@article{oai:ir.soken.ac.jp:00004271, author = {桑島, 邦博 and KUWAJIMA, Kunihiro}, issue = {1}, journal = {FASEB Journal, FASEB Journal}, month = {Jan}, note = {application/pdf, The molten globule state of alpha-lactalbumin is the best-characterized folding intermediate of globular proteins and has been studied intensively by various spectroscopic and physiochemical techniques, including stopped-flow CD and fluorescence spectroscopies, a hydrogen-exchange technique, 1H-NMR spectroscopy, disulfide-exchange chemistry, site-directed mutagenesis, and calorimetric techniques. This review summarizes recent studies. Major findings about the structure of the molten globule state are: 1) It is highly heterogeneous, having a highly structured alpha-helical domain with the beta-sheet domain being significantly unfolded; and 2) it is not a nonspecific, collapsed polypeptide but already has a native-like tertiary fold. These structural characteristics are essential to fully understand the thermodynamic properties of the molten globule state which are described in connection with a recently proposed computational approach to predict the structure of the molten globule state of a protein. Mutant proteins in which the stability of the molten globule state was changed were constructed. Studies of the equilibrium unfolding and kinetic refolding of the mutant proteins will provide further insight into the molten globule state as a folding intermediate. In spite of an initial expectation that the structure recognized by an Escherichia coli chaperone, GroEL, is the molten globule, the interaction of GroEL with alpha-lactalbumin in the molten globule state is much weaker than the interaction with more unfolded states of alpha-lactalbumin, a disulfide-reduced form, and disulfide rearranged species.}, pages = {102--109}, title = {The molten globule state of alpha-lactalbumin}, volume = {10}, year = {1996} }