ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 020 学位論文
  2. 物理科学研究科
  3. 09 天文科学専攻

Submillimeter-wave Observations of the ShockedMolecular Gas Associated with Supernova Remnants

https://ir.soken.ac.jp/records/388
https://ir.soken.ac.jp/records/388
239703c8-f2aa-4b60-b8b5-daadc94a909d
名前 / ファイル ライセンス アクション
甲454_要旨.pdf 要旨・審査要旨 / Abstract, Screening Result (318.8 kB)
甲454_本文.pdf 本文 (9.6 MB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2010-02-22
タイトル
タイトル Submillimeter-wave Observations of the ShockedMolecular Gas Associated with Supernova Remnants
タイトル
タイトル Submillimeter-wave Observations of the ShockedMolecular Gas Associated with Supernova Remnants
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_46ec
資源タイプ thesis
著者名 有川, 裕司

× 有川, 裕司

有川, 裕司

Search repository
フリガナ アリカワ, ユウジ

× アリカワ, ユウジ

アリカワ, ユウジ

Search repository
著者 ARIKAWA, Yuji

× ARIKAWA, Yuji

en ARIKAWA, Yuji

Search repository
学位授与機関
学位授与機関名 総合研究大学院大学
学位名
学位名 博士(理学)
学位記番号
内容記述タイプ Other
内容記述 総研大甲第454号
研究科
値 数物科学研究科
専攻
値 09 天文科学専攻
学位授与年月日
学位授与年月日 2000-03-24
学位授与年度
値 1999
要旨
内容記述タイプ Other
内容記述 Supernova remnants (SNRs), which are very energetic objects, are thought to have great influence on the interstellar medium. The expanding shock waves of SNRs compress, heat, and accelerate the interstellar gas. Because the interaction of SNR with the molecular cloud may play an important role in the next-generation star for- mation, it is of considerable interest to study the physical and chemical processes of
the interaction.
In order to search for the interaction between SNR and the molecular cloud, we observed two SNRs, W28 and γ Cygni SNR, which are supposed to be EGRET gamma- ray sources, in submillimeter-wave CO ( J = 3 - 2 ) line (345 GHz; 0.9 mm) by using the 15 m James Clerk Maxwell Telescope (JCMT). In W28, we detected a broad emission (maximum linewidth reaches ΔV ~70kms-1), which suggests an interaction between SNR and the molecular cloud (“shocked gas”), as well as a narrow emission from the “unshocked gas”. However, the broad emission was not observed toward γCygni SNR.
For W28, the distribution of the CO gas is similar to that of the 327 MHz radio- continuum emission, and tends to be stronger along the radio-continuum ridge. This suggest that the compression of magnetic fields in the SNR by the cloud results in enhanced synchrotron radiation. In addition, all of the OH (1720 MHz) maser spots, which trace the interaction between SNR and the molecular cloud, are located along the
filament of the shocked gas. These facts convincingly indicate that SNR W28 interacts with the molecular cloud. Our observations are consistent with a hypothesis that the interaction of the SNR with the molecular cloud can be the origin of gamma-rays. Moreover, the distribution of the unshocked and shocked gas is clearly resolved. The shocked gas is filamentary, and surrounds the center of the supernova, explosion. The unshocked gas is displaced by 0.4 - 1.0 pc outward with respect to the shocked gas. The spatial relationship between shocked and unshocked gas has been clarified for the first time for the interaction between SNRs and molecular clouds.
In order to obtain the distribution of the cold gas and the physical properties of the molecular gas associated with W28, we observed the millimeter-wave CO (J=1 - 0 ) line (115 GHz ; 2.6 mm) by using the 45 m telescope of the Nobeyama Radio Observatory (NRO). It is found that the line intensity of CO (J=1 - 0 ) emission is stronger than that of CO (J=3 - 2) emission in the narrow component, and while the CO (J=3 - 2) emission is stronger than CO (J =1 - 0) emission in the broad component. The distribution of CO (J =1 - 0) globally resembles that of CO (J = 3 - 2 ). The unshocked gas has a gas kinetic temperature of Tkin ~20 K and a density of n(H2) ~ 10 3 cm-3, and a total mass of Munshocked = 4 × 103 M〓. On the other hand, the shocked gas has Tkin > 60 K, n(H2) > 104 cm-3, and Mshocked = 2 × 103 M〓. The total kinetic energy deposited in the shocked molecular gas is 3 × 1048 erg, which corresponds to 0.3 % of the energy of the supernova explosion.<br />To understand the chemistry related to carbon in the interaction region between SNR and the molecular cloud, we observed in CO(J=3-2) at 345 GHz(0.9 mm) and CI(3P1 - 3P0) at 492 GHz (0.6 mm) toward the four SNRs, W28, IC443, W44, and W51C by using the Mt. Fuji submillimeter-wave telescope, which we developed. This telescope is the first submillimeter-wave telescope in Japan. With this telescope, we can observe CI(3P1 - 3P0) and CO(J=3 - 2) simultaneously. The spatial resolution is suitable for the observation of the molecular cloud scale. Except for IC 443, the CI(3P1 - 3P0) emission was detected. We found that the distribution of the CI(3P1 - 3P0) emission is similar to that of the CO(J=3 - 2) emission. It is clear that the known OH[(1720 MHz) maser spots are located at the edge of clumps in all 4 SNRs. In the interaction region between SNR and the molecular cloud, the CI(3P1 - 3P0)/CO(J=3 - 2) peak intensity ratio and the N(CI)/N(CO) column density ratio tend to be high. On the other hand, in molecular clouds unrelated with SNR, the ratios are lower. This result might imply that the interaction of SNR with the molecular cloud enhances the CI abundance.
At present, though 220 SNRs are cataloged in our Galaxy, the observational examples of the interaction between SNR and molecular clouds are small in number. The shock region in W28 has rather simple structure and “edge-on”. In the future, W28 can be one of the best regions for detailed studies of the interaction between SNR and the molecular cloud. By increasing the number of the observational examples, we can obtain better understanding of the molecular cloud associated with SNR.
所蔵
値 有
フォーマット
内容記述タイプ Other
内容記述 application/pdf
著者版フラグ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 14:55:22.654929
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3