WEKO3
アイテム
隠れマルコフモデルを用いたマウス状態の自動判定とコンソミックマウス系統の特徴付け
https://ir.soken.ac.jp/records/3587
https://ir.soken.ac.jp/records/35876479c727-c499-4291-b03a-15e3f6c29926
名前 / ファイル | ライセンス | アクション |
---|---|---|
要旨・審査要旨 (174.1 kB)
|
||
本文 (9.7 MB)
|
Item type | 学位論文 / Thesis or Dissertation(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2013-06-12 | |||||
タイトル | ||||||
タイトル | 隠れマルコフモデルを用いたマウス状態の自動判定とコンソミックマウス系統の特徴付け | |||||
言語 | ||||||
言語 | jpn | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_46ec | |||||
資源タイプ | thesis | |||||
著者名 |
荒川, 俊也
× 荒川, 俊也 |
|||||
フリガナ |
アラカワ, トシヤ
× アラカワ, トシヤ |
|||||
著者 |
ARAKAWA, Toshiya
× ARAKAWA, Toshiya |
|||||
学位授与機関 | ||||||
学位授与機関名 | 総合研究大学院大学 | |||||
学位名 | ||||||
学位名 | 博士(学術) | |||||
学位記番号 | ||||||
内容記述タイプ | Other | |||||
内容記述 | 総研大甲第1554号 | |||||
研究科 | ||||||
値 | 複合科学研究科 | |||||
専攻 | ||||||
値 | 15 統計科学専攻 | |||||
学位授与年月日 | ||||||
学位授与年月日 | 2012-09-28 | |||||
学位授与年度 | ||||||
値 | 2012 | |||||
要旨 | ||||||
内容記述タイプ | Other | |||||
内容記述 | 今後,センサの多項目化や,記憶容量の増大等によるデータロガーの高度化 に伴い,得られるデータ量が膨大なものになる.特に動物観察においては,人 間が従来観察し,行動について判定していたという観察主体の方法では,多様・ 多量化する情報量に対応しきれない懸念が生じる.更に,研究対象となる個体 が増えるに従って,更に情報量も増すため,従来の方法では効率の面からも対 応が出来なくなる. 従って,これらのデータロガーの高度化のメリットを活かし,従来,人間が 行なってきた観察を自動化することも動物行動の研究においては必要となって いる. 従来の行動遺伝学では,マウスの状態推定は,専門家が目視で行い決定して いたものであり,非常に手間と時間を要していたが,本論では,この既存の方 法に変わり,隠れマルコフモデルを適用し,マウスの状態判定を機械的・自動 的に行うことを主目的とする.従来,マウスの状態は「無関心行動」「社会的匂 い嗅ぎ行動」「性器嗅ぎ行動」「追随行動」「攻撃的追随行動」「攻撃行動」と6 種 類に分けられていたが,本論では,無関心行動と,それ以外の行動をまとめた ものである「社会的行動」の2 種類の場合と,社会的匂い嗅ぎ行動と性器嗅ぎ 行動を併せた「匂い嗅ぎ行動」,そして,追随行動,社会的追随行動,攻撃行動 の3 種をまとめた「追随行動」とした上で,「無関心行動」,「匂い嗅ぎ行動」, 「追随行動」の3 種類の場合に再分類した.そして,それぞれの場合に対して, 2 状態マルコフモデルおよび3 状態マルコフモデルを適用し,社会的行動に着 目した隠れマルコフモデルの推定の比較,状態時系列による比較,統計量によ る比較を実施して,隠れマルコフモデルの妥当性について検証し,自動解析を 行うに足るだけの妥当性を有することがわかった. 更に,2 状態隠れマルコフモデルでは,先行研究である,Takahashi et al.(2009) を例として,先行研究では,12[cm] という値を閾値として接触と判 定していた場合に対し,隠れマルコフモデルによる社会的行動の判定を比較す ることによる検討を行った.その結果,接触状態がスパイク状に頻繁に現れる のは,偶然,距離が近づいたためだけであることが確認された.これは,12[cm] という距離が,社会的行動と判定するには,やや大きめであることに起因して いるものと推察されること,また,隠れマルコフモデルでは距離が離れた2 個 体が追跡状態にある場合をも社会的状態として判定しており,この点も単純な 距離による接触判定に比して優れた点であるといえることが判明した.更に, コンソミック系統毎の接触時間の総和に関する比較検討,コンソミック系統毎 の接触回数に関する比較検討についても実施し,マルコフモデルによる推定結 果と,専門家による観察結果にほとんど差が無いことが示唆された. 2 状態マルコフモデルは,変数の自由度が2 個である特徴を活かして,時系列 毎の無関心行動と社会的行動の相互遷移から算出されるマルコフ遷移確率を二 次元平面上に図示した.そして,亜種間コンソミックマウスと呼ばれているB6 およびMSM と比べて,コンソミック系統および雌雄の違いを,視覚的に検証 した.その結果,B6 の周辺に分布する場合と,B6 とMSM を結んだ右下がり の直線上および直線に沿って分布する(コンソミックマウスは,B6 とMSM を 結んだ直線の内分点および内分点近傍に分布する)という特徴が判明した.加 えて,Chr 6C マウスについては,これらの特徴とは異なっており,他のコンソ ミックマウスと比較して特異な性質を持つことが示された.これらは, Kullback-Leibler ダイバージェンスレートの最小値の観点からも明らかであっ た. さらに,人間は,時系列毎のマウスの行動を目視観察する際に,一連の行動 のうちで,他者への接触度合い,追従度合いから,相手との関係性の度合いを 認知・判断することが可能であると考えられる.そこで,21 名の評価者を募り, 64 種類のマウスの動画像を観察することで,接触時間や回数などを手掛かりに して,マウスの「社会性」の度合いを判定させた.一方で,コンソミックマウ ス毎のマウスの状態推定結果とマルコフ遷移確率を求め,これらの結果より, MSM 度という社会性を示す指標を作成した.その結果,マルコフ遷移確率を用 いた簡単な線形モデルで表されることがわかった.また,無関心状態から社会 的行動へのマルコフ遷移確率,および,社会的行動から無関心状態へのマルコ フ遷移確率の両方を用いた線形モデルが最適であることを示した. また,推定MSM 度と観察MSM 度の相関係数と,21 名の評価者の属性につ いて見ると,統計科学に関係する大学院博士後期課程学生か,博士号取得者の 相関係数が高い傾向にある.従って,人間が,動画観察によってマウスの社会 性を判定する際,機械による推定結果,つまり,推定MSM 度に近い精度で, マウスの社会性を判定できるか否かは,「統計科学に関係する研究の有無」や「日 常的に数式を扱っている」ことを基本として,統計科学の幅広い知見の有無に 依存する可能性が示唆された. 以上の通り,本論文は,3 つの観点から,学問における貢献が成されたもの と考えられる. 【統計・機械科学的観点】 マウスの動画像より抽出されたトラッキングデータより,物理量を抽出し,2 状 態および3 状態隠れマルコフモデルを適用して,「無関心状態」と「社会的行動」 の2 状態,および,「無関心状態」「匂い嗅ぎ行動」「追随行動」の3 状態に自動 判定することを可能とした. 【生物学的観点】 2 状態隠れマルコフモデルによるマウス状態の自動判定結果より,マルコフ遷移 確率を算出して,2 次元平面にプロットした.そして,Chr 13 およびChr 15 の 雌雄の特異性,および,B6 マウスとMSM マウスと,コンソミック系統および 雌雄の差異を視覚化したと共に,Chr 6C の特異性を明確化した. 【認知科学的観点】 21 名の評価者が動画像を観察し,社会性の有無を評価した結果と,コンソミッ クマウス毎のマルコフ遷移確率を用いて,社会性の定量化を試みた.その結果, 「無関心状態」から「社会的行動」に遷移する確率と,「社会的行動」から「無 関心状態」に遷移する確率を用いた簡単なモデルで定量化できることがわかっ た.さらに,「社会性」の定量化結果と,各評価者の評価結果の相関係数と,評 価者のバックグラウンドの関係を検討した結果,統計科学に関係する大学院博 士後期課程学生か,博士号取得者の相関係数が高いことが示唆された. |
|||||
所蔵 | ||||||
値 | 有 |