{"created":"2023-06-20T13:23:38.404602+00:00","id":4728,"links":{},"metadata":{"_buckets":{"deposit":"b92830c3-789a-4638-baaa-3da9f5304394"},"_deposit":{"created_by":21,"id":"4728","owners":[21],"pid":{"revision_id":0,"type":"depid","value":"4728"},"status":"published"},"_oai":{"id":"oai:ir.soken.ac.jp:00004728","sets":["1:272"]},"author_link":["5","6"],"item_10001_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1982-05-27","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"6","bibliographicPageEnd":"462","bibliographicPageStart":"458","bibliographicVolumeNumber":"112","bibliographic_titles":[{"bibliographic_title":"Physics Letters B"},{"bibliographic_title":"Physics Letters B","bibliographic_titleLang":"en"}]}]},"item_10001_creator_3":{"attribute_name":"著者別名","attribute_type":"creator","attribute_value_mlt":[{"creatorAffiliations":[{"affiliationNameIdentifiers":[{"affiliationNameIdentifier":"","affiliationNameIdentifierScheme":"ISNI","affiliationNameIdentifierURI":"http://www.isni.org/isni/"}],"affiliationNames":[{"affiliationName":"","affiliationNameLang":"ja"}]}],"creatorNames":[{"creatorName":"平田, 光司","creatorNameLang":"ja"},{"creatorName":"ヒラタ, コウジ","creatorNameLang":"ja-Kana"},{"creatorName":"HIRATA, Koji","creatorNameLang":"en"}],"familyNames":[{"familyName":"平田","familyNameLang":"ja"},{"familyName":"ヒラタ","familyNameLang":"ja-Kana"},{"familyName":"HIRATA","familyNameLang":"en"}],"givenNames":[{"givenName":"光司","givenNameLang":"ja"},{"givenName":"コウジ","givenNameLang":"ja-Kana"},{"givenName":"Koji","givenNameLang":"en"}],"nameIdentifiers":[{},{},{}]}]},"item_10001_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"From a lagrangian theory of charge-monopole electrodynamics which uses strings but is free from Dirac's veto, a hamiltonian theory is derived which describes the interaction between electric and magnetic point particles and photons.","subitem_description_type":"Abstract"}]},"item_10001_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"Elsevier"}]},"item_10001_relation_14":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_name":[{"subitem_relation_name_text":"10.1016/0370-2693(82)90848-6"}],"subitem_relation_type_id":{"subitem_relation_type_id_text":"https://doi.org/10.1016/0370-2693(82)90848-6","subitem_relation_type_select":"DOI"}}]},"item_10001_rights_15":{"attribute_name":"権利","attribute_value_mlt":[{"subitem_rights":"© 1982 Published by Elsevier B.V."}]},"item_10001_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0550-3213","subitem_source_identifier_type":"ISSN"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"metadata only access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_14cb"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"HIRATA, Kohji"}],"nameIdentifiers":[{}]}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Canonical Quatization of the Electromagnetic Field with Dirac’s monopoles","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Canonical Quatization of the Electromagnetic Field with Dirac’s monopoles"},{"subitem_title":"Canonical Quatization of the Electromagnetic Field with Dirac’s monopoles","subitem_title_language":"en"}]},"item_type_id":"10001","owner":"21","path":["113","272"],"pubdate":{"attribute_name":"公開日","attribute_value":"2014-07-03"},"publish_date":"2014-07-03","publish_status":"0","recid":"4728","relation_version_is_last":true,"title":["Canonical Quatization of the Electromagnetic Field with Dirac’s monopoles"],"weko_creator_id":"21","weko_shared_id":21},"updated":"2024-04-26T05:52:12.525205+00:00"}