WEKO3
アイテム
Reverse evolution in RH1 for adaptation of cichlids to water depth in Lake Tanganyika
https://ir.soken.ac.jp/records/4698
https://ir.soken.ac.jp/records/4698d95cfc7d-dbb3-444a-867f-067d47ea2e1c
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2014-06-25 | |||||
タイトル | ||||||
タイトル | Reverse evolution in RH1 for adaptation of cichlids to water depth in Lake Tanganyika | |||||
タイトル | ||||||
タイトル | Reverse evolution in RH1 for adaptation of cichlids to water depth in Lake Tanganyika | |||||
言語 | en | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
NAGAI, Haruka
× NAGAI, Haruka× TERAI, Yohey× et, al. |
|||||
著者別名 |
寺井, 洋平
× 寺井, 洋平 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Reverse evolution is a widespread phenomenon in biology, but the genetic mechanism for the reversal of a genetic change for adaptation to the ancestral state is not known. Here, we report the first case of complete reverse evolution of two amino acids, serine and alanine, at a single position in RH1 opsin pigment for adaptation to water depth. We determined RH1 sequences of cichlid fishes from four tribes of Lake Tanganyika with different habitat depths. Most of the species were divided into two types: RH1 with 292A for species in shallow water or 292S for species in deep water. Both types were adapted to their ambient light environments as indicated by the absorption spectra of the RH1 pigments. Based on the RH1 locus tree and ecological data, we inferred the ancestral amino acids at position 292 and the distribution of the depth ranges (shallow or deep) of ancestral species of each tribe. According to these estimates, we identified two distinct parallel adaptive evolutions: the replacement A292S occurred at least four times for adaptation from shallow to deep water, and the opposite replacement S292A occurred three times for adaptation from deep to shallow water. The latter parallelism represents the complete reverse evolution from the derived to the ancestral state, following back adaptive mutation with reversal of the RH1 pigment function accompanied by reversal of the species habitat shift. | |||||
書誌情報 |
Molecular Biology and Evolution en : Molecular Biology and Evolution 巻 6, p. 1769-1776, 発行日 2011 |
|||||
出版者 | ||||||
出版者 | Oxford University Press | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 07374038 | |||||
DOI | ||||||
識別子タイプ | DOI | |||||
関連識別子 | https://doi.org/10.1093/molbev/msq344 | |||||
関連名称 | 10.1093/molbev/msq344 | |||||
権利 | ||||||
権利情報 | © The Author 2010 |