@techreport{oai:ir.soken.ac.jp:00005924, author = {TANABE, Hideyuki and 田辺, 秀之}, month = {2019-04-01, 2019-04-10}, note = {15KT0149, application/pdf, 2015~2017, 研究成果の概要(和文):細胞核内の「染色体テリトリー」がどのような仕組みで核内空間に配置されているのか、テナガザル科における核型高速進化の現象に着目し、進化的転座切断部位(ECBs)の放射状核内配置を3D-FISH法により解析し、検討を行った。ECBsが核内空間にランダムで一様に分布する場合は、自己組織化・ランダム分布モデル、特定の放射状ゾーンで顕著に転座が生じている場合は、制御因子誘導モデルと呼ぶことができるが、実験結果より、前者の「自己組織化・ランダム分布モデル」が適用されるものと考えられた。RバンドとGバンド領域の放射状分布がわずかに異なること、反復配列のシグナル強度が核中心付近で増強している傾向が見出された。 研究成果の概要(英文):Individual chromosome are occupied as chromosome territories (CTs) within the cell nucleus.How are CTs spatially localized? To explore this question, I focused on the gibbons showing the highest speed of karyotypic evolution in mammals, which have over 90 evolutionary conserved breakpoints(ECBs) between human and gibbons. Spatial radial arrangement of ECBs was analyzed by 3D-FISH technique onto the human and agile gibbon cell nuclei. In a case where ECBs are randomly and uniformly distributed in the nuclear space, it can be called as self-organization, random distribution model, whereas in cases where remarkable translocation occurs in a specific radial zone, it can be calles a control factor induction model. Based on the results, I concluded that the former “self-organization, random distribution model” could be applied. Several data of radial distribution of repetitive sequences suggested radial arrangements have reflected the different distributed number of repetitive elements.}, title = {核内染色体テリトリーの自己組織化と染色体ゲノム進化}, year = {} }