ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 020 学位論文
  2. 複合科学研究科
  3. 15 統計科学専攻

Analysis of Surface Air Temperature Anomalies

https://ir.soken.ac.jp/records/779
https://ir.soken.ac.jp/records/779
30064ad2-d330-4799-90aa-2d045eefad50
名前 / ファイル ライセンス アクション
甲1041_要旨.pdf 要旨・審査要旨 (166.9 kB)
甲1041_本文.pdf 本文 (20.2 MB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2010-02-22
タイトル
タイトル Analysis of Surface Air Temperature Anomalies
タイトル
タイトル Analysis of Surface Air Temperature Anomalies
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_46ec
資源タイプ thesis
著者名 若浦, 雅嗣

× 若浦, 雅嗣

若浦, 雅嗣

Search repository
フリガナ ワカウラ, マサツグ

× ワカウラ, マサツグ

ワカウラ, マサツグ

Search repository
著者 WAKAURA, Masatsugu

× WAKAURA, Masatsugu

en WAKAURA, Masatsugu

Search repository
学位授与機関
学位授与機関名 総合研究大学院大学
学位名
学位名 博士(統計科学)
学位記番号
内容記述タイプ Other
内容記述 総研大甲第1041号
研究科
値 複合科学研究科
専攻
値 15 統計科学専攻
学位授与年月日
学位授与年月日 2007-03-23
学位授与年度
値 2006
要旨
内容記述タイプ Other
内容記述 This study is analysis of anomalies of surface air temperature in Japan. The surface<br />air temperature anomalies relative to the seasoma1 variations are ofour great concern <br />from a long-term forecasting viewpoint. The result of the amalysis presents us the <br />usefu1 knowledge not oniy for the climatic amalysis but also for the prediction and the <br />weather risk management. <br /> In this paper, to begin witza we investigate seasonal periodicities of the time series <br />and show that the surface air tenrperatue has the intense seasonality and there are <br />seasonal periodicities in not only the mean but also the variance. Under the strategy of <br />detection of the yearly distinctive variablities that is the object ofthe predictio". the <br />means and variances ofthe deterministic seasonal periodicities are removed from the<br />original tenrperature data and the residuals are defined as the anomalies. <br /> The low-pass fikered anomalies represent the yearly distinctive5 variablities <br />quantitatively and analysis ofthe monthly divided dataset suggests seasonality in the <br />anomalies. Then a particular parametric form for a nonstationary autoregressive (AR) <br />model is considered to analyze seasonality in the anomalies and the new knowledge is <br />Shown. The model shows that there are seasoma1 changes in the autocorrelation of <br />surface air temperature and the daily power spectrum transformed from the coefficients <br />ofthe model clarifies the seasonal feature. Applying the model to the high-pass filtered <br />datasets clarifies the infiuence of the Japan Current on the seasonality and it is. <br />expected that the long-tenn prediction might be improved by taking the effect from the <br />Japan Current as an exogenous factor. On the other hand, applying the mOdel to the <br />pricing ofthe weather derivatives shows that we cannot neglect the seasonality in the <br />valuation ofthe weather risk in the future. <br /> Furthermore, the model is extended multivariate model. In analysis using the noise <br />contribution, the relation and causality between stations is shown and the structure of <br />the surface air ternperature in Japan is explained. The daily noise contribution <br />estimated from the Multivariate model can quantitatively grasp the clearly seasonal <br />change and the propagation of the causality, and suggests that there are the local <br />teleconnections between stations. The knowledge Will also be import factors' for the <br />prediction.
所蔵
値 有
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 15:59:58.852621
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3