{"created":"2023-06-20T13:20:44.356514+00:00","id":774,"links":{},"metadata":{"_buckets":{"deposit":"e0042d54-6cf6-4fa1-b841-7b83c9ff0d66"},"_deposit":{"created_by":1,"id":"774","owners":[1],"pid":{"revision_id":0,"type":"depid","value":"774"},"status":"published"},"_oai":{"id":"oai:ir.soken.ac.jp:00000774","sets":["2:429:17"]},"author_link":["0","0","0"],"item_1_creator_2":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"王, 健歡"}],"nameIdentifiers":[{"nameIdentifier":"0","nameIdentifierScheme":"WEKO"}]}]},"item_1_creator_3":{"attribute_name":"フリガナ","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"オウ, ケンカン"}],"nameIdentifiers":[{"nameIdentifier":"0","nameIdentifierScheme":"WEKO"}]}]},"item_1_date_granted_11":{"attribute_name":"学位授与年月日","attribute_value_mlt":[{"subitem_dategranted":"2006-03-24"}]},"item_1_degree_grantor_5":{"attribute_name":"学位授与機関","attribute_value_mlt":[{"subitem_degreegrantor":[{"subitem_degreegrantor_name":"総合研究大学院大学"}]}]},"item_1_degree_name_6":{"attribute_name":"学位名","attribute_value_mlt":[{"subitem_degreename":"博士(学術)"}]},"item_1_description_12":{"attribute_name":"要旨","attribute_value_mlt":[{"subitem_description":"This thesis summarizes statistical analysis of some multivariate heteroscedastic
time series data, including 2 sets of data from physiological experiments and
2 sets of EEG data about anaesthesia and coma.
  The aim of this thesis is to provide a statistical tool for analyzing multi-
variate data which contains non-stationary and heteroscedastic characteristics.
  The main contribution of this thesis is that we combine the linear state
space model and GARCH model to develop a state space-GARCH model.
The state space-GARCH model can describe the non-stationary characteristics
of the system noise variance. In particular we adopt a special structure of
the linear state space model to decompose a data into components by their
frequencies. Combining a heteroscedasticity model and a state space model
is carried out by fully utilizing the information of innovations and expected
values from the filtering process.
  Another contribution of the thesis is that we extend Akaike's NCR from
constant noise variance to heterogeneous noise variance in order to study time-
varying causality. By applying heteroscedasticity models, the phenomenon of
an evolving causality relationship can be depicted.
  All these methods are illustrated by their application to EEG data including
the study of consciousness under anaesthesia and coma, and also to a physical
data of head and finger movement.","subitem_description_type":"Other"}]},"item_1_description_7":{"attribute_name":"学位記番号","attribute_value_mlt":[{"subitem_description":"総研大甲第948号","subitem_description_type":"Other"}]},"item_1_select_14":{"attribute_name":"所蔵","attribute_value_mlt":[{"subitem_select_item":"有"}]},"item_1_select_8":{"attribute_name":"研究科","attribute_value_mlt":[{"subitem_select_item":"複合科学研究科"}]},"item_1_select_9":{"attribute_name":"専攻","attribute_value_mlt":[{"subitem_select_item":"15 統計科学専攻"}]},"item_1_text_10":{"attribute_name":"学位授与年度","attribute_value_mlt":[{"subitem_text_value":"2005"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"WONG, Kin Foon Kevin","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"0","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2016-02-17"}],"displaytype":"simple","filename":"甲948_要旨.pdf","filesize":[{"value":"158.8 kB"}],"format":"application/pdf","licensetype":"license_11","mimetype":"application/pdf","url":{"label":"要旨・審査要旨","url":"https://ir.soken.ac.jp/record/774/files/甲948_要旨.pdf"},"version_id":"e5857e18-df88-492b-ba39-0226164bdfce"},{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2016-02-17"}],"displaytype":"simple","filename":"甲948_本文.pdf","filesize":[{"value":"7.9 MB"}],"format":"application/pdf","licensetype":"license_11","mimetype":"application/pdf","url":{"label":"本文","url":"https://ir.soken.ac.jp/record/774/files/甲948_本文.pdf"},"version_id":"434635c3-56c2-4711-8fad-c0015872352f"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"thesis","resourceuri":"http://purl.org/coar/resource_type/c_46ec"}]},"item_title":"Multivariate Times Series Analysis of Heteroscedastic Date, with Application to Neuroscience","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Multivariate Times Series Analysis of Heteroscedastic Date, with Application to Neuroscience"},{"subitem_title":"Multivariate Times Series Analysis of Heteroscedastic Date, with Application to Neuroscience","subitem_title_language":"en"}]},"item_type_id":"1","owner":"1","path":["17"],"pubdate":{"attribute_name":"公開日","attribute_value":"2010-02-22"},"publish_date":"2010-02-22","publish_status":"0","recid":"774","relation_version_is_last":true,"title":["Multivariate Times Series Analysis of Heteroscedastic Date, with Application to Neuroscience"],"weko_creator_id":"1","weko_shared_id":1},"updated":"2023-06-20T15:59:49.176463+00:00"}