WEKO3
アイテム
{"_buckets": {"deposit": "1cfd6021-0b14-4053-9dbf-0167c7dc0b64"}, "_deposit": {"created_by": 1, "id": "779", "owners": [1], "pid": {"revision_id": 0, "type": "depid", "value": "779"}, "status": "published"}, "_oai": {"id": "oai:ir.soken.ac.jp:00000779", "sets": ["17"]}, "author_link": ["0", "0", "0"], "item_1_biblio_info_21": {"attribute_name": "書誌情報(ソート用)", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2007-03-23", "bibliographicIssueDateType": "Issued"}, "bibliographic_titles": [{}]}]}, "item_1_creator_2": {"attribute_name": "著者名", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "若浦, 雅嗣"}], "nameIdentifiers": [{"nameIdentifier": "0", "nameIdentifierScheme": "WEKO"}]}]}, "item_1_creator_3": {"attribute_name": "フリガナ", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "ワカウラ, マサツグ"}], "nameIdentifiers": [{"nameIdentifier": "0", "nameIdentifierScheme": "WEKO"}]}]}, "item_1_date_granted_11": {"attribute_name": "学位授与年月日", "attribute_value_mlt": [{"subitem_dategranted": "2007-03-23"}]}, "item_1_degree_grantor_5": {"attribute_name": "学位授与機関", "attribute_value_mlt": [{"subitem_degreegrantor": [{"subitem_degreegrantor_name": "総合研究大学院大学"}]}]}, "item_1_degree_name_6": {"attribute_name": "学位名", "attribute_value_mlt": [{"subitem_degreename": "博士(統計科学)"}]}, "item_1_description_1": {"attribute_name": "ID", "attribute_value_mlt": [{"subitem_description": "2007026", "subitem_description_type": "Other"}]}, "item_1_description_12": {"attribute_name": "要旨", "attribute_value_mlt": [{"subitem_description": "This study is analysis of anomalies of surface air temperature in Japan. The surface\u003cbr /\u003eair temperature anomalies relative to the seasoma1 variations are ofour great concern \u003cbr /\u003efrom a long-term forecasting viewpoint. The result of the amalysis presents us the \u003cbr /\u003eusefu1 knowledge not oniy for the climatic amalysis but also for the prediction and the \u003cbr /\u003eweather risk management. \u003cbr /\u003e In this paper, to begin witza we investigate seasonal periodicities of the time series \u003cbr /\u003eand show that the surface air tenrperatue has the intense seasonality and there are \u003cbr /\u003eseasonal periodicities in not only the mean but also the variance. Under the strategy of \u003cbr /\u003edetection of the yearly distinctive variablities that is the object ofthe predictio\". the \u003cbr /\u003emeans and variances ofthe deterministic seasonal periodicities are removed from the\u003cbr /\u003eoriginal tenrperature data and the residuals are defined as the anomalies. \u003cbr /\u003e The low-pass fikered anomalies represent the yearly distinctive5 variablities \u003cbr /\u003equantitatively and analysis ofthe monthly divided dataset suggests seasonality in the \u003cbr /\u003eanomalies. Then a particular parametric form for a nonstationary autoregressive (AR) \u003cbr /\u003emodel is considered to analyze seasonality in the anomalies and the new knowledge is \u003cbr /\u003eShown. The model shows that there are seasoma1 changes in the autocorrelation of \u003cbr /\u003esurface air temperature and the daily power spectrum transformed from the coefficients \u003cbr /\u003eofthe model clarifies the seasonal feature. Applying the model to the high-pass filtered \u003cbr /\u003edatasets clarifies the infiuence of the Japan Current on the seasonality and it is. \u003cbr /\u003eexpected that the long-tenn prediction might be improved by taking the effect from the \u003cbr /\u003eJapan Current as an exogenous factor. On the other hand, applying the mOdel to the \u003cbr /\u003epricing ofthe weather derivatives shows that we cannot neglect the seasonality in the \u003cbr /\u003evaluation ofthe weather risk in the future. \u003cbr /\u003e Furthermore, the model is extended multivariate model. In analysis using the noise \u003cbr /\u003econtribution, the relation and causality between stations is shown and the structure of \u003cbr /\u003ethe surface air ternperature in Japan is explained. The daily noise contribution \u003cbr /\u003eestimated from the Multivariate model can quantitatively grasp the clearly seasonal \u003cbr /\u003echange and the propagation of the causality, and suggests that there are the local \u003cbr /\u003eteleconnections between stations. The knowledge Will also be import factors\u0027 for the \u003cbr /\u003eprediction.", "subitem_description_type": "Other"}]}, "item_1_description_7": {"attribute_name": "学位記番号", "attribute_value_mlt": [{"subitem_description": "総研大甲第1041号", "subitem_description_type": "Other"}]}, "item_1_select_14": {"attribute_name": "所蔵", "attribute_value_mlt": [{"subitem_select_item": "有"}]}, "item_1_select_8": {"attribute_name": "研究科", "attribute_value_mlt": [{"subitem_select_item": "複合科学研究科"}]}, "item_1_select_9": {"attribute_name": "専攻", "attribute_value_mlt": [{"subitem_select_item": "15 統計科学専攻"}]}, "item_1_text_10": {"attribute_name": "学位授与年度", "attribute_value_mlt": [{"subitem_text_value": "2006"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "WAKAURA, Masatsugu", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "0", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2016-02-17"}], "displaytype": "simple", "download_preview_message": "", "file_order": 0, "filename": "甲1041_要旨.pdf", "filesize": [{"value": "166.9 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_11", "mimetype": "application/pdf", "size": 166900.0, "url": {"label": "要旨・審査要旨", "url": "https://ir.soken.ac.jp/record/779/files/甲1041_要旨.pdf"}, "version_id": "c3c21931-cade-4e36-a403-a6e46f83b064"}, {"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2016-02-17"}], "displaytype": "simple", "download_preview_message": "", "file_order": 1, "filename": "甲1041_本文.pdf", "filesize": [{"value": "20.2 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_11", "mimetype": "application/pdf", "size": 20200000.0, "url": {"label": "本文", "url": "https://ir.soken.ac.jp/record/779/files/甲1041_本文.pdf"}, "version_id": "c26d26bc-e4d6-40da-9d5e-b1b44405177e"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "thesis", "resourceuri": "http://purl.org/coar/resource_type/c_46ec"}]}, "item_title": "Analysis of Surface Air Temperature Anomalies", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Analysis of Surface Air Temperature Anomalies"}, {"subitem_title": "Analysis of Surface Air Temperature Anomalies", "subitem_title_language": "en"}]}, "item_type_id": "1", "owner": "1", "path": ["17"], "permalink_uri": "https://ir.soken.ac.jp/records/779", "pubdate": {"attribute_name": "公開日", "attribute_value": "2010-02-22"}, "publish_date": "2010-02-22", "publish_status": "0", "recid": "779", "relation": {}, "relation_version_is_last": true, "title": ["Analysis of Surface Air Temperature Anomalies"], "weko_shared_id": 1}
Analysis of Surface Air Temperature Anomalies
https://ir.soken.ac.jp/records/779
https://ir.soken.ac.jp/records/77930064ad2-d330-4799-90aa-2d045eefad50
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
||
![]() |
Item type | 学位論文 / Thesis or Dissertation(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2010-02-22 | |||||
タイトル | ||||||
タイトル | Analysis of Surface Air Temperature Anomalies | |||||
タイトル | ||||||
言語 | en | |||||
タイトル | Analysis of Surface Air Temperature Anomalies | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_46ec | |||||
資源タイプ | thesis | |||||
著者名 |
若浦, 雅嗣
× 若浦, 雅嗣 |
|||||
フリガナ |
ワカウラ, マサツグ
× ワカウラ, マサツグ |
|||||
著者 |
WAKAURA, Masatsugu
× WAKAURA, Masatsugu |
|||||
学位授与機関 | ||||||
学位授与機関名 | 総合研究大学院大学 | |||||
学位名 | ||||||
学位名 | 博士(統計科学) | |||||
学位記番号 | ||||||
内容記述タイプ | Other | |||||
内容記述 | 総研大甲第1041号 | |||||
研究科 | ||||||
値 | 複合科学研究科 | |||||
専攻 | ||||||
値 | 15 統計科学専攻 | |||||
学位授与年月日 | ||||||
学位授与年月日 | 2007-03-23 | |||||
学位授与年度 | ||||||
2006 | ||||||
要旨 | ||||||
内容記述タイプ | Other | |||||
内容記述 | This study is analysis of anomalies of surface air temperature in Japan. The surface<br />air temperature anomalies relative to the seasoma1 variations are ofour great concern <br />from a long-term forecasting viewpoint. The result of the amalysis presents us the <br />usefu1 knowledge not oniy for the climatic amalysis but also for the prediction and the <br />weather risk management. <br /> In this paper, to begin witza we investigate seasonal periodicities of the time series <br />and show that the surface air tenrperatue has the intense seasonality and there are <br />seasonal periodicities in not only the mean but also the variance. Under the strategy of <br />detection of the yearly distinctive variablities that is the object ofthe predictio". the <br />means and variances ofthe deterministic seasonal periodicities are removed from the<br />original tenrperature data and the residuals are defined as the anomalies. <br /> The low-pass fikered anomalies represent the yearly distinctive5 variablities <br />quantitatively and analysis ofthe monthly divided dataset suggests seasonality in the <br />anomalies. Then a particular parametric form for a nonstationary autoregressive (AR) <br />model is considered to analyze seasonality in the anomalies and the new knowledge is <br />Shown. The model shows that there are seasoma1 changes in the autocorrelation of <br />surface air temperature and the daily power spectrum transformed from the coefficients <br />ofthe model clarifies the seasonal feature. Applying the model to the high-pass filtered <br />datasets clarifies the infiuence of the Japan Current on the seasonality and it is. <br />expected that the long-tenn prediction might be improved by taking the effect from the <br />Japan Current as an exogenous factor. On the other hand, applying the mOdel to the <br />pricing ofthe weather derivatives shows that we cannot neglect the seasonality in the <br />valuation ofthe weather risk in the future. <br /> Furthermore, the model is extended multivariate model. In analysis using the noise <br />contribution, the relation and causality between stations is shown and the structure of <br />the surface air ternperature in Japan is explained. The daily noise contribution <br />estimated from the Multivariate model can quantitatively grasp the clearly seasonal <br />change and the propagation of the causality, and suggests that there are the local <br />teleconnections between stations. The knowledge Will also be import factors' for the <br />prediction. | |||||
所蔵 | ||||||
値 | 有 |