ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "cf725790-429f-4be8-8afc-def7df32a0bf"}, "_deposit": {"created_by": 21, "id": "2686", "owners": [21], "pid": {"revision_id": 0, "type": "depid", "value": "2686"}, "status": "published"}, "_oai": {"id": "oai:ir.soken.ac.jp:00002686", "sets": ["19"]}, "author_link": ["0", "0", "0"], "item_1_biblio_info_21": {"attribute_name": "書誌情報(ソート用)", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2011-09-30", "bibliographicIssueDateType": "Issued"}, "bibliographic_titles": [{}]}]}, "item_1_creator_2": {"attribute_name": "著者名", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "FONTUGNE, Romain Thibault"}], "nameIdentifiers": [{"nameIdentifier": "0", "nameIdentifierScheme": "WEKO"}]}]}, "item_1_creator_3": {"attribute_name": "フリガナ", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "フォンテュニュ, ロマン ティボ"}], "nameIdentifiers": [{"nameIdentifier": "0", "nameIdentifierScheme": "WEKO"}]}]}, "item_1_date_granted_11": {"attribute_name": "学位授与年月日", "attribute_value_mlt": [{"subitem_dategranted": "2011-09-30"}]}, "item_1_degree_grantor_5": {"attribute_name": "学位授与機関", "attribute_value_mlt": [{"subitem_degreegrantor": [{"subitem_degreegrantor_name": "総合研究大学院大学"}]}]}, "item_1_degree_name_6": {"attribute_name": "学位名", "attribute_value_mlt": [{"subitem_degreename": "博士(情報学)"}]}, "item_1_description_1": {"attribute_name": "ID", "attribute_value_mlt": [{"subitem_description": "2011062", "subitem_description_type": "Other"}]}, "item_1_description_12": {"attribute_name": "要旨", "attribute_value_mlt": [{"subitem_description": "Network traffic anomalies stand for a large fraction of the Internet traffic and\r\ncompromise the performance of the network resources. Detecting and diagnos-\r\ning these threats is a laborious and time consuming task that network operators\r\nface daily. During the last decade researchers have concentrated their efforts\r\non this problem and proposed several tools to automate this task. Thereby,\r\nrecent advances in anomaly detection have permitted to detect new or unknown\r\nanomalies by taking advantage of statistical analysis of the traffic. In spite of\r\nthe advantages of these detection methods, researchers have reported several\r\ncommon drawbacks discrediting their use in practice. Indeed, the challenge of\r\nunderstanding the relation between the theory underlying these methods and\r\nthe actual Internet traffic raises several issues. For example, the difficulty of\r\nselecting the optimal parameter set for these methods mitigates their perfor-\r\nmance and prevent network operators from using them. Moreover, due to the\r\nlack of ground truth data, approximate evaluations of these detection methods\r\nprevent to provide accurate feedback on them and increase their reliability. We\r\naddress these issues, first, by proposing a pattern-recognition-based detection\r\nmethod that overcomes the common drawbacks of anomaly detectors based on\r\nstatistical analysis, second, by providing both a benchmark tool that compares\r\nthe results from diverse detectors and ground truth data obtained by combining\r\nseveral anomaly detectors.\r\n\u0026nbsp; \u0026nbsp;The proposed pattern-recognition-based detector takes advantage of image\r\nprocessing techniques to provide intuitive outputs and parameter set. An adap-\r\ntive mechanism automatically tuning its parameter set according to traffic fluc-\r\ntuations is also proposed. The resulting adaptive anomaly detector is easily\r\nusable in practice, performs a high detection rate, and provides intuitive de-\r\nscription of the anomalies allowing to identify their root causes.\r\n\u0026nbsp; \u0026nbsp;A benchmark methodology is also developed in order to compare several\r\ndetectors based on different theoretical background. This methodology allows\r\nresearchers to accurately identify the differences between the results of diverse\r\ndetectors. We employ this methodology along with an unsupervised combina-\r\ntion strategy to combine the output of four anomaly detectors. Thereby, the\r\ncombination strategy increases the overall reliability of the combined detectors\r\nand it detects two times more anomalies than the best detector. We provide\r\nthe results of this combination of detectors in the form of ground truth data\r\ncontaining various anomalies during 10 years of traffic.", "subitem_description_type": "Other"}]}, "item_1_description_18": {"attribute_name": "フォーマット", "attribute_value_mlt": [{"subitem_description": "application/pdf", "subitem_description_type": "Other"}]}, "item_1_description_7": {"attribute_name": "学位記番号", "attribute_value_mlt": [{"subitem_description": "総研大甲第1456号", "subitem_description_type": "Other"}]}, "item_1_select_14": {"attribute_name": "所蔵", "attribute_value_mlt": [{"subitem_select_item": "有"}]}, "item_1_select_16": {"attribute_name": "複写", "attribute_value_mlt": [{"subitem_select_item": "印刷物から複写可"}]}, "item_1_select_17": {"attribute_name": "公開状況", "attribute_value_mlt": [{"subitem_select_item": "全文公開可"}]}, "item_1_select_8": {"attribute_name": "研究科", "attribute_value_mlt": [{"subitem_select_item": "複合科学研究科"}]}, "item_1_select_9": {"attribute_name": "専攻", "attribute_value_mlt": [{"subitem_select_item": "17 情報学専攻"}]}, "item_1_text_10": {"attribute_name": "学位授与年度", "attribute_value_mlt": [{"subitem_text_value": "2011"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "FONTUGNE, Romain Thibault", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "0", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2016-02-17"}], "displaytype": "simple", "download_preview_message": "", "file_order": 0, "filename": "甲1456_要旨.pdf", "filesize": [{"value": "261.4 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_11", "mimetype": "application/pdf", "size": 261399.99999999997, "url": {"label": "要旨・審査要旨", "url": "https://ir.soken.ac.jp/record/2686/files/甲1456_要旨.pdf"}, "version_id": "5f0a8748-1753-4cf3-be74-dc7758cdf44d"}, {"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2016-02-17"}], "displaytype": "simple", "download_preview_message": "", "file_order": 1, "filename": "甲1456_本文.pdf", "filesize": [{"value": "7.9 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_11", "mimetype": "application/pdf", "size": 7900000.0, "url": {"label": "本文", "url": "https://ir.soken.ac.jp/record/2686/files/甲1456_本文.pdf"}, "version_id": "662238e2-6e7e-48cb-adb2-444740cb7c70"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "thesis", "resourceuri": "http://purl.org/coar/resource_type/c_46ec"}]}, "item_title": "Increasing Reliability in Network Traffic Anomaly Detection", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Increasing Reliability in Network Traffic Anomaly Detection"}, {"subitem_title": "Increasing Reliability in Network Traffic Anomaly Detection", "subitem_title_language": "en"}]}, "item_type_id": "1", "owner": "21", "path": ["19"], "permalink_uri": "https://ir.soken.ac.jp/records/2686", "pubdate": {"attribute_name": "公開日", "attribute_value": "2012-04-02"}, "publish_date": "2012-04-02", "publish_status": "0", "recid": "2686", "relation": {}, "relation_version_is_last": true, "title": ["Increasing Reliability in Network Traffic Anomaly Detection"], "weko_shared_id": -1}
  1. 020 学位論文
  2. 複合科学研究科
  3. 17 情報学専攻

Increasing Reliability in Network Traffic Anomaly Detection

https://ir.soken.ac.jp/records/2686
https://ir.soken.ac.jp/records/2686
ce7f41a0-419d-4ae6-9bec-047354defabb
名前 / ファイル ライセンス アクション
甲1456_要旨.pdf 要旨・審査要旨 (261.4 kB)
甲1456_本文.pdf 本文 (7.9 MB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2012-04-02
タイトル
タイトル Increasing Reliability in Network Traffic Anomaly Detection
タイトル
言語 en
タイトル Increasing Reliability in Network Traffic Anomaly Detection
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_46ec
資源タイプ thesis
著者名 FONTUGNE, Romain Thibault

× FONTUGNE, Romain Thibault

WEKO 0

FONTUGNE, Romain Thibault

Search repository
フリガナ フォンテュニュ, ロマン ティボ

× フォンテュニュ, ロマン ティボ

WEKO 0

フォンテュニュ, ロマン ティボ

Search repository
著者 FONTUGNE, Romain Thibault

× FONTUGNE, Romain Thibault

WEKO 0

en FONTUGNE, Romain Thibault

Search repository
学位授与機関
学位授与機関名 総合研究大学院大学
学位名
学位名 博士(情報学)
学位記番号
内容記述タイプ Other
内容記述 総研大甲第1456号
研究科
値 複合科学研究科
専攻
値 17 情報学専攻
学位授与年月日
学位授与年月日 2011-09-30
学位授与年度
2011
要旨
内容記述タイプ Other
内容記述 Network traffic anomalies stand for a large fraction of the Internet traffic and
compromise the performance of the network resources. Detecting and diagnos-
ing these threats is a laborious and time consuming task that network operators
face daily. During the last decade researchers have concentrated their efforts
on this problem and proposed several tools to automate this task. Thereby,
recent advances in anomaly detection have permitted to detect new or unknown
anomalies by taking advantage of statistical analysis of the traffic. In spite of
the advantages of these detection methods, researchers have reported several
common drawbacks discrediting their use in practice. Indeed, the challenge of
understanding the relation between the theory underlying these methods and
the actual Internet traffic raises several issues. For example, the difficulty of
selecting the optimal parameter set for these methods mitigates their perfor-
mance and prevent network operators from using them. Moreover, due to the
lack of ground truth data, approximate evaluations of these detection methods
prevent to provide accurate feedback on them and increase their reliability. We
address these issues, first, by proposing a pattern-recognition-based detection
method that overcomes the common drawbacks of anomaly detectors based on
statistical analysis, second, by providing both a benchmark tool that compares
the results from diverse detectors and ground truth data obtained by combining
several anomaly detectors.
   The proposed pattern-recognition-based detector takes advantage of image
processing techniques to provide intuitive outputs and parameter set. An adap-
tive mechanism automatically tuning its parameter set according to traffic fluc-
tuations is also proposed. The resulting adaptive anomaly detector is easily
usable in practice, performs a high detection rate, and provides intuitive de-
scription of the anomalies allowing to identify their root causes.
   A benchmark methodology is also developed in order to compare several
detectors based on different theoretical background. This methodology allows
researchers to accurately identify the differences between the results of diverse
detectors. We employ this methodology along with an unsupervised combina-
tion strategy to combine the output of four anomaly detectors. Thereby, the
combination strategy increases the overall reliability of the combined detectors
and it detects two times more anomalies than the best detector. We provide
the results of this combination of detectors in the form of ground truth data
containing various anomalies during 10 years of traffic.
所蔵
値 有
フォーマット
内容記述タイプ Other
内容記述 application/pdf
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 15:46:51.852128
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3