ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 020 学位論文
  2. 高エネルギー加速器科学研究科
  3. 13 物質構造科学専攻

Dual Electron-phonon Coupling Model for Giant Photoenhancements of Dielectric Constant and Electronic Conductivity in SrTiO3

https://ir.soken.ac.jp/records/674
https://ir.soken.ac.jp/records/674
dc97c1de-530f-44c9-8655-fdb938456caf
名前 / ファイル ライセンス アクション
甲989_要旨.pdf 要旨・審査要旨 (265.9 kB)
甲989_本文.pdf 本文 (4.9 MB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2010-02-22
タイトル
タイトル Dual Electron-phonon Coupling Model for Giant Photoenhancements of Dielectric Constant and Electronic Conductivity in SrTiO3
タイトル
タイトル Dual Electron-phonon Coupling Model for Giant Photoenhancements of Dielectric Constant and Electronic Conductivity in SrTiO3
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_46ec
資源タイプ thesis
著者名 邱, 宇

× 邱, 宇

邱, 宇

Search repository
フリガナ クイユ

× クイユ

クイユ

Search repository
著者 QIU, Yu

× QIU, Yu

en QIU, Yu

Search repository
学位授与機関
学位授与機関名 総合研究大学院大学
学位名
学位名 博士(理学)
学位記番号
内容記述タイプ Other
内容記述 総研大甲第989号
研究科
値 高エネルギー加速器科学研究科
専攻
値 13 物質構造科学専攻
学位授与年月日
学位授与年月日 2006-09-29
学位授与年度
値 2006
要旨
内容記述タイプ Other
内容記述 Since some 3D type perovkite compounds have been found in the experiments to<br />give gigantic dielectric constant, in contrast to the ordinary dielectrics, its<br />underlying microscopic mechanism has attractted much attention in the field of<br />solid state theory. As is well-known, the ferroelectric modes play an important roll<br />in the dielectric property, transportation and phase transition or these materials.<br />Many efforts were already performed on the connection of this ferroelectric mode<br />with the quartic or sextic anharmonic oscillators. ln experiment, glgantic<br />photo-enhancements of the electronic conductivity and the dielectric constant have<br />recently been observed in SrTiO3. lt was also pointed out that, this dielectric<br />enhancement remains to exist only under the ultraviolet (UV) illumination, while<br />vanishes as the illumination is turned off. As for the photo-induced electronic<br />conduction in SrTiO<sub>3</sub>, it is expected to be an alternative mechanism from that of the<br />ordinary field induced one in metallic systems. However, the microscopic origin of<br />these photo-induced phenomena has not yet been clarified theoretically. Thus, this<br />is just the motivation of the present study.<br /> We will give a short introduction to the soft mode theory in the<br />second chapter since our work will be mainly based on this theory.<br />The spatial structure and the electronic property of this 3D<br />perovskite. SrTi0<sub>3</sub>, are also stated. since we will focus our efforts<br />only on this compound in the present work. Some key points of the<br />previous studies on the fundamental properties of SrTiO<sub>3</sub>, are<br />summerized as well. =n Chapter 3, a detailed illustration is given<br />to the Super-Para-Electric (SPE) large polarons, from the set-up of<br />the cheoretic model to the numerical calculatlons, and ends up with<br />the impurity effect on this polaron. Combining the experimentally<br />observed dielectrlc and conductive properties with previous<br />theoretical researches on the model for this crystal, we give a further<br />investigation into the model and come up with a new model for the<br />photo excited state of the crystal. By which, we can adiabatically<br />obtain the corresponding energy surface and find all the metastable<br />states on it. With the investigation of each of such states, We can<br />find its connection with the dielectric and conductive property of<br />this crystal・ We also give an investigation into the most stable<br />quasiparticle state for the many electron system within the adeabatic<br />method and give a description to the possible lattice configurations<br />for the photo excited state of the electron and phonon coupling system.<br />Then it is followed by Chapter 4, the appllcations of this SPE polaron<br />theory in the interpretation of the photo-induced giant dielectric<br />constant and electronic conductivity. We will first discuss one of<br />the fundamental problems for phonons, phonon softening or phonon<br />hardening with the introduction of e-p coupling. Then we will apply<br />our SPE large polaron theory to the experimentally observed static<br />dielectric enhancement in srTiO<sub>3</sub>, clarifying the microscopic origin <br />of this photo-induced phase transition. In the following, we will<br />give a phenomenological interpretation to the experimentally reported<br />metallic conduction in SrTiO<sub>3</sub> by studying the translational property<br />of the polarons. In Chapter 5, we will discuss the relaxation process<br />of the lattice after the photo-excitation. It has already been studied<br />that for polymers, the formation of the polaron or exciton is an<br />ultra-fast process. <sup>[6l]</sup> In experiment, these states could be detected<br />and predicted from the spectra. However, by virtue of the molecular<br />dynamics theory, the information of the lattice configuration as well<br />as the electronic state can be traced so as to compare with the<br />energetic evolution. Then, the lattice relaxation process could be<br />recognized more clearly. We will first give a deschption to the <br />molecular dynamics theory for the e-p interacting system. Then, we<br />will apply this method to SrTiO<sub>3</sub> and give some detailed descriptions<br />about the relaxation process in this crystal. We will show the<br />formation of the SPE large polaron is an ultra-fast process of about<br />several picoseconds, and how the electron and phonon interaction<br />system releases its energy so as to reach its new stable state. The<br />influence of the electron and phonon interaction strength and the<br />size of the electron and phonon coupling system on the relaxation<br />process will be shown. A summary of all the conclusions of these<br />studies is given at Chapter 6.
所蔵
値 有
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 16:00:12.619462
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3