ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 020 学位論文
  2. 複合科学研究科
  3. 15 統計科学専攻

Nonlinear, Non-Gaussian, and Non-stationary State Space Models and Applications to Economic and Financial Time Series

https://ir.soken.ac.jp/records/781
https://ir.soken.ac.jp/records/781
defecea1-764f-43bb-bf48-d0f47f0b46da
名前 / ファイル ライセンス アクション
甲1043_要旨.pdf 要旨・審査要旨 (245.4 kB)
甲1043_本文.pdf 本文 (1.4 MB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2010-02-22
タイトル
タイトル Nonlinear, Non-Gaussian, and Non-stationary State Space Models and Applications to Economic and Financial Time Series
タイトル
タイトル Nonlinear, Non-Gaussian, and Non-stationary State Space Models and Applications to Economic and Financial Time Series
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_46ec
資源タイプ thesis
著者名 矢野, 浩一

× 矢野, 浩一

矢野, 浩一

Search repository
フリガナ ヤノ, コウイチ

× ヤノ, コウイチ

ヤノ, コウイチ

Search repository
著者 YANO, Koiti

× YANO, Koiti

en YANO, Koiti

Search repository
学位授与機関
学位授与機関名 総合研究大学院大学
学位名
学位名 博士(統計科学)
学位記番号
内容記述タイプ Other
内容記述 総研大甲第1043号
研究科
値 複合科学研究科
専攻
値 15 統計科学専攻
学位授与年月日
学位授与年月日 2007-03-23
学位授与年度
値 2006
要旨
内容記述タイプ Other
内容記述 Financial markets and the economy are changing rapidly. On financial markets, many <br />financial time series exhibit changes of volatility (variance) over time. Moreover, many <br />financial time series are well known to have non-Gaussian heavy-tailed distributions. <br />These facts indicate that a nonlinear non-Gaussian time series analysis is needed. <br />Regarding the economy, as one example, the Japanese economy has the experience of <br />the "bubble economy" in the late 1980s. After bursting of the "bubble economy", the <br />economy entered a decade o,f economic stagnation, which is often called "the lost <br />decade". These facts indicate that conventional linear regression based on ordinary <br />least squares might be ineffective to analyze a non-stationary economy because the <br />coefficients of linear regression are fixed. This paper shows several statistical <br />approaches based on nonlinear non-Gaussian state space modeling and time-varying <br />coefficient autoregressive modeling. These approaches are novel studies of financial <br />markets and the economy. <br /> In chapter 1, the Monte Carlo filter is introduced. It is a minimal introduction to <br />nonlinear non-Gaussian state-space modeling. <br /> In chapter 2, we propose a method to seek initial distributions of parameters for a <br />self-organizing state space model proposed by Kitagawa]. Our method is based on the <br />simplex Nelder-Mead algorithm for solving nonlinear and discontinuous optimization <br />problems. We show the effectiveness of our method by applying it to a linear Gaussian <br />model, a linear non-Gaussian Model, a nonlinear Gaussian model, and a stochastic <br />volatility model. <br /> In chapter 3, we propose a smoothing algorithm based on the Monte Carlo filter and <br />the inverse function of a system equation (an inverse system function). Our method is <br />applicable to any nonlinear non-Gaussian state space model if an inverse system <br />equation is given analytically. Moreover, we propose a filter initialization algorithm <br />based on a smoothing distribution obtained by our smoothing algorithm and an <br />inverse system equation. <br /> In chapter 4, we illustrate the effectiveness of our approach by applying it to <br />stochastic volatility models and stochastic volatility models with heavy-tailed <br />distributions for the daily return of the Yen/Dollar exchange rate. <br /> In chapter 5, we propose a method that estimates a time-varying linear system <br />equation based on time-varying coefficients' vector autoregressive modeling <br />(time-varying VAR), and which controls the system. In our framework, an optimal <br />feedback is determined using linear quadratic dynamic programming in each period.<br />The coeffients of time-varying VAR are assumed to change gradually (this <br />assumption is widely known as smoothness priors of the Bayesian procedure). The <br />coefficients are estimated using the Kalman filter. In our empirical analyses, we show <br />the effectiveness of our approach by applying it to monetary policy, in particular, the <br />inflation targeting of the United Kingdom and the nominal growth rate targeting of <br />Japan. Furthermore, we emphasize that monetary policy must be forecast-based <br />because transmission lags pertain from monetary policy to the economy. Our approach <br />is convenient and effective for central bank practitioners when they are unaware of <br />the true model of the economy. Additionally, we find that the coefficients of <br />time-varying VAR change in response to changes of monetary policy. <br /> In chapter 6, we estimate the β of a single factor model that is ofben used by <br />financial practitioners. In this chapter, we assume that β changes "gradually" over <br />time; this assumption is identical to that in chapter 5. Using our approach, we can <br />estimate β, even if it is time varying. We apply our approach to the Japanese Stock <br />Markets and show its effectiveness. Although we adopt a very restrictive method (we <br />assume smoothness priors and use the Kalman fiker, which is based on linear state <br />space modeling and the Gaussian distribution), we can obtain good estimates of β.
所蔵
値 有
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 16:00:00.121155
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3