et al. 1998; Kaupmann et al. 1998; 
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White et al. 1998). Ligand binding sites of R1 subunit predicted by computer modeling 

study (Kuniazeff et al. 2002) are S165, Y292, Y320 and E409 (Table 3.2). S165 may have 

conserved from the ancestral protein if I think hypothetically (Fig. 3.13). Amino acid 

substitutions to Y292, Y320 and E409 may have occurred on the lineage to GABA 

binding receptor (Fig. 3.13). The amino acid substitutions to Y320 and E409 might 

enable R1 subunit to interact with amino group of GABA (Fig. 3.13). As I described in 

previous paragraph, D208, Y236 and E318 in the ancestral protein might interact with 

α-amino group of ligand (Fig. 3.13). I hypothesized that these D208, Y236 and E318 

might have changed to A208, V236 and G318 which are nonpolar amino acids on the 

lineage to R1 subunit (Fig. 3.13). After these substitutions, GABA receptor R1 subunit 

might have lost the ability to bind α-amino group which the ancestral protein can 

interact with. I hypothesized that the amino acid substitutions to Y320 and E409 which 

had enabled 2.3 receptor to interact with amino group of GABA and the substitutions to 

A208, V236 and G318 which had made 2.3 receptor to lose the function for binding α

-amino group are the essential amino acid substitutions for GABA receptor. These 

essential substitutions might occur before the divergence between vertebrates and 

invertebrates (Fig. 3.13). 

 

3.3.2.1.10 Necessary Amino Acid Changes for Ligand Binding Specificity of 1.2 

Receptors 

 All of 1.2 receptors are ionotropic glutamate receptors which are tetramer 

proteins composed of two dimers (Sun et al. 2002), although functions of plants’ putative 

glutamate receptor are not well-known. Delta subunits of glutamate receptor do not 

bind ligand (Mayat et al. 1995). Heterotetrameric NMDA-type glutamate receptor 
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composed of NR1 and NR2 requires both glutamate and glycine for efficient activation 

(Johnson and Ascher 1987; Kleckner and Dingledine 1988; Laube et al. 1998), and that 

composed of NR1 and NR3 is activated by glycine alone (Chatterton et al. 2002). Ligand 

for NR2 is glutamate (Laube et al. 1997), and that for NR1 is glycine (Hirai et al. 1996; 

Kuryatov et al. 1994; Wafford et al. 1995). There are no evidences of NR3 for binding 

glutamate or glycine, therefore NR3 may not bind ligand. There are different amino 

acids between ligand binding sites of glutamate binding subunits and corresponding 

sites of glutamate nonbinding subunits (Table 3.3). And I hypothesized that these amino 

acid differences produce the different ligand binding functions. Based on the amino acid 

differences, I hypothesized amino acid substitutions which are essential for the changes 

of ligand binding functions. 

 Fig. 3.14 shows the phylogenetic tree of 1.2 receptors constructed by using 

ligand binding domains. The two divided regions are ligand binding domains in 1.2 

receptors (light green and green colored regions of 1.2 receptors in Fig. 3.5). The 

phylogenetic tree was constructed by the multiple alignment of the two divided ligand 

binding domains. The important amino acid sites for ligand binding are listed and 

aligned in Table 3.3. These sites are detected by tertiary structure studies, computer 

modeling studies and mutation studies (bibliographies cited are listed in Table 3.3). The 

meaning of color in each amino acid site in Fig. 3.14 is same as the meaning written in 

Table 3.3. Amino acid numbers I’ll describe in this section correspond to the amino acid 

numbers of AMPA sensitive ionotropic glutamate receptor 2 of rat (P19491) (Table 3.3).



Fig. 3.14: Phylogenetic tree of 1.2 receptors constructed 
by using ANF_receptor. Protein whose ligand binding sites 
are detected by tertiary structure is colored red, proteins 
whose ligand binding sites are predicted by modeling and 
experiments are colored blue. Amino acid substitutions 
important for changing ligand binding specificities are 
shown (corresponding sites are surrounded by yellow lines 
in Table 3.3). 



 Amino Acid Site Number of GluR2 (P19491) 499 501 506 671 675 676 724 726  
1 Glutamate Receptor (AMPA) (GluR1) P T R L S T L E  
2 Glutamate Receptor (AMPA) (GluR2) P** T** R** L* S** T** L* E** Armstrong and Gouaux 2000 
3 Glutamate Receptor (AMPA) (GluR4) P T+ R+ L S T+ L E+ Lampinen et al. 1998 
4 Glutamate Receptor (AMPA) (GluR3) P T R L S T L E  
5 (P26591) P T R L S T L E  
6 (Q03445) A T R L S T L E  
7 (P34299) P/S T R Q/N S T L E  
8 (Q8MS48) D T R L/K S/A T L E  
9 Glutamate Receptor (Kainate) (KA2) A T R I S T L E  
10 Glutamate Receptor (Kainate) (KA1) G T R I S S L E  
11 Glutamate Receptor (Kainate) (GluR5) P T R V S T L E  
12 Glutamate Receptor (Kainate) (GluR7) P T R V S T L E  
13 Glutamate Receptor (Kainate) (GluR6) P A R V S T L E  
14 (Q9V4A0) P/S T R L/R S T L/F E  
15 (Q17697) P/S/A T R L/I S T L/M E  
16 (O45028) D T R I/M S/A T L E  
17 Kainate Binding Protein P T R L/I S T/S L/I E  
18 (Q8MMK3) A/P/S T/K/S R Q/V/I/M/L S/D/A I/T/S/A F/I/L D/E  
19 Glutamate Receptor Delta-1 Subunit A T R V A V L D  
20 Glutamate Receptor Delta-2 Subunit A T R V A V V D  
21 Glutamate Receptor (NMDA) (NR1) P/G** T** R** V S/N** V I D** Furukawa and Gouaux 2003 
22 Glutamate Receptor (NMDA) (NR3A) S S R V S A I D  
23 Glutamate Receptor (NMDA) (NR3B) S S R V S A I D  
24 (Q8MM14) S M/K R V/I H/N T I D  
25 Glutamate Receptor (NMDA) (NR2A) S T R V S T I D  
26 Glutamate Receptor (NMDA) (NR2B) S T R V S T I D  
27 Glutamate Receptor (NMDA) (NR2D) S T R V S T I D  
28 Glutamate Receptor (NMDA) (NR2C) S T R V S T I D  
29 (Q8IN45) A/G/P T/I/L/R/F R/D R/D/E/Q F/Y T/F/N N/L/V/I/A/Q D/E/G/Q  

30 Putative Glutamate Receptor (Plant) - T/A/S R Q/T/P/ 
F/L/S 

F/Y/V/ 
I/L/M 

A/R/V/ 
T/I I/V/A/S D/S/N 

/M/L  

**  Ligand binding site which interacts directly with ligand detected by tertiary structure study. 
+ Ligand binding site which interacts with ligand predicted by modeling and experiments. 

 :Basic Amino Acid (Positive Charged) 
 :Acidic Amino Acid (Negative Charged) 
 :Uncharged Polar Amino Acid 
 :Nonpolar Amino Acid 

Table 3.3: Important sites for ligand binding in 1.2 receptors 



 The three amino acid sites at the positions of 501, 506 and 726 are conserved in 

both 1.2 receptors and bacterial amino acid binding proteins which are the out-group of 

1.2 receptors (Fig. 3.11). These three sites may have been conserved from the ancestral 

protein of 1.2 receptor and bacterial amino acid binding protein. If I predict 

parsimoniously based on the amino acid sites 501, 506 and 726 in 1.2 receptors and 

bacterial amino acid binding protein, the three amino acid sites in the ancestral protein 

are T or S501, R506, and D726. Based on the tertiary structure of AMPA-sensitive 

glutamate receptor 2 in rat (Armstrong and Gouaux 2000), T or S501 may interact with 

α-calboxyl group and α-amino group of ligand (Fig. 3.14). And R506 and D726 may 

interact with α-calboxyl group and α-amino group of ligand, respectively (Fig. 3.14). 

Therefore, I hypothesized the ancestral protein have the function of binding amino acid. 

 I predicted the amino acid substitutions which are essential for changing 

ligand binding function. As I described in the previous paragraph of this chapter, delta 1 

and 2 subunits of glutamate receptor and NR3A-B subunits of NMDA-sensitive 

glutamate receptor do not bind glutamate. And ligand of NMDA-sensitive glutamate 

receptor NR1 subunit is glycine. I hypothesized the essential amino acid substitutions 

for losing glutamate binding function. 

 The hypothetical essential amino acid substitutions for generating delta 

subunit 1 and 2 are the amino acid substitutions to A675 and V676. If I think 

parsimoniously, these substitutions might occur on the lineage to delta 1 and 2 subunits 

(① in Fig. 3.14). S675 and S676 in rat AMPA sensitive glutamate receptor 2 interact 

with γ-carboxyl group of glutamate (Armstrong and Gouaux 2000), therefore delta 1 

and 2 subunits might lose the binding function of γ-calboxyl group of glutamate by the 

amino acid substitutions to nonpolar amino acids at the positions of 675 and 676 (① in 
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Fig. 3.14). 

 The essential amino acid substitutions for changing ligand of NR1 subunit may 

the substitution to V676 on the lineage to NR1 subunit (② in Fig. 3.14). Valine is a 

nonpolar amino acid which cannot make a direct hydrogen bond with γ-carboxyl group 

of glutamate. After the substitution, NR1 might lose the function of binding γ-carboxyl 

group of glutamate. Therefore, the ligand of NR1 subunit is glycine which loses one 

carboxyl group comparing to glutamate (Fig. 3.14). 

 I hypothesized amino acid substitution to A676 on the lineage to NR3A-B is the 

essential substitution for NR3A-B to lose the function for binding glutamate (③ in Fig. 

3.14). Alanine is a nonpolar amino acid which cannot make the direct hydrogen bond to 

γ-carboxyl group of glutamate. 

 

3.3.2.1.11 Necessary Amino Acid Changes for Ligand Binding Specificity of soluble 

guanylyl cyclase 

 Soluble guanylyl cyclase is a receptor for nitric oxide, and is a heterodimer 

composed of α and β subunits. Soluble guanylyl cyclase composed of α1 and β1 or 

α2 and β1 is catalytically active, and active soluble guanylyl cyclase containing β2 

subunit is not found (Friebe and Koesling 2003). Histidine residue of β1 subunit (H105 

in bovine) binds the heme iron , and the heme iron is essential for catalysis of nitric 

oxide (Wedel et al. 1994). The histidine residues of the heme iron binding site are only 

conserved in β1 and β2 subunits of soluble guanylyl cyclase, therefore the amino acid 

substitution to the histidine might occur on the lineage to β1 and β2 subunits (Fig. 

3.10). And I hypothesized this amino acid substitution was the essential for generating 

nitric oxide sensitive soluble guanylyl cyclase. 
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3.3.2.2 Phylogenetic Analysis of 1.1 Receptors 

3.3.2.2.1 Domain Changes of 1.1 Receptor 

 1.1 receptor is an ionotropic receptor which is composed of five subunits. Each 

subunit has four transmembrane regions. According to Pfam database, each subunit of 

1.1 receptor has two domains, Neur_chan_LBD and Neur_chan_memb (Fig. 3.5). 

Neur_chan_LBD domain is the N-terminal ligand binding domain. And the four 

transmembrane domains are placed on the Neur_chan_memb domain. Fig. 3.15A shows 

the molecular phylogenetic tree of 1.1 receptors by using Neur_chan_LBD domain. 

Acetylcholine binding protein has only one domain, Neur_chan_LBD. This protein is not 

a membrane-bound ionotropic receptor, but a soluble ligand binding protein. I could not 

define the root point of the phylogenetic tree. I hypothesized two scenarios about the 

evolution of 1.1 receptors (Fig. 3.15B). 

 The phylogenetic tree of 1.1 receptors can be hypothesized the left one in Fig. 

3.15B, if I think that acetylcholine binding protein is closely related to acetylcholine 

receptor, and the root point is placed between anion channel receptors and cation 

channel receptors. This phylogenetic tree (left one in Fig. 3.15B) is also supported by the 

midpoint rooting. The hypothetical ancestral protein had two domains, Neur_chan_LBD 

and Neur_chan_memb. The ancestral protein might be ligand binding four 

transmembrane ionotropic receptor which is similar to 1.1 receptor. Neur_chan_memb 

domain, the four transmembrane domain may have been lost on the lineage to 

acetylcholine binding protein. And this domain change might produce soluble 

acetylcholine binding protein. 

 If I think the simplest domain structure is the ancestral protein, I hypothesized 

the phylogenetic tree of 1.1 receptors is the right one in Fig. 3.15B. Acetylcholine 
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binding protein which is the simplest domain structure can be defined as the out-group. 

The hypothetical ancestral protein had one ligand binding domain, Neur_chan_LBD. 

This protein might be similar to soluble acetylcholine ligand binding protein. The 

insertion of Neur_chan_memb domain which includes four transmembrane regions 

seems to have produced 1.1 receptor. 

 I can’t decide which phylogenetic tree of 1.1 receptor is plausible or not, but the 

root point might place around the gray colored region in Fig. 3.15A. 



Fig. 3.15: Phylogenetic tree of 1.1 receptor constructed by using Neur_chan_LBD domain 
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3.3.2.2.2 Necessary Amino Acid Changes for Ligand Binding Specificity of Acetylcholine 

Receptors 

 As I described, 1.1 receptor is a membrane-bound ionotropic receptor composed 

of five subunits. The ligand binding site is placed between subunits. Acetylcholine 

binding protein which is not a neurotransmitter receptor is a soluble homopentameric 

protein, and the ligand binding sites placed between subunits, that is, there’re five 

ligand binding sites in one protein (Brejc et al. 2001). Muscle-type acetylcholine receptor 

is composed of two α1s, β1, γ, and δ subunits in fetal muscles (Mishina et al. 

1986) and electrocytes of electric fish(Reynolds and Karlin 1978), and ligand binding 

sites are placed between α1 and γ , and between α 1 and δ  (Karlin 2002). 

Muscle-type acetylcholine receptor is composed of two α1s, β1, ε , δ  in adult 

muscles (Mishina et al. 1986). Neuronal-type acetylcholine receptor is composed of α

2-10 and β2-4. α7-9 can form active homopentameric receptor (Cooper et al. 1991; 

Elgoyhen et al. 1994; Gotti et al. 1994). α 2-6 and α 10 can form active 

heteropentameric receptors only when β  subunits or other α  subunits are 

co-expressed (Elgoyhen et al. 2001; Le Novere et al. 1996; Ramirez-Latorre et al. 1996; 

Vernallis et al. 1993), and these subunits combine to produce functional 

heteropentameric receptors composed of two αs and three βs (Anand et al. 1991) 

except for α5 and β3 which do not form functional receptors alone or with a single 

type of α or β subunit (Hogg et al. 2003). Most of receptors are composed of a single 

type of α subunit and a single type of β subunit, but there are receptors composed of 

three types of subunit (Hogg et al. 2003). The α5 and β3 subunits form the receptors 

composed of three types of subunit, when co-expressed with other α or β subunits 

(Boorman et al. 2000; Groot-Kormelink et al. 1998; Groot-Kormelink et al. 2001; 
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Ramirez-Latorre et al. 1996). However, the pricise subunit composition of the receptors 

composed of the three subunit types is not well-known (Hogg et al. 2003).



Fig. 3.16: Phylogenetic tree of acetylcholine 
receptors constructed by Neur_chan_LBD domain. 
Protein whose ligand binding sites are detected in 
the tertiary structure is colored red, proteins whose 
ligand binding sites are predicted by modeling and 
experiments are colored blue. Amino acid 
substitutions important for ligand binding 
specificities are shown (corresponding sites are 
surrounded by yellow lines in Table 3.4). 
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α3 W L K I I Y N N L L K T I G W+ Y D D K D/E Y C+ C+ Y+ 
Schapira et al. 

2002 

α6 W L R I I Y N N L L K T V G W Y D D/E K D Y C C Y   

α2 W L K E I Y N N H L F H/K V G W+ Y D D Y S Y C+ C+ Y+ 
Schapira et al. 

2002 

α4 W V K E I Y N N H L F Q/K T/M G W+ Y D D Y T/S Y C+ C+ Y+ 
Schapira et al. 

2002 

α5 W L K E V/L/I F/Y D N V V/I R/K T/A T G W Y D D K N/S T C C Y   

β3 W L K/W/Y E L/I F/Y E N I V K/R 
S/T/Q 

/M/V 
T/M G W Y D D K/R N/S D/E/- F/V/I/- Y/-/D Y   

α1 R L K/R Q I/V/L Y+ N N L L D/E/Q T/M/I T/L G W+ Y D N/T K W/S Y+ C+ C+ Y+ Karlin 2002 

β2 W+ L T E I Y N N V V/I S F+ L+ R W Y D D R E D S T Y 
Schapira et al. 

2002 

β4 W+ L K E V/I Y N N I/V V R Q/M/L+ L+ R W Y D D R V Q - - Y 
Schapira et al. 

2002 

α7 W+ L Q S/Y/T I Y N S L V N Q+ L+ G W+ Y G S/G R E Y C+ C+ Y+ 
Schapira et al. 

2002 

α8 W L Q Y I Y N S L V N Q I G W H S N R E Y C C Y   

α10 W I/V R E/A V Y N K/N V L/V R R/M D G W H/Y G/N D R V Y C C Y   

α9 W I R T/S/I V Y N K V L R T D G W Y N D K/R V Y C C Y   

β1 Y/F L D/N E/A V L/M N N V/L V S/Q R/S Q S/K Y Y D T/A L/K Q/H/W 
P/G/V 

/D 

D/Q/ 

P/- 
R/P/- R/H/Y   

δ W+ I/V/M D/E A/G/S V/L E/Q N N L+ V/I Y/S/R+ Y/T+ L S/T L Y T/N/D G/A K/V/L V/I 
P/R/ 

S/D 

P/V/L 

/Y/- 

P/L/F 

/S 
R/H/Y Karlin 2002 

ε W I/V G/Q/E 
D/E/ 

A/Q 
V/M E N N L V Y/S S/Y/T L R Q/K Y N/S A/D I/K R/H/L 

E/D/H 

/P/W 

G/L/ 

D/Y 
S/T/A E/Y/F   

Acetylcholine 

γ W+ I/V E Q V E/G N N L+ V S/Y+ Y+ L Q Q Y S A M/K/R L/I/Y 
V/A/G 

/H/E 

F/L/A 

/- 
P/T H/Y Karlin 2002 

Acetylcholine 

Binding Protein 
W+ Q Q+ T L Y+ N - R+ V+ V+ L+ M+ G W+ H H Y+ K S Y+ C+ C+ Y+ Brejc et al. 2001 

3A W+ Y+ R+ F/Y+ I N E+ F+ Y V/I R/H/G Q Y T W+ H T V/I F/P/V E/F/T 
M/F/L 

/D/Q 

F/I/ 

S/E/D 
S/D Y/F 

Boess et al. 1997; 

Reeves and 

Lummis 2002; 

Steward et al. 

2000 

3B W Y R/Q V I/L N E F Y V N R/E H/Y N/K I H T A/S I/V Q/S A/Y D/I F/L -/F   

5-HT 

3C W M D V L V E S Y I S K D S F Y T V I K P M S Y   

α2 F F R K I H N G R I Q L T G Y Y T Q T K T E Y -   

α3 F F R T I H N G R L V L T G Y Y T Q I R T E Y -   

α1 F+ F R+ S+ I H N G R+ I+ T L T G Y Y T Q I Q T E Y - 

Boileau et al. 

2999; Cromer et 

al. 2002 

α5 F F R S I H N G R L E L T G Y Y P Q N S T E Y -   

α4 F F R T V R N G R I M L T G Y Y P Q T K T E Y -   

GABA 

α6 F F R T I R N G R I/L M L T G Y Y P Q I/R S/K T E Y -   
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ε I F Y/S/H T L R N S L/R I H/Y L T/S S F Y D/P E/Q I S/T V/F D F -   

γ3 F F A T I R N S R I W L T S Y Y P Q I T A D Y -   

γ4 F F A T I R N S R I W L T S Y Y P Q V R A E Y -   

γ1 I F A T I R N S R I W L T S Y Y P Q I H S D Y -   

γ2 F F A T/M I R N S R I W L T/S S Y Y P Q V/I K/R S D Y -   

ρ1 Y L R Y I V H S R V Q/Y L S E Y Y T Q F S T W Y -   

ρ2 Y L R Y I V H S R V F L S E Y Y T Q F S T W Y -   

ρ3 Y L R Y I V H S R V H L S E Y Y N Q F S Y W Y -   

δ F L H S L V N A R L Q L S E Y Y S Q N K A Q F -   

π Y L R R L V E S R L F L A E W Y D Q V/R Q T N Y -   

θ F L/F H T L V/L N S Q L H R/Q G E Y Y T Q V F T S Y -   

β4 Y F Q S L L N D R L H L G E Y Y T Q E V T S Y -   

β1 Y F Q S L L N D R L H L G E Y Y T Q K E T A Y -   

β2 Y F Q A L L N D R L H L G E+ Y Y+ T+ Q K V T+ S Y+ - 

Boileau et al. 

2999; Cromer et 

al. 2002 

β3 Y F Q Y L L N D R L H L G E Y Y T Q N V T A Y -   

α1 F L R Q I+ A+ N+ E R I S L S E F+ Y+ T+ Q K+ Y+ T+ K F - 

Schmieden et al. 

1993; Vafa 1999; 

Vandenberg et al. 

1992a; 

Vandenberg et al. 

1992b 

α3 F L R K I A N E R I F L S E F Y T Q K Y T K F -   

α2 F L R Q I A N E R I S L S E F Y T Q K Y T K F -   

Glycine 

β F L R K L A N E F I F L S E F Y T Q K Y T Y Y -   

Histamine F L/F A S/T I/M K N A W L/V Y L/F M E L H T Q T/Q E/Y T N F -   

**  Ligand binding site which interacts directly with ligand detected by tertiary structure study. 
+ Ligand binding site which interacts with ligand predicted by modeling and experiments. 

 :Basic Amino Acid (Positive Charged) 
 :Acidic Amino Acid (Negative Charged) 
 :Uncharged Polar Amino Acid 
 :Nonpolar Amino Acid 

Table 3.4: Important sites for ligand binding in 2.1 receptors 



 The ligand binding sites of 1.1 receptors are placed in the interface of α 

subunit and its adjacent subunit (Corringer et al. 2000). It is supposed that two 

acetyocholine binding sites in muscle type receptor are between α and β, and α and 

δ (or ε), two binding sites in neuronal heteropentameric receptor composed of two α

s and three β s are between α  and β , and five binding sites in neuronal 

homopentameric receptor are betweenα and another α (Hogg et al. 2003; Karlin 

2002). Previous studies demonstrated that agonists mainly bind to α  subunit 

(Middleton and Cohen (1991); Oswald RE and Changeux (1982); Reynolds and Karlin 

(1978)). This suggests that α subunit contributes the principal component of the 

binding site, and the adjacent subunit makes up the complementary component 

(Corringer et al. 1995). The subunits which have both the principal and complementary 

components of the lingand binding sites are colored orange in Fig. 3.16. The subunits 

which have the principal component and the subunits which have the complementary 

component are colored pink and light blue in Fig. 3.16, respectively. Fig. 3.16 is the 

phylogenetic tree constructed by using Neur_chan_LBD domain, the ligand binding 

domain. I defined acethlcholine binding protein as the out-group. From this tree, the 

ancestral protein of the acetylcholine receptor seems to have owned both the principal 

and complementary components. But through the evolution, some subunits lost the 

principal or complementary component. 

 Amino acid sites which are important for ligand binding are shown in Table 3.4. 

These sites are detected by tertiary structure studies, computer modeling studies and 

mutation studies (bibliographies cited are listed in Table 3.4). Colors of amino acid sites 

in Fig. 3.17 are written in Table 3.4. Amino acid numbers I’ll describe in this chapter 

about the 1.1 receptors correspond to the acetylcholine binding protein of snail (P58154) 
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(Table 3.4). If I think parsimoniously, the ligand binding sites which are conserved from 

the ancestral protein of the acetylcholine receptor seem to be W72, Y108, W162, Y204, 

C206, C207 and Y211 (Fig. 3.17). Among these ligand binding sites, Y204, C206 and 

C207 are conserved in all subunits which have the principal component, but lost in all 

subunits which have the complementary component. These three amino acids (Y204, 

C206 and C207) may interact with acetyl group of acetylcholine by van der Waals force 

(Schapira et al. 2002). And C206 and C207 makes disulfide bond and form ligand 

binding pore (Brejc et al. 2001; Karlin 2002; Schapira et al. 2002). I hypothesized the 

points where the amino acid substitutions from the three amino acids to others had 

occurred. Red arrows show the substitutions. All the substitutions might occur on the 

lineages to subunits which lost the principal component. Threfore, I hypothesized that 

the amino acid substitutions from Y204, C206 and C207 to others had made subunits 

lose the formation of the principal component. From tertiary structure and computer 

modeling analysis (Brejc et al. 2001; Schapira et al. 2002), these three amino acids are 

placed near the acetyl group of acetylcholine and may interact with the acetyl group. 

The amino acid substitutions from Y204, C206 and C207 to others may lose the function 

for binding the acetyl group. 

 

3.3.2.2.3 Necessary Amino Acid Changes for Ligand Binding Specificity of 5-HT3 

Receptors 

 5-HT3 receptors are pentameric receptors, and there are three kinds of 

subunits; 3A, 3B and 3C (Reeves and Lummis 2002). 3A can form functional 

homopentameric receptor, and this subunit has the ligand binding sites (Reeves and 

Lummis 2002). 3B can not form functional homopentameric receptor, but 
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heteropentameric receptor composed of 3A and 3B is functional receptor (Hanna et al. 

2000). The main effect of 3B seems to be biophysical properties rather than 

pharmacological properties (Brady et al. 2001). Therefore, 3B may not bind ligand. 

Functions of 3C are unknown, 3C may works for regulation of the receptors (Reeves and 

Lummis 2002). 

 The important sites for binding 5-HT are shown in Table 3.4. If I think 

parsimoniously referring to the phylogenetic tree of 1.1 receptors (Fig. 3.15) and the tree 

of 5-HT3 receptors (Fig. 3.17), I hypothesized that the six amino acid substitutions at 

the positions of 72, 109, 162, 204, 206 and 207 are essential for ligand binding specificity 

of 5-HT3 receptors (Fig. 3.17). In the last section, I predicted Y204, C206 and C207 are 

important for the formation of the (+) ligand binding site. These amino acids are not 

conserved in 5-HT3 receptors. Therefore, I predicted the amino acid substitutions from 

Y204, C206 and C207 to others might occur on the lineage to 5-HT3 receptors (Fig. 3.17), 

and these amino acid substitutions may make 1.1 receptors lose the function of binding 

acetylcholine. E109 is predicted to be placed near the amino group of 5-HT from the 

modeling study (Boess et al. 1997). I hypothesized that E109 could interact with the 

amino group. The amino acid substitution to E109 might occur on the lineage to 5-HT3 

receptor, and the substitution might produce the interaction between 5-HT3 receptor 

and the amino group of 5-HT (Fig. 3.17). I hypothesized W72 and W162, two aromatic 

amino acids, which formed aromatic pore in the ligand binding sites had conserved from 

the ancestral protein of the 5-HT3 receptors. Although W72 is conserved among the all 

5-HT3 receptors, W162 is only conserved among the 5-HT3A receptors. I hypothesized 

that the amino acid substitution from W162 to I on the lineage to 5-HT3B and the amino 

acid substitution from W162 to F on the lineage to 5-HT3C made 5-HT3 receptors lose 



 108 

the 5-HT binding function.



 
 

Fig. 3.17: Phylogenetic tree of 5-HT receptors constructed by using Neur_chan_LBD domain. Protein 
whose ligand binding sites are predicted by modeling and experiments is colored blue. Amino acid 
substitutions important for changing ligand binding specificities are shown (corresponding sites are 
enclosed by yellow lines in Table 3.4). 
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3.3.2.2.4 Necessary Amino Acid Changes for Ligand Binding Specificity of GABAA 

Receptors 

 GABAA receptors are pentameric receptor, and subunits of GABAA receptor are 

categorized into α1-6, β1-4, γ1-4, δ, ε, π and ρ1-3 (Watanabe et al. 2002). 

Some researchers define GABA receptors composed of ρ1-3 subunits as GABAC 

receptor, because the pharmacological features of the GABAC receptor are different from 

those of GABAA receptor (Bormann 2000). But according to IUPHAR (International 

Union of Pharmacology) definition, ρ1-3 subunits are GABAA receptor subunits 

(Barnard et al. 1998). At least each one α, β and γ subunits are included in the 

functional receptor, and most subunit compositions of GABAA receptors are 2α2β1γ, 2

α1β2γ, 1α2β2γ (Watanabe et al. 2002). γ can be replaced by δ. The ligand 

binding sites of GABAA receptor are placed between α and β subunits (Watanabe et 

al. 2002). The ligand binding sites of GABAA receptor are predicted to be F72, R74, R123 

and I or L124 in α subunit and E160, Y164, T165, T204 and Y207 in β subunit from 

computer modeling and mutation studies (Boileau et al. 2999; Cromer et al. 2002) 

(Table 3.4). Most of these amino acids are conserved in both α subunits and β 

subunits. Fig. 3.18 is the phylogenetic tree of GABAA receptors. If I think 

parsimoniously, the ancestral protein of GABAA receptors might have predicted ligand 

binding sites of both α subunit and β subunit (F72, R74, R123, I or V or L124, E160, 

Y164, T165, T204 and Y207) (Fig. 3.18). Comparing ligand binding sites between α 

and β subunits, the amino acid sites at the positions of 72, 74 and 160 are different 

between the two subunits. I hypothesized these two differences are the cause for the 

different ligand binding feature between α and β subunits. If I think parsimoniously, 

the amino acid substitutions at the position of 160 (from E to G) and at the positions of 
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72 (from F to Y) and 74 (from R to Q) might occur on the lineage to α and β subunit 

respectively. Although there are no evidences, I hypothesized E160 could interact with 

carboxyl group of GABA. Amino acid substitution from E160 to G might make GABAA 

receptor weaken the interaction with the carboxyl group of GABA. 



 

Fig. 3.18: Phylogenetic tree of GABA receptors 
constructed by using Neur_chan_LBD domain. Protein 
whose ligand binding sites are predicted by modeling 
and experiments are colored green. Amino acid 
substitutions important for changing ligand binding 
specificities are shown (corresponding sites are 
surrounded by yellow lines in Table 3.4). 
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3.3.2.2.5 Necessary Amino Acid Changes for Ligand Binding Specificity of Glycine 

Receptors 

 Glycine receptor is composed of α and β subunits, which form pentameric 

structure, and cytoplasmic sutunit. Although α and β subunits are homologous to 

other 1.1 receptor subunits, cytoplasmic subunit is not homologous. Fig. 3.19 shows the 

phylogenetic tree of α  and β  subunits. α  subunits can form functional 

homopentameric structure, but β subunits can not (Jentsch et al. 2002). 

 The important sites for ligand binding in α subunit are shown in Table 3.4. I 

predicted amino acid changes of these sites by thinking parsimoniously referring to 

Table 3.4, Fig. 3.15 and Fig. 3.19. Among these sites, I hypothesized that I121, N130, 

Y189, T190 and T232 had been conserved from the ancestral protein, and amino acid 

substitutions to A129, F187, K228 and Y230 occurred on the lineage to α and β 

subunits (Fig. 3.19). Only one amino acid site is different between α and β subunits, 

and the site is the position of 100 (I in α subunit and L in β subunit). I hypothesized 

that the amino acid substitution from I100 to L might have occurred on the lineage to 

β subunit (Fig. 3.19). But I don’t know whether this substitution is the essential 

substitution for loosing the function for glycine binding in β subunit.



 
 
 

Fig. 3.19: Phylogenetic tree of glycine receptors constructed by using Neur_chan_LBD domain. 
Protein whose ligand binding sites are predicted by experiments are colored blue. Amino acid 
substitutions important for changing ligand binding specificities are shown (corresponding sites are 
surrounded by yellow lines in Table 3.4). 
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3.3.2.3 Phylogenetic Analysis of 1.4 Receptors 

 1.4 receptors are all P2X purinoceptors. They have two transmembrane regions, 

and their ligand is ATP. P2X receptors are homo- or heteropolymers, and subunits are 

categorized into P2X1-P2X7 (Khakh et al. 2001; North 2002). Fig. 3.20 shows the 

phylogenetic tree of P2X receptors constructed by using P2X_receptor domain. All 

subunits have P2X_receptor domain which includes the ligand binding sites and the two 

transmembrane regions. I could not define the root of the phylogenetic tree of 1.4 

receptors. There are no reports of sequences homologous with P2X receptors in 

invertebrates, therefore these receptors might be generated after the divergence 

between vertebrates and invertebrates. 

 Putative ligand binding sites of P2X receptors are shown in Fig. 3.21. These 

four sites were predicted by mutational studies of human P2X1 receptor (Ennion et al. 

2000). These four amino acids are conserved all of P2X receptors. Therefore, the 

ancestral protein might have the four amino acids and the ATP binding function.



Fig. 3.20: Phylogenetic tree of P2X receptors 
constructed by using P2X_receptor domain. 
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Q9JJX3 52 KGYQETDS-VVSSVTTKAKGVA 72   268 RFAKYYRDLAGNEQRTLTKAYGI 286 
Q9JJX4 52 KGYQETDS-VVSSVTTKAKGVA 72   295 RFAKYYRDLAGNEQRTLTKAYGI 313 
Q9Z257 52 KGYQETDS-VVSSVTTKAKGVA 72   295 RFAKYYRDLAGNEQRTLTKAYGI 313 
Q9JJX5 52 KGYQETDS-VVSSVTTKAKGVA 72   268 RFAKYYRDLAGNEQRTLTKAYGI 286 
Q9JJX6 52 KGYQETDS-VVSSVTTKAKGVA 72   295 RFAKYYRDLAGNEQRTLTKAYGI 313 
Q9Z256 52 KGYQETDS-VVSSVTTKAKGVA 72   268 RFAKYYRDLAGNEQRTLTKAYGI 286 
P51577 52 KGYQETDS-VVSSVTTKAKGVA 72   295 RFAKYYRDLAGKEQRTLTKAYGI 313 
Q99571 52 KGYQETDS-VVSSVTTKVKGVA 72   295 RFAKYYRDLAGNEQRTLIKAYGI 313 
Q8N4N1 52 KGYQETDS-VVSSVTTKVKGVA 72   295 RFAKYYRDLAGNEQRTLIKAYGI 313 
Q9PU37 52 KGYQETDS-VVSSVTTKVKGVT 72   294 RFAKYYKDSSGIETRTLIKAYGI 312 
Q9YI70 52 KGYQETDS-VVSSVTTKVKGVT 72   295 RFAKYYKDSSGIETRTLIKAYGI 313 
Q9DDP2 54 KGYQEFDT-VVSSVTSKVKGVV 74   296 RFAKYYKDSNGVESRTLIKVYGI 314 
Q9DDP0 54 KGYQEFDI-VVSSVTSKVKGVV 74   296 RFAKYYKDSNGVESRTLMKVYGI 314 
Q9DD61 54 KGYQEFDT-VVSSVTSKVKGVV 74   296 RFAKYYKDSNGVESRTLMKVYGI 314 
Q9DDP1 54 KGYQEFDT-VVSSVTSKVKGVV 74   296 RFAKYYKDSNGVESRTLMKVYRI 314 
Q8AWD8 55 KGYQDTDT-VLSSVTTKVKGIA 75   307 RFAKYYKNSDGTETRTLIKGYGI 325 
Q98TZ0 55 KGYQDTDT-VLSSVSTKVKGIA 75   298 RFAKYYKNSDGTETRTLIKGYGI 316 
Q8AWC0 55 KGYQTQDS-IVSSVSVKLKGLT 75   295 RYAKYYRED-GMEKRTLYKVFGI 312 
P51575 53 KGYQTSSG-LISSVSVKLKGLA 73   292 RFARHFVEN-GTNYRHLFKVFGI 309 
P51576 53 KGYQTSSG-LISSVSVKLKGLA 73   292 RFARHFVQN-GTNRRHLFKVFGI 309 
Q91WI3 53 KGYQTSSG-LISSVSVKLKGLA 73   292 RFARHFVQN-GTNRRHLFKVFGI 309 
P47824 53 KGYQTSSD-LISSVSVKLKGLA 73   292 RFARHFVQN-GTNRRHLFKVFGI 309 
Q9JIF8 53 KGYQTSSD-LISSVSVKLKGLA 73   265 RFARHFVQN-GTNRRHLFKVFGI 282 
Q8UUP5 47 KRYQKKDS-IISSVHTKVKGFA 67   280 RFARYYKNAHGTETRTLIKAYGI 298 
Q99572 49 KLYQRKEP-VISSVHTKVKGIA 69   294 RYAKYYKENN-VEKRTLIKVFGI 311 
Q96EV7 49 KLYQRKEP-VISSVHTKVKGIA 69   294 RYAKYYKENN-VEKRTLIKVFGI 311 
Q64663 49 KLYQRKEP-LISSVHTKVKGVA 69   294 RYAKYYKEN-GMEKRTLIKAFGV 311 
Q9Z1M0 49 KLYQRKEP-VISSVHTKVKGIA 69   294 RYAKYYKENN-VEKRTLIKAFGI 311 
Q8CHP3 49 KLYQRKEP-VISSVHTKVKGIA 69   294 RYAKYYKENN-VEKRTLIKAFGI 311 
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O54869 65 KSYQDSETGPESSIITKVKGIT 86   302 RFAKYYKINGTTTTRTLIKAYGI 320 
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Q8K3P1 66 KSYQDSETGPESSIITKVKGIT 87   303 RFAKYYKINGTTTTRTLIKAYGI 321 
Q9UBL9 65 KSYQESETGPESSIITKVKGIT 86   302 RFAKYYKIN-GTTTRTLIKAYGI 319 
O70399 61 KSYQDSETGPESSIITKVKGIT 82   325 RFAKYYRVN-STTTRTLIKAYGI 342 
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P2X4 

P2X1 

P2X7 

P2X2 

P2X3 

P2X6 

P2X5 

Ligand Binding Sites Ligand Binding Sites 

Fig. 3.21: Multiple alignment of P2X receptors. Red arrows indicate putative ligand binding sites. 



3.3.2.4 Phylogenetic Analysis of 2.1 Receptors 

 2.1 receptors are GPCR class A, and all of 2.1 receptors exist in eumetazoa. 

They have seven transmembrane regions. There are many other receptors for 

neurotransmissions not listed in Table 3.1. They are opsin, olfactory receptor, 

neuropeptide receptor and so on (Fig. 3.22). Fig. 3.22 is the phylogenetic tree of 2.1 

receptors. Many of bootstrap values in the tree are very low, therefore this tree is not 

necessarily reliable. Because it was difficult to define the root of the tree, I inferred the 

root by mid-point rooting. The ancestral protein might have 7tm_1 domain including 

seven transmembrane regions. Domain changes might occur on the lineage to 

glycoprotein hormone receptor and relaxin receptor. Amine receptors make a cluster, 

and P2Y purinoceptors get together. Ancestral receptors of amine receptors and 

purinoceptors seem to have been peptide receptors. I did further phylogenetic analysis 

of amine receptors which are listed in Table 3.1 and clustered in the molecular 

phylogenetic tree (Fig. 3.22). 
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Fig. 3.22: Phylogenetic tree of 2.1 receptor constructed by using 7tm_1 domain. 

 
 



Necessary Amino Acid Changes for Ligand Binding Specificity of Amine Receptors 

 Fig. 3.23 is the phylogenetic tree of amine and acetylcholine receptors which 

make a cluster in Fig. 3.22. I predicted the essential amino acid substitutions for 

generating each receptor. The ligand binding sites of the receptors are shown in Table 

3.5. Amino acid site numbers I describe in this section are site numbers of acetylcholine 

M1 receptors in rat (P08482). D105 is conserved among all of amine and acetylcholine 

receptors. D105 is predicted to interact with amino group in amine (Boess et al. 1998; 

Cavalli et al. 1996; Elz et al. 2000; Fukui et al. 1999; Gantz et al. 1992; Manivet et al. 

2002; Mialet et al. 2000; Ohta et al. 1994; Seeber et al. 2003; Strader et al. 1988; Roth et 

al. 1998; Uveges et al. 2002; Vaidehi et al. 2002; Wang et al. 1991) or acetyl group in 

acetylcholine (Page et al. 1995). D105 is conserved not only in amine and acetylcholine 

receptors, but also in opioid, somatostatin and urotensin II receptors. But the lineages 

of opioid, somatostatin and urotensin II receptors are apart from the lineage of amine 

and acetylcholine receptors. Therefore, amino acid substitution to D105 seems to have 

occurred on the lineage to amine and acetylcholine receptors, if I think parsimoniously. 

And this substitution might make molecules which have amine or acetyl group possible 

to bind to 2.1 receptors, therefore I hypothesized the amino acid substitution to D105 

was the essential amino acid substitution for generating amine and acetylcholine 

receptors. 

 I predicted the essential amino acid substitutions for generating histamine 

receptor and acethlcholine receptors (Fig. 3.23). There are four subtypes in histamine 

receptor, H1-H4. The essential substitutions for generating H2 receptors, H1 receptors 

and H3 and H4 receptors are the substitution from S to D192, the substitutions to K189 

and N196 and the substitution to E196, if I think parsimoniously. And these 
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substitutions might make imidazole ring of histamine possible to bind 2.1 receptors. 

Although H3 and H4 seem to have generated by the same substitutions, different 

substitutions might produce H1, H2 and H3-4 receptors independently. The amino acid 

substitution to Y404 is the only substitution on the lineage to acetylcholine receptor 

which produces amino acids which may interact with acetylcholine. From modeling 

study (Lu et al. 2001), Y404 may be possible to interact with acetyl group of 

acetylcholine. But D105, which may have conserved from the ancestor of amine and 

acetylcholine receptors, is also possible to interact with acetyl group of acetylcholine. 

Therefore, I can’t decide whether the amino acid substitution to Y404 is the essential 

amino acid substitution or not. I also tried to predict other essential amino acid 

substitutions for generating each receptor, but it is impossible to predict those 

substitutions. Because many amino acid substitutions might occur in relatively very 

short time, and I couldn’t trace the evolutionary history of amine receptors. Moreover, 

bootstrap values of the phylogenetic tree in Fig. 23 are low in amine receptor lineages. 

Therefore, I could not predict exact traces of amine receptor evolution.
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Amino Acid Site Number of Acetylcholine 
M1 Receptor (P08482) 

101 105 106 108 109 150 188 189 192 193 196 378 381 382 385 403 404 405 408 References 

1 5-HT1B Receptor W D I C C W Y T S T A W F F S F N/T W Y  
2 5-HT1D Receptor W D I C C W Y T S T A W F F S/T F T W Y  
3 5-HT1E Receptor W D M C C W Y T S T A W F F E L T W Y  
4 5-HT1F Receptor W D I C C W S T S T A W F F E L A/T W Y  
5 5-HT1A Receptor F D## V/M C C W Y## T S## T## A W F## F A I N/T W Y Seeber et al. 2003 
6 5HT-Receptor (Drosophila) W D V C C W Y Q A T T W F F A F L W Y  
7 5-HT5B Receptor W D V C C W Y A S T A W F F E F L W Y  
8 5-HT5A Receptor W D V C C W Y T/A S T A W F F E F L W Y  
9 5HT-Receptor (Drosophila) W D V C C W Y Q A T S W F F A F L W Y  

10 5-HT7 Receptor F D V C C W Y T S T A W F F S C/F/L L W Y  
11 5-HT6 Receptor W D+ V C C W F/Y V A S T W F F N/S L T W Y Boess et al. 1998 
12 5-HT Receptor (Aplysia) W D V C E W Y S Y S C W F F N T I W Y  
13 Dopamine D1 Receptor W D I C S W Y A S S S W F F N F V W W  

14 Histamine H2 Receptor Y D+ V L C W Y## G D##, + G T+ W Y F F V L W Y Gantz et al. 1992; Nederkoorn et al. 
1996 

15 5-HT4 Receptor R D## V L T W Y A C S## A W F F N F L W Y Mialet et al. 2000 
16 Adrenaline α1D Receptor W D V C C W Y A S S S W F F L I F W Y  
17 Adrenaline α1B Receptor W D## V C C W Y A S## S## S## W F F L V F W Y Cavalli et al. 1996 

18 Adrenaline α1A Receptor W D V C C W Y V/A S##, + A S+ W F F M/L V/A/T F W Y Hwa and Perez 1996; Perez et al. 
1998 

19 Adrenaline β２ Receptor W D+ V C V W Y A S S+ S+ W F F N L N W Y Strader et al. 1988; Strader et al. 
1989 

20 Adrenaline β3 Receptor W D V C V W Y A/V S S S W F F N L N W Y  
21 Adrenaline β4 Receptor W D V C V W Y A S S S W F F N L N W Y  
22 Adrenaline β1 Receptor W D## V C V W Y A S S## S## W F F## N F/L N W Y Vaidehi et al. 2002 
23 5-HT2A Receptor W D+ V F S+ W+ F V G S A/S W+ F F+ N F V W+ Y Roth et al. 1998 
24 5-HT2C Receptor W D+ V F S+ W F V G S A W F F+ N F V W Y Roth et al. 1998 
25 5-HT2B Receptor W## D## V F## S## W F M/I G S A W F F## N## F## V/S W Y Manivet et al. 2002 
26 5-HT Receptor (Drosophila) Y D V A C W F F G S A W F F N C L W Y  
27 Dopamine D2 Receptor F D V M C W F V S+ S+ S W F F H F T W Y Coley et al. 2000; Cox et al. 1992 
28 Dopamine D3 Receptor F D V M C W F V S+ S S W F F H T/F T W Y Sartania and Strange 1999 
29 Dopamine D4 Receptor L D V L C W Y V S S S W F F H V T W Y  
30 Dopamine Receptor (Drosophila) Y D V C S W F I S S S W F F N T T W Y  
31 Octopamine Receptor W/F D I/V C/L C W F/Y V S S/A S W F F Y I/F T W Y  
32 Adrenaline α2B Receptor Y D V F C W Y I S S/T S W F F Y F F W Y  
33 Adrenaline α2A Receptor Y D+ V F C W Y V/I S C/S S+ W F F Y F F W Y Wang et al. 1991 
34 Adrenaline α2C Receptor Y D V F C W Y I S C S W F F Y F F W Y  

35 Histamine H1 Receptor W D##, + Y A S W F K##, + T A N##, + W+ Y+ F F T I W Y 

Elz et al. 2000; Fukui et al. 1999; 
Leurs et al. 1995; Ohta et al. 1994; 
ter Laak et al. 1995; Wieland et al. 
1999 

36 Histamine H3 Receptor W D## Y L C W F L A S E## W Y T M S F W W Uveges et al. 2002 
37 Histamine H4 Receptor W D Y L C W I/V/F L/A T S/L/A/M E W Y S/C T A F W W  
38 Acetylcholine Receptor (Drosophila) W D Y A S W I T T A A W Y N V F Y A Y  
39 Acetylcholine M2 Receptor W D Y V S W V T T A A W Y N V G Y W Y  
40 Acetylcholine M4 Receptor W D Y V S W V T T A A W Y N V G Y W Y  

41 Acetylcholine M1 Receptor W D##, + Y## A S W I T T A A W Y##, + N V G Y## W Y## Page et al. 1995; Lu et al. 2001; 
Ward et al. 1999 

42 Acetylcholine M3 Receptor W D Y A S W I T T A A W Y N V G Y W Y  
43 Acetylcholine M5 Receptor W D Y A S W I T T A A W Y N V G Y W Y  

 ## Ligand binding site which interacts directly with ligand predicted by computer modeling. 
+ Ligand binding site which interacts with ligand predicted by mutation study. 

  : Basic Amino Acid (Positive Charged) 
  : Acidic Amino Acid (Negative Charged) 
  : Uncharged Polar Amino Acid 
  : Nonpolar Amino Acid 

Table 3.5: Important sites for ligand binding in 2.1 receptors 



3.4 Conclusion 

3.4.1 Evolution of Neurotransmitter Receptors 

 I did phylogenetic analysis of neurotransmitter receptors and investigated how 

amino acid substitutions had changed protein functions through evolution. Fig. 3.24 is 

the summarized phylogenetic trees of receptors I analyzed. As I explained in previous 

sections, I hypothesized that some domains in 1.2 and 2.3 receptors and soluble 

guanylyl cyclase had been generated before the divergence between bacteria and 

eukaryotes. And these receptors may have been generated and diversified after the 

divergence after bacteria and eukaryotes. From my phylogenetic analysis, 1.1 receptors 

and 2.1 receptors may have been produced after the divergence between porifera and 

eumetazoa. Because 1.4 receptors exist only in vertebrates, I hypothesized that 1.4 

receptor was generated after the divergence between invertebrates and vertebrates. If I 

trace the history of receptors by domain unit, 1.1, 1.4 and 2.1 receptors are relatively 

new. Although 2.1 receptor is relatively new one, this receptor may have diversified 

rapidly after the divergence between porifera and eumetazoa. New functions may have 

been acquired by domain changes in the history of neurotransmitter receptors, but 

ligand specificities may have changed a small number of amino acid substitutions. 

These amino acid substitutions I analyzed are less than ten amino acid changes. 

Neurotransmitter receptors seems to have been generated by domain changes in some 

receptors and diversified by a small number of amino acid changes, and some of 

domains may have inherited from very old ancestors.

Fig. 3.24 (next page): Composite trees of all neurotransmitter receptors I analyzed. 
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3.4.2 Evolution of Neurotransmission Systems 

 I investigated how neurotransmission systems have evolved. I first constructed 

phylogenetic trees of synthases, receptors and transporters of neurotransmitters. It 

seems that some synthases and some receptors, or some receptors and transporters 

have evolved together. Referring to topologies of each molecular phylogenetic tree (Fig. 

3.25, 26, 27), it is possible to superimpose phylogenetic trees of S1 synthases and 2.1 

receptors for histamine, dopamine and 5-HT, and also possible to impose phylogenetic 

trees of 2.1 receptors and T1 transporters for 5-HT, dopamine, adrenaline and 

noradrenaline (Fig. 3.28). It means that some of S1 synthases and 2.1 receptors might 

evolve together, and some of 2.1 receptors and T1 transporters might evolve together. If 

they evolved together, what had happened? I hypothesized about the co-evolution of S1 

synthases and 2.1 receptors as follows. S1 synthases might evolve into the synthase for 

histamine and the synthase for dopamine and 5-HT at first. After that, amino acid 

substitutions might generate 2.1 receptors for histamine, dopamine and 5-HT. It is 

difficult to hypothesize the co-evolution of the 2.1 receptors and the T1 transporters, 

because I could not postulate which protein was generated at first. Although some of 

synthases and receptors or some of receptors and transporters might evolve together, 

most of proteins I analyzed seem to have evolved independently. Next, I focused on 

neurotransmitter receptors and did analysis of domain changes and amino acid 

substitutions which are essential for ligand binding specificity changes through 

evolution. Domain changes might be important for generating receptors in 1.2 and 2.3 

receptors. A small number of amino acid substitutions might contribute to diversity of 

ligand binding specificities. Each protein may have evolved independently in 

neurotransmission system, and domain changes and a small number of amino acid 



 127 

substitutions may have produced diverse neurotransmission systems. 
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4. Phylogenetic Analysis of Ion Channels 
 

4.1 Introduction 
 Voltage-gated ion channels are important for generating action potentials in 

neurons. The evolution of voltage-gated potassium, calcium and sodium ion channels is 

thought to be like building blocks. Voltage-gated potassium channel is composed of four 

subunits, and each subunit has six hydrophobic segments, S1-S6 (Tempel et al. 1987). 

Four repeats of the six hydrophobic segments (S1-S6) are in one molecule of 

voltage-gated calcium and sodium channels which is a monomer channel (Noda et al. 

1984; Tanabe et al. 1987). Voltage-gated calcium and sodium channels are hypothesized 

to have evolved by gene duplications from the ancestral protein that was similar to a 

potassium channel (Anderson and Greenberg 2001). For the purpose to infer the 

evolution of the voltage-gated channel family, I first conuducted the phylogenetic 

analysis of the potassium channels, the simplest channels among voltage-gated 

potassium, calcium and sodium channels. 

 The 12 sub-families in voltage-gated potassium channel (Kv) family including 

the 38 sub sub-families are defined by IUPHAR (Catterall et al. 2002). I did 

phylogenetic analysis of the four sub-families which were identified by early studies 

(Butler et al. 1989). The four sub-families are Kv1, Kv2, Kv3 and Kv4, and there are 

many experimental data of the channels in the four sub-families. By merging results of 

phylogenetic analysis and experimental data, I predicted amino acid substitutions 

which are important for changing the physiological features through the evolution of 

voltage-gated potassium channels. I especially focused on N-type inactivation of the 

channels which is one of major physiological features, and hypothesized how this 
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feature has been changed by amino acid substitutions through evolution. 
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4.2 Materials and Methods 
4.2.1 Amino Acid Sequence Retrieval 

 I retrieved the amino acid sequences of voltage-gated potassium channels from 

SWISS-PROT and TrEMBL (Boeckmann et al. 2003).  

 

4.2.2 Database Construction 

 Amino acid sequence data of voltage-gated potassium channels were integrated 

into a web-based SQL database (PostgreSQL) and I named it “Piment” 

(http://neuron.genes.nig.ac.jp/piment/), after the overall molecular shape of the 

voltage-gated potassium channel. “Piment” is a database including not only 

voltage-gated potassium channels but also other ion channels. Categories in the 

database are based on the bibliographies (Catterall et al. 2002; Conley 1996a; Conley 

1996b; Conley and Brammer 1999). This database has five tables, and each table has 

relationships to other tables (lines between tables in Fig. 4.1). To entry data, 

administrator, namely myself, of Piment database inputs only two data; accession 

number and category data which are defined by myself. Categories in the database are 

mainly based on the homologous groups. Each protein information is linked to amino 

acid database on GenomeNet (http://www.genome.ad.jp) (① in Fig. 4.2). Amino acid 

sequence data of each protein is also linked to amino acid database on GenomeNet (② 

in Fig. 4.2). Users can easily get amino acid sequence data of proteins in Piment. After 

checking boxes of proteins of which you want to get sequences (③) and clicking get the 

sequences button (④), users can get sequences of checked proteins. The sequences can 

store in virtual basket of piment web site (⑤), and users can convert to some sequence 

formats, or do multiple alignments and construct phylogenetic tree by ClustalW on 
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GenomeNet or DDBJ.
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T_INDEX 
Field Name ID† DB* OS FRAG PFAM PDB DE 
Data Type VARCHAR(20) VARCHAR(3) TEXT INT2 TEXT TEXT TEXT 

 
T_AC 
Field Name NUM† AC* ID* 
Data Type VARCHAR(20) VARCHAR(20) VARCHAR(20) 

 
T_PROT 
Field Name AC† CAT_ID* PMID 
Data Type VARCHAR(20) VARCHAR(39) TEXT 

 
T_CAT 
Field Name CAT_ID† CAT_NAME#* CAT_DE 
Data Type VARCHAR(39) VARCHAR(50) VARCHAR(254) 

 
T_PUBMED 
名称 PMID† TITLE* AUTH* JN* 
型 VARCHAR(10) VARCHAR(254) VARCHAR(254) VARCHAR(254) 

 
†: Primary Key, #: Unique, *: Not Null, Blue Characters: INDEX 
 

Fig. 4.1: Tables in Macaroni database. Abbrebiations of the field name are as follows. ID = ID number 
of each sequence; DB = database where sequences are existed; OS = species name; FRAG = 
fragment data or not; PFAM = IDs of pfam domains which each protein has; PDB = pdb IDs, if 
tertiary structure of each protein is available; DE = description of each domain; NUM = 
non-redundant number for identification of each data; AC = accession number of each protein; 
CAT_ID = IDs of categories we defined; PMID = PubMed IDs of references in which functions 
of each protein describe; CAT_NAME = category name; CAT_DE = description of each 
category; TITLE = title of reference; AUTH = author of reference; JN = journal name of 
reference 



 137 Fig. 4.2: Features of Piment 

Top Menu 

④ 
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① ② ③ 
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4.2.3 Domain Composition Analysis 

 I searched Pfam database (http://www.sanger.ac.uk/Software/Pfam/) (Bateman 

et al. 2002), the collection of protein families and domains, for functional domains of 

each protein. 

 

4.2.4 Phylogenetic Analysis 

 The Piment database can collect FASTA format amino acid sequences of 

voltage-gated potassium channels which I select. I collected amino acid sequences by 

using the Piment database function and made multiple alignment by ClustalX 

(Thompson et al. 1997). Neighbor-joining tree (Saitou and Nei 1987) was constructed by 

using MEGA2 (Kumar et al. 2001). Numbers of amino acid substitutions were computed 

based on Poisson correction, because the evolutionary distances among voltage-gated 

potassium channels are short. 

 

4.2.5 Analysis of Domain Changes and Amino Acid Substitutions 

I analyzed the relationship between amino acid sequences and physiological 

functions. Physiological functions may have changed by several amino acid 

substitutions through evolution. I predicted how the domain compositions had changed 

through evolution referring to the molecular phylogenetic tree I constructed. I also 

focused on the substitutions of a small number of amino acids. I predicted the important 

amino acid substitutions for changing N-type inactivation, one of the major 

physiological functions, of voltage-gated potassium channels based on previous studies 

and the phylogenetic tree of the channels I constructed. 
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4.2.6 Analysis of N-terminal Amino Acid Chemical Features 

Hydrophobicity and positive charge of the first 20 N-terminal amino acids are 

important for generating N-type inactivation. I standardized hydrophobicitcy value 

(Nozaki and Tanford 1971) and isoelectric point of each amino acid and calculated the 

average of each value in N-terminal amino acids. I did principal component analysis by 

using the average standardized hydrophobicity values and isoelectric points. 

 

4.3 Results and Discussion 

4.3.1 Inactivation of Voltage-gated Channels 

 Voltage-gated channels are important for generating action potential in 

neurons. Voltage-gated potassium channels of Kv1-4 are composed of four α subunits. 

In Kv1 channel, β subunits form a complex with the four α subunit. Voltage-gated 

channels have three states; resting, open and inactivation (Fig. 4.3). If membrane 

potential is changed, voltage-gated channel is activated and opens. After that 

voltage-gated channel is closed by inactivation. I focused on the inactivation, one of 

major physiological features of ion channels. There are two kinds of inactivation, N-type 

which is rapid inactivation and C-type which is slow inactivation (Rasmusson et al. 

1998). The first 20 N-terminal amino acids in α subunit (Hoshi et al. 1990; Zagotta et 

al. 1990) and β-subunit (Rettig et al. 1994) act as the inactivation gate of the channel 

pore for generating N-type inactivation in Shaker-type voltage-gated potassium 

channels. The essential chemical features of the N-terminal amino acids to act as the 

inactivation gate are that the first approximately ten amino acids are hydrophobic, and 

the next ten amino acids are hydrophilic and positively charged (Murrell-Lagnado and 

Aldrich 1993a; Murrell-Lagnado and Aldrich 1993b). 
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4.3.2 Domain Changes 

 Fig. 4.4 shows the phylogenetic tree of voltage-gated potassium channel α 

subunits. Domain compositions are also shown in Fig. 4.4. All of the channels have 

Ion_trans domain which includes six hydrophobic segments (S1-S6) and K_tetra domain 

which is important to connect other α  subunits for forming tetramer. The 

voltage-gated channels which are inactivated rapidly are colored red (bibliographies 

cited are listed in Table 4.1), and I suspected that these rapid inactivations are N-type 

inactivations. Domain compositions do not correspond to N-type inactivation channels, 

therefore the N-type inactivation was not generated by domain changes. 
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Fig. 4.3: Three states of ion channels.  
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Fig. 4.4: Phylogenetic tree of 
voltage-gated potassium channels of 
Kv1-4 subfamilies. Each colored square 
designates a Pfam domain. Channels 
whose names are written by red 
characters are inactivated rapidly, and 
the inactivations are suspected to be 
N-type inactivations. The red arrow on 
the lineage to Kv2.1 and 2.2 channels is 
predicted domain insertion. 
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Table 4.1: References of electrophysiology data. 
 
Channel Reference 
Shaker Wei et al. 1990 

Kv1.1 
Akhtar et al. 2002; Christie et al. 1989; Grissmer et al. 1994; Stuhmer et al. 1989; Varshney 
et al. 2002; Zerr et al. 1998 

Kv1.2 
Akhtar et al. 2002; Grissmer et al. 1994; Koopmann et al. 2001; Paulmichl et al. 1991; 
Stuhmer et al. 1989; Varshney et al. 2002; Werkman et al. 1992 

Kv1.3 Attali et al. 1992; Douglass et al. 1990; Grissmer et al. 1994; Stuhmer et al. 1989 

Kv1.4 
Jerng et al. 1999; Malin and Nerbonne 2002; Stuhmer et al. 1989; Tseng-Crank et al. 1990; 
Wymore et al. 1994 

Kv1.5 Attali et al. 1993; Grissmer et al. 1994; Philipson et al. 1991 
Kv1.6 Grupe et al. 1990; Kirsch et al. 1991 
Kv1.7 Bardien-Kruger et al. 2002; Kalman et al. 1998 
Shab Pak et al. 1991b; Wei et al. 1990 

Kv2.1 
Frech et al. 1989; Koopmann et al. 2001; Malin and Nerbonne 2002; Martens et al. 2000; 
Murakoshi et al. 1997; Ottschytsch et al. 2002; Pak et al. 1991b; Zhu et al. 1999 

Kv2.2 Hwang et al. 1992; Malin and Nerbonne 2002 
Shaw Wei et al. 1990 

Kv3.1 
Grissmer et al. 1992; Grissmer et al. 1994; Luneau et al. 1991b; Rettig et al. 1992; Weiser et 
al. 1994 

Kv3.2 
Luneau et al. 1991a; McCormack et al. 1990; Rettig et al. 1992; Vega-Saenz de Miera and 
Rudy 1992; Weiser et al. 1994 

Kv3.3 Rae and Shepard 2000; Vega-Saenz de Miera and Rudy 1992; Weiser et al. 1994 
Kv3.4 Shelton and Dart 1996; Weiser et al. 1994 
Shal Pak et al. 1991a; Wei et al. 1990 

Kv4.1 Beck and Covarrubias 2001; Beck et al. 2002; Jerng et al. 1999; Pak et al. 1991a 
Kv4.2 Martens et al. 2000; Shibata et al. 2000 
Kv4.3 Beck and Covarrubias 2001; Beck et al. 2002; Tsaur et al. 1997 
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4.3.3 Amino Acid Changes Essential to N-type Inactivation of Voltage-gated 

Potassium Channels 

 As I described previous chapters, 20 N-terminal amino acids are important for 

generating amino acids. I calculated the average standardized hydrophobicity values of 

the first ten N-terminal amino acids (1-10 a.a.) and the average standardized 

hydrophobicity values and isoelectric points of the next ten N-terminal amino acids 

(11-20 a.a.) (Table 4.2, Fig. 4.3). The potassium ion channels which fulfilled conditions 

for occurring N-type inactivation are channels whose first ten amino acids are 

hydrophobic, and next ten amino acids are hydrophilic and positively charged. These 

channels are Shaker (Kv1), Kv1.5, Kv3.3 and Kv3.4, although Kv1.5 does not generate 

N-type inactivation (Table 4.3). Black circles in Table 4.3 are written in each column 

which is that the first ten amino acids are hydrophobic (the average standardized 

hydrophobicity values are more than 0), that the next ten amino acids are not 

hydrophobic (the average standardized hydrophobicity values are less than 0) or that 

the next ten amino acids are positively charged (the average standardized isoelectric 

points are more than 0). Channels which have three black circles have the specific 20 

amino acids for generating N-type inactivation have the three black circles in Table 4.3, 

and they are Shaker, Kv.1.5, Kv3.3 and Kv3.4. These channels except for Kv1.5 are 

suddenly inactivated. Therefore, N-type inactivation is occurred in Shaker, Kv3.3 and 

Kv3.4. But channels which are inactivated suddenly (Kv1.7 (Mouse), Shal (Kv4), Kv4.1, 

Kv4.2 and Kv4.3) do not have the three black circles, that is, there are now specific 

amino acids for N-type inactivation. It suggests the N-type inactivations in Kv1.7 (Rat) 

and Kv4 sub-family channels are generated by different mechanisms from those in 

Shaker, Kv3.3 and Kv3.4.
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Fig. 4.5: Chemical features of the first 20 N-terminal amino acids in Kv1-4 channels. Average standardized hydrophobicity values in the first ten 
N-terminal amino acids (violet), average standardized hydrophobicity values in the next ten N-terminal amino acids (purple) and average standardized 
isoelectric points (light yellow) are shown. 
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Table 4.2: Standardized hydrophobicity values and standardized isoelectric points of each amino acid. 

Amino 

Acids 

Standerdized 

Hydrophobicity 

Values 

Standerdized 

Isoelectric 

Points 

A -0.283 -0.030 

C -0.754 -0.556 

D -0.754 -1.858 

E -0.754 -1.603 

F 1.603 -0.324 

G -0.754 -0.047 

H -0.283 0.870 

I 0.943 -0.018 

K -0.754 2.087 

L 0.943 -0.041 

M 0.471 -0.177 

N -0.754 -0.364 

P -0.754 0.140 

Q -0.754 -0.228 

R -0.754 2.665 

S -0.754 -0.211 

T -0.377 0.061 

V 0.660 -0.052 

W 2.451 -0.092 

Y 1.414 -0.222 
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Table 4.3: Chemical features in 20 N-terminal amino acids. 
 

Average Hydrophobicity Average Isoelectric Point 
Channel 

Name 
Species More than 0 

(1-10 a.a.) 

Less than 0 

(11-20 a.a.) 

More than 0 

11-20 a.a. 

Shaker (Kv1) Drosophila ● ● ● 

Kv1.1 Human × ● × 

Kv1.2 Human × ● × 

Kv1.3 Human ● ● × 

Kv1.4 Human × ● × 

Kv1.5 Human ● ● ● 

Kv1.6 Human × ● × 

Kv1.7 (Mouse) Mouse × ● ● 

Kv1.7 (Human) Human × ● ● 

Shab (Kv2) Drosophila × ● × 

Kv2.1 Human × ● ● 

Kv2.2 Human × ● ● 

Shaw (Kv3) Drosophila × × ● 

Kv3.1 Human × ● ● 

Kv3.2 Human × ● ● 

Kv3.3 Human ● ● ● 

Kv3.4 Human ● ● ● 

Shal (Kv4) Drosophila ● × ● 

Kv4.1 Human ● × ● 

Kv4.2 Human ● × ● 

Kv4.3 Human ● × ● 
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 I did principal component analysis by using three values; the average 

standardized hydrophobicity values of the first ten amino acids and the standardized 

hydrophobicity values and isoelectric points of the next ten amino acids. First, second 

and third principal components and percentages of inertia are shown in Table 4.4. 

Although inertia of the second principal component is not high, the second principal 

component is good for explaining the 20 specific amino acids which generate N-type 

inactivation. Because the second principal component is positively correlated with the 

hydrophobicity of the first ten amino acids and the isoelectric points of the next ten 

amino acids, and negatively correlated with the hydrophobicity of the next ten amino 

acids. It means the second principal component can explain the 20 specific amino acids 

including the first ten hydrophobic amino acids and the next ten hydrophilic and 

positively charged amino acids. The component scores of the second principal 

component are sorted by descending order and shown in Table 4.5. The three highest 

scores are the component scores of Kv3.4, Shaker and Kv3.3 which are inactivated by 

N-type inactivation. But the scores of Kv1.7 (Mouse), Shal, Kv4.1, Kv4.2 and Kv4.3 are 

not so high. As I hypothesized the previous paragraph, the mechanism of inactivation in 

Kv1.7 (Mouse), Shal, Kv4.1, Kv4.2 and Kv4.3 seems to be different from the ones in 

Shaker, Kv3.3 and Kv3.4.
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Table 4.4: Eigen values, inertia and factor loading of principal component analyais. 
  First Second Third 

Eigen Values 1.288 1.042 0.670 

Inertia (%) 0.429 0.347 0.223 

Hydrophobicity 

(1a.a.-10a.a.) 
1.209 0.075 0.306 

Hydrophobicity 

(11a.a.-20a.a.) 
1.009 -0.567 -0.269 

Factor 

Loading 

Isoelectric Points 

(11a.a.-20a.a.) 
0.520 0.923 -0.190 

 
 
 
Table 4.5: Component scores of second principal component. 

Channel Name 

Component Scores of  

Second Principal 

Component 

Kv3.4 0.854 
Shaker (Kv1) 0.611 
Kv3.3 0.600 
Kv2.2 0.415 
Kv1.7 (Mouse) 0.078 
Shaw (Kv3) 0.062 
Kv2.1 0.016 
Kv3.1 0.001 
Kv1.5 -0.065 
Kv1.6 -0.077 
Shal (Kv4) -0.115 
Kv3.2 -0.120 
Kv1.1 -0.122 
Shab (Kv2) -0.136 
Kv1.4 -0.204 
Kv1.2 -0.206 
Kv1.7 (Human) -0.238 
Kv4.1 -0.291 
Kv4.2 -0.291 
Kv4.3 -0.291 
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 How these specific amino acids for N-type inactivation were produced by amino 

acid substitutions? Fig. 4.6 shows the multiple alignment of Kv3 sub-family channels. 

Amino acid sequences of the N-terminal region in Kv3.3 and Kv3.4 channels are longer 

than those in Shaw (Kv3), Kv3,1 and Kv3.2, and these long sequences in Kv3.3 and 

Kv3.4 have the specific chemical features for generating N-type inactivation. 

Methionine at the translation initiation point of Shaw, Kv3.1 and Kv3.2 channels are 

conserved in all Kv3 channels. But the translation point of Kv3.3 and Kv3.4 channels is 

upstream from that of Shaw, Kv3.1 and Kv3.2. I hypothesized the scenario about the 

evolution of the Kv3 channels as follows. The N-terminal amino acids of Kv3.3 and 

Kv3.4 channels are similar, therefore these amino acids have been conserved from the 

ancestral protein of Kv3.3 and Kv3.4 channels. It means the ancestral protein of the 

Kv3.1, 3.2, 3.3 and 3.4 channels had the N-terminal amino acids like Kv3.3 and 3.4 

channels. The initiation point in the ancestral protein of Kv3.1, 3.2, 3.3 and 3.4 

channels was the one like Kv3.3 and 3.4, and the ancestral protein might be inactivated 

by N-type inactivation. Although the translation initiation point of the ancestral protein 

has been conserved in Kv3.3 and Kv3.4 channels, the point was changed on the lineages 

to Kv3.1 and Kv3.2 independently. And Kv3.1 and Kv3.2 lost the physiological feature of 

N-type inactivation. 

 



 151 

P17972 (Drosophila) 1 ------------------------------------------------------------------------------MNL--INMDSENRVVLNVGGIRHETYKATLKKIPATRLSRLT 40  

P48547 (Human)      1 ------------------------------------------------------------------------------MGQ----GDESERIVINVGGTRHQTYRSTLRTLPGTRLAWLA 38  

P15388 (Mouse)      1 ------------------------------------------------------------------------------MGQ----GDESERIVINVGGTRHQTYRSTLRTLPGTRLAWLA 38  

P25122 (Rat)        1 ------------------------------------------------------------------------------MGQ----GDESERIVINVGGTRHQTYRSTLRTLPGTRLAWLA 38  

Q96PR0 (Human)      1 ------------------------------------------------------------------------------MGK----IENNERVILNVGGTRHETYRSTLKTLPGTRLALLA 38  

P22462 (Rat)        1 ------------------------------------------------------------------------------MGK----IENNERVILNVGGTRHETYRSTLKTLPGTRLALLA 38  

Q14003 (Human)      1 MLSSVCVSSFRGRQGASKQ--QPAPPPQPPESPPPPPLPPQQQQPAQPGPAASPAGPPAPRGPGGRRAEPCPGLPAAAMGRHGGGGGDSGKIVINVGGVRHETYRSTLRTLPGTRLAGLT 118 

Q63959 (Mouse)      1 MLSSVCVWSFRGCQGTGKQQPQPVPTPQPPESSPPPLPPPQQQQCSQPGTGPSP-GVPAFLRPGGRRAEPCPGLPAVAMGRHGGGGGDSGKIVINVGGVRHETYRSTLRTLPGTRLAGLT 119 

Q01956 (Rat)        1 MLSSVCVWSFSGRQGTRKQHSQPAPTPQPPESSPPPLLPPPQQQCAQPGTAASPAGAPLSCGPGGRRAEPCSGLPAVAMGRHGGGGGDSGKIVINVGGVRHETYRSTLRTLPGTRLAGLT 120 

Q03721 (Human)      1 MISSVCVSSYRGRKSGNKPPSKTCLKEE--------------------------------------------------MAK----GEASEKIIINVGGTRHETYRSTLRTLPGTRLAWLA 66  

Q8R1C0 (Mouse)      1 MISSVCVSSYRGRKSGNKPPSKTCLKEE--------------------------------------------------MAK----GEASEKIIINVGGTRHETYRSTLRTLPGTRLAWLA 66  

Q63734 (Rat)        1 MISSVCVSSYRGRKSGNKPPSKTCLKEE--------------------------------------------------MAK----GEASEKIIINVGGTRHETYRSTLRTLPGTRLAWLA 66  
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Translation Initiation Point  
of Shaw, Kv3.1 and Kv3.2 

Shaw 

Fig. 4.6: Multiple alignment of N-terminal amino acids in Kv3 sub-family channels. Colors of each amino acid designate chemical feature as 
follows; red = basic amino acid (positively charged), blue = acidic amino acid (negativ ely charged), green = uncharged polar amino acid, black 
nonpolar amino acid. Channels whose names are written by red characters are N-type inactivation channels.  



4.3.4 Conclusion 

 I focused on N-type inactivation, one of major features of ion channels. Domain 

changes might not influence the divergence of inactivation. A small number of amino 

acid substitutions might produce the N-type inactivation. Some of N-type inactivation 

channels which are Shaker (Kv1), Kv3.3 and Kv3.4 have the specific N-terminal amino 

acids, but other N-type inactivation channels which are Kv1.7 (Mouse), Shal (Kv4), 

Kv4.1, Kv4.2 and Kv4.3 do not. Therefore, the mechanism of N-type inactivation in 

Shaker, Kv3.3 and Kv3.4 seems to be different from other N-type inactivation channels. 

Although the mechanisms of N-type inactivation in Shaker, Kv3.3 and Kv3.4 seem to be 

similar, the origins of N-type inactivation are different from Shaker, and Kv3.3 and 3.4 

by thinking parsimoniously with referring to molecular phylogenetic tree in Fig. 4.4. 

Amino acid substitution for generating N-type inactivation in Shaker may have been 

occurred on the lineage to Shaker after the divergence between vertebrate and 

invertebrate. Amino acid substitution for generating N-type inactivation in Kv3.3 and 

3.4 may have been occurred on the lineage to Kv3.1-3.4 channels after the divergence 

between vertebrate and invertebrate, and the physiological feature of N-type 

inactivation may have been lost on the lineages to Kv3.1 and 3.2 independently before 

the divergence between Rodentia and Primates by the substitution of one amino acid, 

methionine. If the mechanisms of N-type inactivation in all Kv4 sub-family channels, 

amino acid substitutions for generating N-type inactivation in Kv4 sub-family channels 

might occur before the divergence between vertebrate and invertebrate. The amino acid 

substitutions of Kv4 sub-family are older than those of Shaker, and Kv3.3 and 3.4 

channels. 

 Voltage-gated calcium and sodium channels which are homologous to 
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voltage-gated potassium channel have four repeats of Ion_trans domain (Fig. 4.4). And 

the domain composition of Kv7.1 channel is different from that of Kv1-4 channels (Fig. 

4.4). Domain changes might occur among these channels and change physiological 

features of the channels. But the physiological feature of N-type inactivation in Kv1-4 

channels may not have been changed by domain changes, but by a small number of 

amino acid substitutions. Domain changes and amino acid substitutions may have 

generated the divergence of voltage-gated ion channels. 
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5. Overall Conclusion 
–How have functional systems in organisms evolved? – 

 

 Organisms including us are using various kinds of functional systems for living. 

In this study, I predicted how functional systems had been evolved and how protein 

functions in each functional system had changed through molecular phylogenetic 

analyses at three levels (system, domain and amino acid levels). 

 I did phylogenetic analyses at system level to predict phylogeny of functional 

systems by superimpositions of phylogenetic trees constructed by as many homologous 

proteins in the functional systems as possible. Under the assumption that the 

divergences of proteins in functional systems correspond to the divergences of 

functional systems, superimpositions of phylogenetic trees of proteins in functional 

systems were done, and the deduced phylogenetic trees of the functional systems were 

inferred. 

 Phylogenetic analyses at domain level by constructing composite gene trees 

were done so as to predict protein function changes in functional systems. Some of 

proteins are composed of multiple functional domains, and each domain might be 

inserted or deleted through evolution. Insertions or deletions of functional domains 

have changed protein functions. I tried to predict how domain compositions had 

changed through evolution and how protein functions had diversified by domain 

insertions and deletions through molecular phylogenetic analyses. 

 I did phylogenetic analyses at amino acid level to predict protein function 

changes in functional systems. It is possible that protein functions are different even if 

domain compositions of proteins are the same. I tried to predict the essential amino acid 
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substitutions for changing protein functions through evolution referring to phylogenetic 

trees and amino acid sequences which cannot be detected by domain level analysis. 

 I applied the phylogenetic analyses at three levels to the two functional 

systems; electron transfer energy metabolism system (chapter 2) and 

neurotransmission system (chapter 3). The four electron transfer energy metabolism 

systems (photosynthesis, aerobic respiration, denitrification and sulfur respiration) 

share common characteristic features. Furthermore, homologous proteins exist among 

the four systems. They suggest that the four systems are evolutionarily related. I tried 

the three level predictions in the four energy metabolism systems to infer the phylogeny 

of the four systems and the protein function changes in the four systems. I constructed 

molecular phylogenetic trees by using amino acid sequences of functional domains. 

These trees and amino acid compositions of proteins suggest that domain insertions and 

deletions in the four systems made functions of electron transfer in proteins change. I 

tried to predict ligand binging specificities of catalytic proteins at the amino acid level, 

but experimental data about ligand binding functions are not enough for doing such 

predictions. Therefore, I did not predict protein function changes at amino acid level. 

Most of proteins in the four systems are not homologous each other. Only some 

important proteins for generating energy are homologous among the four systems. It 

means that most of proteins have evolved independently, and few of proteins are 

conserved among the four systems. I tried to superimpose phylogenetic trees of 

homologous proteins in the four energy metabolism systems to predict the phylogeny of 

the four energy metabolisms, and the phylogeny of aerobic respiration, denitrification 

and sulfur respiration was predicted. 

 I also did the three level predictions in chemical neurotransmission system. I 
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tried to predict how the chemical neurotransmission systems have been diversified by 

means of superimposing the phylogenetic trees of synthases, receptors and transporters. 

The phylogenetic trees of some synthases and some receptors are possible to 

superimpose, and the phylogenetic trees of some receptors and some transporters are 

also possible to superimpose. These proteins might evolve together. But most of other 

proteins seem to have evolved independently from this study. Therefore, the unit of 

evolution is not system in chemical neurotransmission systems. I also did phylogenetic 

analyses of receptors at the domain level and the amino acid level. I inferred domain 

composition changes which had changed protein functions from the domain level 

analyses. Some domain changes seem to be essential for generating some receptors. The 

essential amino acid substitutions for changing ligand specificities were also predicted 

from the amino acid level analysis. 

 Based on the phylogenetic analyses of energy metabolism and chemical 

neurotransmission system, I did phylogenetic analysis of voltage-gated potassium 

channels at two levels; domain level and amino acid level (chapter 4). I focused on 

inactivation, one of the major electrophysiological features of voltage-gated ion channels, 

and predicted how the diversification of the inactivation had occurred. There are two 

kinds of inactivation in voltage-gated potassium channels. One is N-type inactivation 

which is sudden inactivation immediately after activation, the other one is C-type 

inactivation which is slow inactivation. Reffering to phylogenetic trees and domain 

compositions of voltage-gated potassium channels, domain composition changes seem 

not to affect inactivation differences. Previous studies suggest that the specific chemical 

features of 20 N-terminal amino acids are important for generating N-type inactivation. 

Therefore, I investigated the specific chemical features of 20 N-terminal amino acid 
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sequences in voltage-gated potassium channels. The specific chemical features of the 20 

amino acids which induce N-type inactivation are found in the three subtypes out of the 

21 subtypes. A small number of amino acid substitutions might produce the three 

N-type inactivation subtypes. The specific chemical features are not found in 20 

N-terminal amino acids in the other five subclasses which can generate N-type 

inactivation. The amino acid substitutions which produce the five subtypes may be 

different from those of the three subtypes which have the specific chemical features in 

the 20 N-terminal amino acids. 

 I did phylogenetic analyses at system, domain and amino acid levels. From 

system level analysis, most of proteins in functional systems seem to be evolved 

independently. Although functions have been conserved in energy metabolism systems 

and chemical neurotransmission system, most of proteins in these systems have not 

been conserved. Domain composition changes seem to be slower than a small number of 

amino acid substitutions referring to phylogenetic analyses in this study. The 

combinations of the slower domain composition changes and the faster amino acid 

substitutions may have changed protein functions and these combinations might 

produce divergence of protein functions. But the combinations might happen 

independent of evolution of functional systems. Functional systems may have conserved 

their functions by the combinations and been diversified also by the combinations. 
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